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Abstract

In this paper we prove a version of curved Koszul duality for Z/2Z-graded curved
coalgebras and their cobar differential graded algebras. A curved version of the
homological perturbation lemma is also obtained as a useful technical tool for studying
curved (co)algebras and precomplexes. The results of Koszul duality can be applied
to study the category of matrix factorizations MF(R,W ). We show how Dyckerhoff’s
generating results fit into the framework of curved Koszul duality theory. This enables
us to clarify the relationship between the Borel–Moore Hochschild homology of curved
(co)algebras and the ordinary Hochschild homology of the category MF(R,W ). Similar
results are also obtained in the orbifold case and in the graded case.

1. Introduction

1.1 Background and motivations
Matrix factorizations of an element W in a commutative ring R = C[[x1, . . . , xn]] were
first introduced by Eisenbud [Eis80] in the study of singularity theory. Recently this theory
has received renewed interests largely due to its appearance in Kontsevich’s homological
mirror symmetry conjecture. Indeed the differential graded (dg) category MF(R,W ) of matrix
factorizations is conjecturally mirror to the Fukaya category of a Fano symplectic manifold M .

The following fundamental results concerning the structure of the dg category MF(R,W )
were obtained by Dyckerhoff [Dyc11] under the assumption that W has isolated singularities:

(i) the homotopy category [MF(R,W )] is classically generated by a single object kstab;

(ii) the dg algebra A := EndMF(R,W )(k
stab) realizes MF(R,W ) as the dg category of perfect dg

modules over A;

(iii) we have HH ∗(MF(R,W )) ∼= Jac(W )[dimR].

Dyckerhoff’s computation of the Hochschild homology was indirect, which uses the fact that
MF(R,W ) is a compact smooth Calabi–Yau category to reduce the computation to that of
Hochschild cohomology. The computation of Hochschild cohomology in turn relies on Toen’s
interpretation of it as natural transformations from the identity functor to itself.

There is a different approach to understanding the category MF(R,W ) initiated in [Seg13]
and [CT13]. More precisely the data (R,W ) naturally give rise to a curved algebra which we will
denote byRW . The category MF(R,W ) can be interpreted as the category of perfect modules over
this curved algebra RW . Through this perspective Căldăraru and the author [CT13] introduced
the notion of Borel–Moore Hochschild homology of a curved algebra, and proved that1

HH BM
∗ (RW ) ∼= Jac(W )[dimR].
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Moreover, in [Seg13] it was shown that

HH BM
∗ (MF(R,W )) ∼= HH BM

∗ (RW ).

The main advantage of this approach is we have an explicit complex: the Borel–Moore Hochschild
chain complex of RW . Thus, it would be desirable to relate HH ∗(MF(R,W )) with HH BM

∗ (RW )
or HH BM

∗ (MF(R,W )), which would also yield an easier way of computing HH ∗(MF(R,W )).
Clarifying this relationship is the main motivation for the current paper. In the following we
explain the main ideas, and give a section-wise summary of our main results.

1.2 Curved Koszul duality over Z/2Z
The main idea of relating the two types of Hochschild homology is to use Koszul duality theory.
In fact, Dyckerhoff’s results mentioned above already suggest such a link.

For applications to matrix factorizations we need a version of curved Koszul duality theory in
the Z/2Z-graded situation. This theory was developed by Positselski in [Pos11] in great generality
where various types of non-standard derived categories were introduced in order to obtain the
desired results. In § 2 we give a more direct proof of the version of Koszul duality which is enough
for the applications we have in mind. The proofs we give rely on a curved version of homological
perturbation lemma (see Appendix A) which is of independent interest. More precisely the main
result we obtain in Koszul duality theory is the following theorem.

Theorem 1.1. Let BM be a coaugumented curved coalgebra, and let ΩBM be its cobar dg
algebra. Then there is a quasi-equivalence

Tw(BM ) ∼= Tw(ΩBM )

of dg categories of twisted complexes. If, furthermore, the coalgebra B is conilpotent, then the
dg algebra ΩBM itself is a compact generator for the homotopy category [Tw(ΩBM )].

Remark. The twisted complexes used in this theorem are not the standard ones in the sense
that we allow possibly infinite rank ones and, moreover, we do not assume the upper-triangular
condition. Owing to these two non-standard conventions, the second part of the above theorem
is not at all obvious. We also remark that these modifications are necessary for the purpose of
doing Koszul duality.

1.3 Applications to MF(R,W )
In §§ 3 and 4 we apply Koszul duality theory to study MF(R,W ). For this observe that the
commutative ring R is the dual algebra of the symmetric coalgebra C generated by variables y1 :=
x∨1 , . . . , yn := x∨n, and the elementW ∈R is the dual of a linear mapM : C → C. Moreover, matrix
factorizations of (R,W ) can be identified with twisted complexes over the curved coalgebra CM
which are of finite rank. This simple observation allows us to apply Theorem 1.1 in the situation
CM and ΩCM to obtain understanding of MF(R,W ). We summarize our main results in the
following theorem.

Theorem 1.2. Assume that W has isolated singularities. Then we have the following:

(i) Dyckerhoff’s generator kstab arises from Koszul duality;2

(ii) the dg algebra A := EndMF(R,W )(k
stab) is quasi-isomorphic to the cobar dg algebra ΩCM ;

(iii) there is a canonical isomorphism HH ∗(MF(R,W )) ∼= [HH BM
∗ (RW )]∨.

2 For a more precise statement we refer to § 3.
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Remark. It is an interesting puzzle to understand the appearance of dualization in the above
isomorphism between the HH BM

∗ (RW ) and HH ∗(MF(R,W )). This might be explained by a
relationship between Koszul duality and a natural pairing (generalized Mukai pairing) on the
Hochschild homology.

1.4 Applications to MFG(R,W )
In § 5 we generalize the above results and Dyckerhoff’s generation result to the orbifold case.
The main results are summarized in the following theorem.

Theorem 1.3. Assume that W has isolated singularities, and G a finite abelian group acting
on R which fixes W . Then we have:

(i) the homotopy category [MFG(R,W )] of equivariant matrix factorizations is classically
generated by

{kstab ⊗ Cχ | χ is a character for the group G}

where Cχ denotes the one-dimensional representation associated to the character χ;

(ii) the smash product dg algebra Ω(CM )]G realizes MFG(R,W ) as the dg category of perfect
dg modules over Ω(CM )]G;

(iii) for the Hochschild homology we have

HH ∗(MFG(R,W )) ∼= [HH BM
∗ (RW ]G)]∨.

Remark. In [CT13] the vector space HH BM
∗ (RW ]G) was explicitly computed as

HH BM
∗ (RW ]G) =

(⊕
g∈G

HH BM
∗ (RW |g)

)G
,

where RW |g denotes the curved algebra associated to the LG model on the g-fixed points of
Spec(R).

1.5 Applications to MFgr(S,W )
In § 6 we study graded matrix factorizations where similar results are obtained. In the graded
case we consider S := C[x1, . . . , xn] the polynomial ring in n variables endowed with its standard
grading. Let W ∈ S be a homogeneous polynomial of degree d. Denote G := Z/dZ which acts
on S by ring homomorphism generated by

ζ(xj) := ζ · xj .

Since W is of degree d this action preserves W . In this situation we can consider the dg category
MFgr(S,W ) of graded matrix factorizations (see § 6 for its definition).

Theorem 1.4. Assume that W has isolated singularities. Then we have:

(i) the homotopy category [MFgr(S,W )] is classically generated by

kstab(d− 1), kstab(d− 2), . . . , kstab

where the shifts in the parentheses are polynomial degree shifts of graded S-modules;

(ii) there is a Z-graded3 smash product algebra Ω(CM )]G realizing MFgr(S,W ) as the dg
category of perfect dg modules;

3 This Z-graded is not the standard polynomial grading, see § 6 for its precise definition.
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(iii) for the Hochschild homology we have

HH ∗(MFgr(S,W )) ∼= [HH BM
∗ (SW ]G)]∨

where the operation ∨ denotes graded dualization.

2. Koszul duality for the (co)bar constructions

In this section we recall the cobar construction and prove a version of Koszul duality between
Z/2Z-graded curved coalgebras and their cobar algebras. Then we prove some useful properties
concerning the derived categories of cobar algebras. The results proved in this section are
essentially due to Positselski [Pos11], although we give more direct proofs here.

Throughout this section we work with Z/2Z-graded objects over a base field k. For instance,
a graded vector space means a Z/2Z-graded (or super) vector space; a complex means a super
vector space endowed with an odd endomorphism that squares to zero; and a dg category means a
category enriched over Z/2Z-graded complexes. Linear algebra operations such as tensor product
or homomorphism between vector spaces are all taken over k unless otherwise stated. Finally all
algebras and coalgebras are assumed to be unital.

2.1 Curved algebras
A curved algebra structure on a super vector space A is an associative algebra structure on A
together with an even central element W ∈ A.

Example 2.1. An example of a curved algebra that will be of primary interest in this paper.
Let V be a finite-dimensional vector space over a field k. Consider the commutative algebra

R := ̂sym(V ∨) together with a choice of an element W in it. Since R is commutative any element
in it is automatically central.

2.2 Twisted complexes over AW : matrix factorizations
We can define the category Tw(AW ) of twisted complexes over a curved algebra AW . The objects
of this category are pairs (E,Q) where E is a Z/2Z-graded free A-module and Q is an odd
A-linear map such that Q2 = W id. The morphism space between two objects (E,Q) and (F, P )
consists of all A-linear maps from E to F . As such, the Hom space inherits a differential defined
by D(ϕ) = P ◦ϕ− (−1)|ϕ|ϕ◦Q. One easily checks that D squares to zero as W id is in the center
of matrix algebras.

This differential makes the category Tw(AW ) into a dg category. Note that here we allow
possibly infinite rank modules in the construction of Tw(AW ). We denote by Twb(AW ) the
full subcategory of Tw(AW ) consisting of twisted complexes that are of finite rank. The
category Twb(AW ) (Tw(AW ) respectively) is sometimes also referred to as the category of matrix
factorizations MF(A,W ) (MF∞(A,W ) respectively).

As the category Tw(AW ) has a dg structure we can define the notion of homotopy between
morphisms and objects. More precisely, we say two morphisms f and g are homotopic if f − g is
exact. We say two objects E and F are homotopy equivalent if there are morphisms f : E → F
and g : F → E such that f ◦ g is homotopic to idF and g ◦ f is homotopic to idE .

2.3 Curved coalgebras
Dualizing the definition for curved algebras we arrive at the definition for curved coalgebras.
Namely curved coalgebra structure on a vector space B is a Z/2Z-graded coassociative coalgebra
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structure on B together with an even map M : B → k such that the composition

B
∆−→ B ⊗B M⊗ id− id⊗M−−−−−−−−−→ B

is zero. Using Sweedler’s notation for the coproduct ∆, the above is equivalent to

M(x(1))x(2) − x(1)M(x(2)) = 0

for all x ∈ B. As before we denote a curved coalgebra by BM .

Example 2.2. As a dual example of Example 2.1 we consider C := sym(V ) to be the vector space
of symmetric tensors on V . Again we consider C as a super vector space concentrated in the
even part. There is a natural coalgebra structure on C = sym(V ) defined by

∆(v1 · · · vn) :=
∑

p>0,q>0,p+q=n,σ∈S(p,q)

(vσ(1) · · · vσ(p))⊗ (vσ(p+1) · · · vσ(n))

where S(p, q) is the subgroup of the symmetric group S(n) consisting of (p, q)-shuffles. It follows
from definition that the dual algebra4 of C is the commutative algebra R in Example 2.1. The
curvature term is any linear map M : C → k.

2.4 Basics of comodules
We recall some useful properties of cofree comodules. First of all for purposes of this paper
we only consider cofree comodules of the form B ⊗ V for some k-vector space V (possibly
infinite-dimensional). Moreover, in the abelian category A of B-comodules, cofree comodules
are injective objects and hence is closed under direct product in A . For example, we have∏

(B⊗Vi) ∼= B⊗(
∏
Vi) where the product on the left-hand side is taken in A . A special property

for A is that the class of injective objects is also closed under direct sum in A . Explicitly, we
have

∐
(B ⊗ Vi) ∼= B ⊗ (

∐
Vi).

2.5 Twisted complexes over BM : matrix cofactorizations
Given a curved coalgebra BM we can construct a category Tw(BM ) of twisted complexes. The
objects are pairs (E,Q) with E a cofree B-comodule and Q an odd comodule map on E such
that the dual of the matrix factorization identity holds,

Q2(x) = M(b(1))x(2).

Here we write the coaction map to be ρ(x) = b(1) ⊗ x(2) for x ∈ E, b(1) ∈ B and x(2) ∈ E.
The Hom spaces and differentials on Hom spaces are defined in a similar way as for matrix
factorizations. Objects in Tw(BM ) will be called matrix cofactorizations. There is also a dg
structure on Tw(BM ). The full subcategory of Tw(BM ) consisting of matrix cofactorizations
that are of finite rank over B will be denoted by Twb(BM ).

There is a simple relation between the two dg categories Twb(RW ) and Twb(CM ), made
precise in the following lemma.

Lemma 2.3. Let BM be a curved coalgebra, and let AW be its dual curved algebra. Define a
functor D : Twb(BM )op → Twb(AW ) by formula

(E,Q)
D7→ (E∨, Q∨)

4 Note that the dual of a coalgebra is always an algebra, but not vice versa due to infinite dimensionality.
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on objects and for any morphism f ∈ HomTw(CM )((E,Q), (F, P ))

D(f) := f∨ : (F ∨, P ∨) → (E∨, Q∨).

Then D is an equivalence between Twb(BM )op and Twb(AW ).

Proof. Observe that a map h : B → B of B-comodules is uniquely determined by its composition
with the counit map. Conversely any k-linear map α : B → k defines a map of B-comodules by

B → B ⊗B α⊗ id−−−→ k ⊗B = B.

This defines an isomorphism between HomB(B,B) and Homk(B, k) = A. More generally for two
cofree C-comodules E1 = B ⊗ V1 and E2 = B ⊗ V2 with V1 and V2 finite-dimensional vector
spaces over k we have

HomB(E1, E2) = HomB(B ⊗ V1, B ⊗ V2)
∼= HomB(B,B)⊗ Homk(V1, V2) ∼= A⊗ Hom(V1, V2).

For the Hom space between DE2 and DE1, we have

HomA((B ⊗ V2)∨, (B ⊗ V1)∨) = HomA(A⊗ V ∨2 , A⊗ V ∨1 )

= A⊗ Hom(V ∨2 , V
∨

1 ) = A⊗ Hom(V1, V2),

where the first and the last equality follow from V1 and V2 being finite dimensional. Thus, we
have verified that the functor D is an equivalence. A direct computation shows that it also
preserves the differential and hence the lemma is proved. 2

2.6 The cobar construction
Let BM be a curved coalgebra. A k-linear map η : k → B is called a coaugumentation of BM if:

(i) η splits the counit map;

(ii) η is a map of coalgebras;

(iii) M ◦ η = 0.

Denote by B+ the cokernel of η which can be identified with the kernel of the counit through
the splitting in condition (i). Then condition (ii) implies that B+ is a quotient coalgebra of B
and condition (iii) implies that M : B → k factor through B+.

Given a coaugumented curved coalgebra BM , we can construct a dg algebra ΩBM , known
as its cobar construction. Explicitly as an associative algebra ΩBM is the free tensor algebra
generated by B+[−1] which is simply

TB+[−1] =
∞⊕
k=0

(B+[−1])⊗k.

The differential d is a derivation on ΩBM determined by the following two components

B+ ↪→ B →B ⊗B → B+ ⊗B+;

B+ ↪→ B
M−→ k.

Example 2.4. Let us work out the cobar construction of the curved coalgebra CM defined in
Example 2.2. There is a natural coaugmentation on C: the inclusion of scalars. In order for
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it to be compatible with curvature, we assume that M vanishes on the scalar part of C. This
coaugmentation induces, in particular, a direct sum decomposition C ∼= C+ ⊕ k. The cobar
algebra ΩCM is the free tensor algebra generated by sym(V )+[−1] with differential given by the
sum of two components which we denote by d+ and d−. These maps act on monomials f1| · · · |fk
by

d+(f1|f2| · · · |fk) =
k∑
i=1

(−1)i−1f1| · · · |∆(fi)| · · · |fk,

d−(f1|f2| · · · |fk) =
k∑
i=1

(−1)i−1M(fi)f1| · · · |f̂i| · · · |fk,

where ∆ is the coproduct on C+ induced from that of C.

2.7 Twisting cochains
For a curved coalgebra BM and a unital dg algebra A, one can construct a curved dg algebra
structure on the space of k-linear maps Hom(B,A). It is defined by the following formulas:

(i) curvature: W (B,A): B
M−→ k

unit−−→ A;

(ii) differential: (dϕ)(x) = d(ϕ(x));

(iii) product: (ϕ ∗ ψ)(x) = (−1)|x
(1)||ψ|ϕ(x(1))ψ(x(2)).

A twisting cochain from B to A is an odd element τ ∈ Hom(B,A) such that

τ ∗ τ + dτ +W (B,A) = 0.

There is a natural twisting cochain τBM
: B → ΩBM defined by the composition

B → B+ −id−−→ B+[1] ↪→ ΩBM .

2.8 Correspondence of twisted complexes
We can use the twisting cochain τBM

to define a correspondence between categories of twisted
complexes. We work out explicitly this correspondence for a coaugumented curved coalgebra BM
its cobar algebra ΩBM . The goal is to construct dg functors

Φ :Tw(BM ) → Tw(ΩBM )

Ψ :Tw(ΩBM ) → Tw(BM ).

We begin with the construction of Φ. Let (E,Q) be a matrix cofactorization over BM . We need
to produce a twisted complex Φ(E) over ΩBM . As a vector space over k it is simply ΩBM ⊗E.
The left ΩBM -module structure is induced from that of ΩBM . The differential on ΩBM ⊗ E is
defined using the natural twisting cochain τBM

:

d(x⊗ e) = dx⊗ e+ (−1)|x|x⊗Qe+ (−1)|x|xτ(y(1))⊗ e(2),

where we have denoted the coaction map ρ : E → B ⊗E by ρ(e) = y(1) ⊗ e(2) for y(1) ∈ B. One
checks that d2 = 0 and that it is compatible with the left module structure on Φ(E). We write
Φ(E) = Ω⊗τ E where the superscript τ is to indicate that we are using the twisting cochain τ
to define the differential on Φ(E). Note that Φ(E) is of infinite rank whenever B is of infinite
dimension over k. For this reason we need to consider Tw(ΩBM ) instead of Twb(ΩBM ). For a
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morphism f : (E,Q) → (F, P ) in Tw(BM ), define Φ(f) = id⊗f from Φ(E) to Φ(F ). One can
check that Φ is a dg functor between dg categories.

In the reverse direction, if (F, d) is a twisted complex over ΩBM , we need to define a matrix
cofactorization Ψ(F ) over BM . As a vector space this is B ⊗ F . The left B-comodule structure
is induced from that of B and the matrix cofactorization map is defined by

Q(x⊗ f) = dx⊗ f + (−1)|x|x⊗ df + (−1)|x
(1)|x(1) ⊗ τ(x(2))f

where τ(x(2))f is the action of ΩBM on F . One checks that Q satisfies the matrix cofactorization
identity and hence defines a twisted complex (again of infinite rank) over BM . Similarly the
above construction extends to the morphism space and hence defines a dg functor Ψ in
the reverse direction.

2.9 Curved cobar duality over Z/2Z
The two functors Φ and Ψ form an adjoint pair Φ a Ψ, with its counit and unit natural
transformations defined as follows. First we construct the unit natural transformation η :
id → ΨΦ. For any object (E,Q) ∈ Tw(BM ), consider the morphism ηE from E to ΨΦ(E) =
B ⊗τ ΩBM ⊗τ E defined by

e 7→ y(1) ⊗ 1⊗ e(2),

where y(1) and e(2) are defined by the coaction map E → B ⊗ E. Next we construct the counit
ε : ΦΨ → id. For an object F ∈ Tw(ΩBM ) we consider the natural map εF : ΦΨ(F ) := ΩBM ⊗τ
BM ⊗τ F → F defined by

x⊗ 1⊗ f 7→ xf

and zero on the other tensors. One verifies directly by definition that the compositions

Φ
Φη−−→ ΦΨΦ

εΦ−→ Φ,

Ψ
ηΨ−−→ ΨΦΨ

Ψε−→ Ψ

are both identity transformations, proving that Φ a Ψ.
Furthermore, the natural transformations η and ε are compatible with the dg structure in

the sense that for all (E,Q) ∈ Tw(BM ) and F ∈ Tw(ΩBM ), the unit and counit maps ηE , εF are
closed morphisms. Thus, the dg functors Φ and Ψ remain adjoin functors after passing to the
homotopy categories. The following theorem proves that in fact Φ and Ψ are homotopy inverse
of each other, i.e. they are inverse equivalences on the associated homotopy categories. Hence,
the two categories Tw(BM ) and Tw(ΩBM ) are homotopy equivalent.

Theorem 2.5. Let the notation be as introduced above. Then for all objects (E,Q) ∈ Tw(BM )
and F ∈ Tw(ΩBM ), the unit and counit maps ηE , εF are homotopy equivalences.

Proof. We start by showing that ηE is a homotopy equivalence. 2

Lemma 2.6. Let f : (E,Q) → (F, P ) be a closed morphism in Tw(BM ). Define the cone of f to
be the matrix cofactorization (E[1]⊕ F, T ) with T given by the matrix

T =

[
−Q 0

f P

]
.

Then f is a homotopy equivalence if and only if cone(f) is contractible.
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Proof. If cone(f) is contractible, there exists a morphism H : cone(f) → cone(f) such that

id = [T,H].

Writing H as a matrix [
a b

c d

]
,

after a matrix multiplication, we find that the map b defines a homotopy inverse of f . A similar
consideration works for the reversed direction. The lemma is proved. 2

By the above lemma, it is enough to prove that cone(ηE) is contractible. The cone cone(ηE)
is explicitly given by E[1]⊕ (B ⊗τ ΩBM ⊗τ E) on which acts an operator D which satisfies the
matrix cofactorization identity. We next write down the map D on E[1] and (B ⊗τ ΩBM ⊗τ E).
On elements of the form b0[b1| · · · |bl]⊗ e ∈ (B ⊗τ ΩBM ⊗τ E) the predifferential D acts by

D := d∆ −Q+ dM ;

d∆(b0[b1| · · · |bl]⊗ e) := b
(1)
0 [b

(2)
0 | · · · |bl]⊗ e+

l∑
i=1

(−1)i−1b0[b1| · · · |∆(bi)| · · · |bl]⊗ e

+ (−1)lb0[b1| · · · |bl|b(1)]⊗ e(2);

−Q(b0[b1| · · · |bl]⊗ e) := (−1)l+1b0[b1| · · · |bl]⊗Qe;

dM (b0[b1| · · · |bl]⊗ e) :=

l∑
i=1

(−1)i−1b0[b1| · · · |M(bi)| · · · |bl]⊗ e.

On elements in E[1] the predifferential D acts by

D := d∆ −Q+ dM ;

d∆(e) := b(1) ⊗ 1⊗ e(2) ∈ B ⊗ 1⊗ E;

−Q(e) := −Q(e);

dM (e) := 0.

We observe that the differential d∆ is simply the cobar resolution of the B-comodule E

E → B ⊗ E → B ⊗B+ ⊗ E → · · ·

which is exact. Moreover, since the B-comodule E is cofree (hence, injective) there exists a
B-linear homotopy H on the cobar resolution above that makes the complex contractible over
B. Note that the homotopy reduces the number of B-tensor components by one. This homotopy
operator H defines a homotopy retraction data (0, 0, H) between the zero complex and the cobar
resolution (see Appendix A for details on homological perturbation technique). We also want to
require H to be special, i.e. H2 = 0. This can be achieved by making the following transformation

H 7→ Hd∆H.

As the maps d∆ are also B-linear, the special homotopy retraction is also B-linear. To show that
cone(ηE) is contractible, we need to show that there exists a B-linear homotopy for D. For this
we consider D as obtained from d∆ by a small perturbation Q + dM . Then apply homological
perturbation lemma to obtain the homotopy for D. As mentioned earlier, the map D is not really
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a differential as D2 is not zero. Thus the ordinary homological perturbation lemma does not apply
to this case. However, D satisfies the matrix cofactorization identity by its construction. In this
situation a curved version of homological perturbation lemma can still be applied as is explained
in Appendix A. To perform perturbation we need the following lemma.

Lemma 2.7. The curved perturbation δ := Q+ dM is small. That is, we can define the operator
(id−δ ◦H)−1 on cone(ηE). In fact, the operator δ ◦H is locally nilpotent on cone(ηE).

Proof. For a Z>0-graded vector space we say an operator on it is locally nilpotent if for any
element of bounded degree it is nilpotent. In our case, we consider the space cone(ηE) be graded
by the number of B-tensors. Observe that the operator Q preserves the number of B-tensors while
dM reduces the number of B-tensors by one. The homotopy operator also reduces the number
of B-tensors by one. Hence, the composition δ ◦H strictly reduces the number of B-tensors. So
it must be locally nilpotent by degree consideration. Since δ ◦H is a locally nilpotent operator,
one can define the operator (id−δ ◦H)−1 on the direct sum of each graded components which
is cone(ηE).5 The lemma is proved. 2

Applying the curved homological perturbation lemma (Lemma A.1) over the linear category
of B-linear morphisms, we conclude that there exists a homotopy H1 for the operator D. Hence,
cone(ηE) is contractible.

We have finished half of the proof of the theorem. Next we prove the other half, i.e. εF is
a homotopy equivalence. The author learned this argument from Positselski. It is an expanded
version of the proof given in [Pos11, § 6.4]. To show that εF is a homotopy equivalence it suffices
to show that the cocone K := cone(εF )[−1] is contractible. This dg module as a vector space is
F [−1]⊕ ΩBM ⊗B ⊗ F . Define a finite decreasing filtration on it by

F 0K := K ⊃ F 1K := Ω(BM )⊗B ⊗ F ⊃ F 2K := Ω(BM )⊗B+ ⊗ F ⊃ F 3K := 0.

One checks that the differential on K does not preserve this filtration but sends F iK to F i−1K.
Moreover, the induced differential on the associated graded components agrees with the canonical
resolution

0 → ΩBM ⊗B+ ⊗ F → ΩBM ⊗ k ⊗ F → F → 0

which is exact. Then we can define a dg ΩBM -submodule of K by

L := F 2K + dF 2K,

where d is the differential on K. It follows from the exactness of the above short exact sequence
that both L and K/L are contractible. In general, this does not imply that K is also contractible.
However, in our case the dg module K/L is free as ΩBM -modules, which implies that K admits a
direct sum decomposition L⊕K/L as ΩBM -modules. Note that this splitting does not necessarily
preserve the differential on K, nevertheless it realizes K as the cone of a closed map from L[−1] to
K/L, which implies that K itself is also contractible. The proof of Theorem 2.5 is now complete.

2.10 Homological properties of Tw(ΩBM)
We first introduce some notation. For a dg category D we denote by [D ] its homotopy category.
Recall that [D ] has the same objects as D , but the morphism spaces between objects are given by

5 Note that it is important here that here cone(ηE) is a direct sum rather than a direct product.
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the zeroth cohomology of the morphism spaces in D . Our next goal is to have an understanding
of the category [Tw(ΩBM )].

It is a well-known fact that for a dg algebra A the category [Tw(A)] is a triangulated category.
However, it does not agree with the derived category of A in general. The reason is that the
derived category of A is defined by the localization of [Tw(A)] with respect to the class of acyclic
objects (dg modules with zero cohomology) which might not be trivial in [Tw(A)]. Equivalently
this is to say that there might exist objects in Tw(A) that are acyclic while not being contractible.
One such example is to take A = k[x]/x2 and E ∈ Tw(A) to be

· · ·A → A
·x−→ A → A · · ·

where the maps are all given by multiplication by x. Then E is acyclic while it is not contractible.
However, for a coaugumented conilpotent coalgebra B endowed with a curvature term M ,

we will show that acyclic objects are the same as contractible objects in Tw(ΩBM ). Recall that
a coaugumented coalgebra B is called conilpotent if B+, as the quotient coalgebra of B, is the
union of the kernels of finite iterated coproducts.

Proposition 2.8. Let B be a coaugumented conilpotent coalgebra and let F be an object in
Tw(ΩBM ). Then F is acyclic if and only if F is contractible.

Proof. It suffices to prove that if F is acyclic, then it is contractible. As F is an acyclic complex
there always exists a contracting homotopy for F over the field k. Let H be such a k-linear
special homotopy of F . Consider the Koszul dual Ψ(F ) = B ⊗τ F . The B-linear map id⊗H
defines a special contracting homotopy for the complex (B ⊗ F, id⊗ dF ). The predifferential Q
on Ψ(F ) is given by

Q = id⊗ dF + dτ

where the map dτ comes from the natural twisting cochain τ associated with the curved coalgebra
BM . We consider δ := dτ as a curved perturbation of id⊗ dF and apply the curved homological
perturbation lemma as in the proof of the Theorem 2.5. For this we need to prove the curved
perturbation δ is small. This is an immediate consequence of the conilpotency condition on C.
In fact, the conilpotency condition implies that δ ◦ (id⊗H) is a locally nilpotent operator. Thus
by the curved homological perturbation lemma (Lemma A.1) the object Ψ(F ) is contractible
in Tw(BM ). It follows that the object ΦΨ(F ) is also contractible. By Theorem 2.5, ΦΨ(F ) is
homotopy equivalent to F and hence F is also contractible. Thus, the proposition is proved. 2

2.11 Terminologies about generators
Proposition 2.8 immediately implies that the dg algebra ΩBM itself is a generator for the
triangulated category [Tw(ΩBM )] if B is conilpotent. To make a more precise statement we
recall several distinct notions of generators for triangulated categories. We follow the exposition
in [BB03]. Let D be a triangulated category. A set of objects E := {Ei | i ∈ I} is said to
classically generate D if the smallest triangulated subcategory of D containing E that is closed
under isomorphism and direct summands is equal to D itself. We say that D is finitely generated
if it is classically generated by one object.

The second notion of generation is defined via the orthogonal category of E . Namely, we say
that E weakly generates D if the right orthogonal E ⊥ is trivial. (The right orthogonal E ⊥ is by
definition the full subcategory of D consisting of objects A such that HomD(Ei[n], A) = 0 for all
i and all n.) It is clear that classical generators are also weak generators. But the converse is not
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true in general, often we will drop the adverb ‘weak’ and say that E generates D if E weakly

generates it.

If furthermore the category D admits arbitrary direct sums one can define the notion of

compactness for objects. In such a category an object E in D is said to be compact if the

functor HomD(E,−) commutes with direct sums. Denote by Dc the full subcategory consisting

of compact objects. We say that D is compactly generated if Dc generates D . We need the

following result by Ravenel and Neeman [Nee92].

Theorem 2.9. Assume that a triangulated category D admitting arbitrary coproduct is

compactly generated. Then a set of compact objects classically generates Dc if and only if it

generates D .

Corollary 2.10. Let the notation and assumptions be the same as in Proposition 2.8. Then the

dg-module Ω(BM ) is a compact generator for the category [Tw(ΩBM )]. Moreover, it classically

generates the compact subcategory [Tw(ΩBM )]c.

Proof. It is clear that the object ΩBM is compact. Moreover, if F ∈ [Tw(ΩBM )] is right

orthogonal to ΩBM , it implies that the object F is acyclic. Then it follows from Proposition 2.8

that F is, in fact, contractible hence becomes zero in [Tw(ΩBM )]. The last assertion follows from

Theorem 2.9. 2

3. Generators for MF(R,W )

In this section we work with the curved coalgebra CM and its dual curved algebra RW
as introduced in Examples 2.1 and 2.2. As symmetric coalgebras with their canonical

coaugmentations are conilpotent coalgebras, all the results in the previous section hold for

CM . We prove that the image of the cobar algebra ΩCM itself under the Koszul duality

functor lies in Twb(CM ). Hence its k-linear dual makes sense and defines a matrix factorization

in Twb(RW ) = MF(R,W ). Then we identify it with Dyckerhoff’s kstab. Corollary 2.10 and

Proposition 3.1 then implies a homological interpretation for kstab to classically generate

MF(R,W ). This homological interpretation is used in §§ 5 and 6 to produce classical generators

for the derived categories of equivariant or graded matrix factorizations.

3.1 Compact generator for [TwCM ]

We begin to construct a compact generator for the homotopy category of Tw(CM ). Note that

it is clear that in both the category Tw(CM ) and Tw(ΩCM ) arbitrary coproducts exist and,

hence, one can talk about compactness of objects in these categories. By Theorem 2.5 the two

dg categories Tw(CM ) and Tw(ΩCM ) are homotopy equivalent via the dg functors Φ and Ψ

that preserve coproducts. Hence, Φ and Ψ send compact generators to compact generators. By

Corollary 2.10 the object ΩCM is a compact generator for the homotopy category [Tw(ΩCM )]

as symmetric coalgebras are conilpotent. It follows that the matrix cofactorization Ψ(ΩCM ) is a

compact generator for the homotopy category of Tw(CM ).

Proposition 3.1. The homotopy category of Tw(CM ) is compactly generated by Ψ(ΩCM ).

Moreover, Ψ(ΩCM ) is homotopy equivalent to an object in Twb(CM ).

Proof. Previous discussions have already proved the first assertion. We only need to prove the

second assertion. The idea is again to use the curved homological perturbation Lemma A.1.
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By definition, the predifferential Q on Ψ(ΩCM ) := C ⊗τ ΩCM can be split into three parts
defined by

d+(x⊗ y) := x⊗ d+(y);

d−(x⊗ y) := x⊗ d−(y);

dτ (x⊗ y) := x(1) ⊗ τ(x(2))y;

Q := d+ + d− + dτ .

Consider the sum δ := d− + dτ as a curved perturbation for the operator d+. We can choose a
k-linear special homotopy H (always exists over a field) between (∧∗(V ), 0) and (ΩCM , d

+) such
that H deceases the tensor degree (as d+ increases it). Then extend it to a special homotopy
between

(C ⊗ ∧∗(V ), 0) ∼= (C ⊗ ΩCM , d
+)

by putting id on the C part. To see that the curved perturbation δ := d−+dτ is small, note that
d− reduces the number of tensor components, dτ reduces the degree of the C part and H reduces
the number of tensor components. This allows us to apply the curved homological perturbation
lemma (Lemma A.1) to Ψ(ΩCM ), which implies that Ψ(ΩCM ) is homotopy equivalent to a
matrix cofactorization on C⊗∧∗(V ). Thus, the proposition is proved. This matrix cofactorization
obtained via perturbation will still be denoted by Ψ(ΩCM ). 2

3.2 Relationship with Dyckerhoff’s generator kstab

In [Dyc11, § 2.3] Dyckerhoff defined a matrix factorization on R ⊗ ∧∗(V ∨) which he denoted by
kstab. The space kstab is a super space with parity determined by the exterior degree. The matrix
factorization on kstab is defined by choosing a basis x1, . . . , xn of V ∨, and write W in the form∑n

i=1 xiWi. Denote the dual basis for V by y1, . . . , yn. Then the matrix map Q∨ is defined by

Q∨(f ⊗ α) := xif ⊗ yyiα+Wif ⊗ xi ∧ α

where yyi denotes the contraction operator and repeated indices are implicitly summed. The
goal here is to compare Dyckerhoff’s kstab with DΨ(ΩCM ) produced by Koszul duality (where D
is the dualizing functor between cofactorizations and factorizations). The following proposition
proves that they are homotopy equivalent objects. This can be viewed as a generalization of
the classical fact that DΨ(Ω(C)) is homotopy equivalent to the Koszul complex of the residue
field k.

Proposition 3.2. With the notation introduced above we have a homotopy equivalence

D(Ψ(ΩCM )) ∼= kstab

between objects in MF(R,W ).

Proof. Since the functor D is an equivalence of categories, we denote by E := (E,Q) the matrix
cofactorization whose dual is kstab. As Ψ is a homotopy inverse to Φ, it is enough to prove that

Φ ◦Ψ(ΩCM ) ∼= Φ(E).

As shown in the proof of Theorem 2.5 the counit of the adjunction map

Φ ◦Ψ(ΩCM )
εΩCM−−−→ ΩCM
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is a homotopy equivalence. Hence, it suffices to show that Φ(E) and ΩCM is homotopy equivalent.
The object Φ(E) as a vector space is given by ΩCM ⊗ C ⊗ ∧∗(V ). Define a linear map α from
ΩCM to Φ(E) by

[f1| · · · |fk] 7→ [f1| · · · |fk]⊗ 1⊗ 1

where the middle 1 is the image of the coaugmentation map of 1 ∈ k. The last 1 is the unit
in ∧∗(V ). The map α clear respects the left Ω(CH)-module structure. Moreover, it is a map of
complexes as Q vanishes on 1 ⊗ 1 (Q∨ increase the polynomial degree on C, Q must decrease
the degree). We use homological perturbation to show that α is a homotopy equivalence. Again
we split the differential D on Φ(E) into several parts and use homological perturbation lemma.
Explicitly for an element a⊗ f ⊗ y ∈ ΩCM ⊗C ⊗∧∗(V ), the map D is the sum of the following
four parts:

dΩ(a⊗ f ⊗ y) := dΩ(a)⊗ f ⊗ y;

dτ (a⊗ f ⊗ y) := aτ(f (1))⊗ f (2) ⊗ y;

Q+(a⊗ f ⊗ y) := a⊗ ∂f

∂yi
⊗ yi ∧ y;

Q−(a⊗ f ⊗ y) := a⊗Di(f)⊗ yxi

where yi as before is a basis for the vector space V . The map Di is defined by

C → C ⊗ C
D(Wi⊗id)
−−−−−−→ k ⊗ C = C.

The map Q+ is simply the Koszul differential on C ⊗ ∧∗(V ). We consider the differential d :=
dΩ +Q+ on the underlying vector space of Φ(E) and the other part δ := dτ +Q− as perturbations
of d. One can easily write down a special homotopy H for the Koszul differential Q+ and extend
it by id on ΩCM to give a homotopy retraction data between ΩCM and (ΩCM ⊗C ⊗∧∗(V ), d).
The fact that the perturbation δ is small follows from the conilpotency property of C and that
the curvature M vanishes on scalar and linear terms. Moreover, observe that both H and δ are
ΩCM -linear and

δ ◦ α = 0,

which implies that the perturbed inclusion is still α and the perturbed differential is still dΩ on
ΩCM by formulas in Appendix A. Hence, the proposition is proved. 2

Remark. It follows from this proposition that the endomorphism dg algebra End(kstab) is
homotopy equivalent to ΩCM . One can easily prove that the homology of ΩCM is ∧∗(V ) assuming
that W vanishes on scalars and linear terms. The minimal model A∞ algebras on End(kstab) has
been studied by Dyckerhoff and here we could use ΩCM to obtain similar results.

3.3 Discussion on generating results
Recall that the dualizing operator D is an equivalence

D : Twb(CM ) → MF(R,W )op.

Moreover, it was observed in [Dyc11, § 4.3] that there is another equivalence

∨ : MF(R,W )op → MF(R,−W )

defined by E∨ := Hom
Z/2Z
R (E,R). Moreover, since the Koszul complex kstab is self-dual, we have

(kstab)∨ = kstab[dimR] in MF(R,−W ).
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Proposition 3.3. The object kstab weakly generates [MF(R,W )].

Proof. The equivalence ∨ ◦ D : Twb(C−M ) → MF(R,W ) suggests to use −M as the curvature
term. By Theorem 2.5, we know that Ψ(ΩC−M ) weakly generates Tw(C−M ). By Proposition 3.1,
Ψ(ΩC−M ) also weakly generates Twb(C−M ). Hence, we conclude that (DΨ(ΩC−M ))∨ ∼=
(kstab)∨ = kstab[dimR] (the isomorphism is by Proposition 3.2) weakly generates [MF(R,W )],
which is equivalent to kstab weakly generates. The proposition is proved. 2

However, we do not know how to prove that kstab classically generates [MF(R,W )] using
homological methods. The problem here is that the subcategory Twb(C−M ) might not be compact
in Tw(C−M ). Indeed we show that this is equivalent to the condition that the object kstab

classically generates [MF(R,W )]. We need the following theorem (which can be found in [Nee92])
that characterizes compact objects.

Theorem 3.4. Let D be a triangulated category with arbitrary coproduct. Moreover, assume
that D is compactly generated by a set of compact objects E . Then an object of D is compact
if and only if it is a direct summand of an iterated extension of copies of objects of E shifted in
both directions.

Proposition 3.5. The full subcategory [Twb(C−M )] of [Tw(C−M )] is compact if and only if
kstab classically generates [MF(R,W )].

Proof. Assume that [Twb(C−M )] is a compact subcategory of [Tw(C−M )], i.e. every object
of [Twb(C−M )] is compact, then it follows from Theorem 3.4 that the object Ψ(ΩC−M ) in
[Twb(C−M )] classically generates [Twb(C−M )] as it is a compact generator for [Tw(C−M )].
Applying the equivalence functor ∨ ◦D implies that kstab classically generates [MF(R,W )].

Conversely, if kstab classically generates [MF(R,W )], using the equivalence ∨◦D we conclude
that objects in [Twb(C−M )] can be obtained from Ψ(ΩC−M ) by taking direct factors of iterated
extensions and shifts. By Theorem 3.4 this implies that objects in [Twb(C−M )] are compact in
[Tw(C−M )] as Ψ(ΩC−M ) is a compact generator.

We will now show that the homological smoothness of the dg algebra ΩC−M implies that the
object kstab classically generates [MF(R,W )]. Recall that a dg algebra A is called homologically
smooth if A considered as an A⊗A-bimodule is a perfect object, i.e. it is a direct factor of finite
rank free A⊗A dg module. 2

Proposition 3.6. If the dg algebra ΩC−M is homologically smooth, then the full subcategory
[Twb(C−M )] of [Tw(C−M )] is compact.

Proof. A matrix cofactorization structure on C⊗V is equivalent to a ΩC−M dg module structure
on V . Hence, it suffices to show that any finite-dimensional dg ΩC−M -module is compact in
Tw(ΩC−M ). Homological smoothness implies the existence of resolution of diagonal by a perfect
complex of ΩC−M ⊗ ΩC−M -bimodules. Via integral transform it produces a resolution for any
finite-dimensional dg module by a perfect complex of ΩC−M -modules. Thus, the proposition is
proved. 2

The following proposition summarizes our discussion on generators.

Proposition 3.7. The following are equivalent:

(i) ΩC−M is homologically smooth;

(ii) [Twb(C−M )] is compact in [Tw(C−M )];
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(iii) kstab classically generates MF(R,W );

(iv) 0 is an isolated singularity of W = 0.

Proof. Indeed, we have seen (i) ⇒ (ii) and (ii) ⇔ (iii). The fact that (iii) ⇔ (iv) is due to
Murfet [KMB11, Appendix], and (iv) ⇒ (i) is due to Dyckerhoff [Dyc11, § 7]. 2

4. Hochschild invariants

As another application of Theorem 2.5 we show that one can calculate the Hochschild homology
of MF(RW ) using the Borel–Moore Hochschild chain complex of the curved algebra RW . The
latter was introduced and explicitly computed in [CT13, § 4]. We assume that W has isolated
singularities throughout this section.

4.1 Reducing to Hochschild homology of ΩCM

As mentioned in § 2 the dg category Twb(RW ) is isomorphic as a dg category to Twb(CM )op.
Since the Hochschild homologies for opposite dg categories are isomorphic, we have

HH ∗(Tw
b(RW )) ∼= HH ∗(Tw

b(CM )).

If W has isolated singularities, by Dyckerhoff’s generating result and Proposition 3.5 it follows
that [Twb(CM )] is a compact subcategory of [Tw(CM )] (see § 3). Thus, we have an inclusion of
dg categories

Twb(CM ) ↪→ Tw(CM )c.

Moreover, Theorem 3.4 implies that every compact object in Tw(CM ) is a direct factor of an
object in Twb(CM ) as Ψ(ΩCM ) ∈ Twb(CM ) compactly generates [Tw(CM )] by Proposition 3.1.
This implies the above inclusion of categories is an equivalence up to factors, which yields

HH ∗(Tw
b(CM )) ∼= HH ∗(Tw(CM )c)

by Keller’s result [Kel99]. The right-hand side category Tw(CM )c is homotopy equivalent to
the category Tw(ΩCM )c via the coproduct preserving homotopy equivalences Φ and Ψ. As the
Hochschild homology is also homotopy invariant, we conclude that

HH ∗(Tw(CM )c) ∼= HH ∗(Tw(ΩCM )c).

Finally the Hochschild homology of Tw(ΩCM )c can be calculated by that of the dg algebra ΩCM
by Proposition 3.1. Combining all of these isomorphisms we have shown that

HH ∗(MF(R,W )) ∼= HH ∗(ΩCM ).

In the following we relate the latter homology group with the Borel–Moore Hochschild homology
of the curved algebra RW .

4.2 Hochschild homology of CM

We begin with the classical case where the curvature W is not presented. First we recall the
Hochschild homology of a coalgebra C. Let C be a coalgebra with a coaugmentation, form the
cobar algebra ΩC. The Hochschild chain complex C∗(C) is by definition given by the complex

(ΩC ⊗τ C ⊗τ ΩC) ⊗
ΩC⊗ΩC

ΩC.
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Here the superscript τ on tensor symbol is again to denote the twisted tensor product using
the natural twisting cochain τ : C → ΩC. Observe that C∗(C) is simply C ⊗ ΩC as a vector
space, but the differential is twisted by the natural twisting cochain from C to ΩC. To simply
the notation we use C˜⊗ ΩC to denote the Hochschild complex C∗(C).

The advantage of this definition of the Hochschild complex for coalgebras is that it is quite
simple to relate it to the Hochschild complex of its Koszul dual algebra ΩC. Indeed the latter
complex is by definition given by

(ΩC)⊗τ BΩC ⊗τ ΩC) ⊗
ΩC⊗ΩC

ΩC.

Note that these two complexes only differ by the middle term where twisted tensor products
are formed. The fact that they are quasi-isomorphic follows from the following classical lemma,
see [LV12] for example.

Lemma 4.1. Let C1
τ1−→ A be a twisting cochain between a dg coalgebra C1 and an dg algebra

A. Let C2
γ
→ C1 be a quasi-isomorphism of dg coalgebras. Then the composition τ2

C2 → C1 → A

is also a twisting cochain. Moreover, for any dg A-module F , the map defined by

C2 ⊗τ2 F
γ⊗id−−−→ C1 ⊗τ1 F

is a quasi-isomorphism.

We apply the lemma to the unit morphism of the adjunction Ω a B

ηC : C → BΩC

and the natural twisting cochain C → BΩC → ΩC. The fact the ηC is a quasi-isomorphism
is well know for ordinary (dg) algebras (even non-curved A∞ algebras). We end up with the
following quasi-isomorphism between the two Hochschild complexes

C∗(C) := C ⊗̃ΩC
ηC⊗id−−−→ C∗(ΩC) := BΩC ⊗̃ΩC.

We can add the curvature term W (or M) into the previous discussion. All of the constructions
explained above remain the same as we have already explained the twisting cochain and
the twisted tensor products in the curved case in § 2. However, the proof of Lemma 4.1
does not generalize as the coalgebra BΩCM is curved with noncommutative coproduct.
Hence, the differential does not square to zero in this case. It is even problematic to talk about
the notion of quasi-isomorphism for these coalgebras. Nevertheless the map ηC ⊗ id remains
a quasi-isomorphism on the associated Hochschild complexes. This is proved in the following
proposition.

Proposition 4.2. The map ηC ⊗ id is a quasi-isomorphism between the chain complexes C∗(CM )
and C∗(ΩCM ).

Proof. Observe the existence of a Z-grading on the space C∗(CM ) by the number of C tensor
components. Define the following Z-grading on the space BΩCM ⊗ ΩCM by

deg(f1 ⊗ · · · ⊗ fk) := k for an element in ΩCM ;

deg([α1| · · · |αn]⊗ β) := deg(α1) + · · ·+ deg(αn) + deg(β)− n.
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Then one breaks the Hochschild differentials into two parts. The first part is simply the
differential when the curvature is not presented. The second part is the differential defined by
the curvature term M . For simplicity, we denote them by d+ and d−, respectively. (We will not
bother to distinguish them on the two complexes as we will specify the complex when making
statements.) Observe that the first differential increases the degrees defined above by one and the
second differential decreases the degree by one. Hence, we have a morphism of mixed complexes

ηC ⊗ id : (CM ⊗̃ΩCM , d
+, d−) → (BΩCM ⊗̃ΩCM , d

+, d−).

Through the associated bi-complex of these mixed complexes (for the construction of a bi-
complex associated to a mixed complex, see for example [CT13, § 4.7]), we can conclude that the
ηC ⊗ id is a quasi-isomorphism as it is so on the E1-page. The proof is complete. 2

Remark. In the proof it is important that we are dealing with direct sum complexes and d+ is
degree increasing, because only in this case the spectral sequences under consideration starts
with the differential d+.

4.3 Relating to Borel–Moore Hochschild complex
To relate to the Borel–Moore Hochschild homology we dualize the Hochschild complex C∗(CM ).
There is a natural chain map from the Borel–Moore Hochschild chain complex CBM

∗ (RW ) of RW
to C∗(CM )∨ defined by

R⊗R+ · · ·R+ ⊗R+ ↪→ (C ⊗ C+ · · ·C+ ⊗ C+)∨.

This map is in fact a map between mixed complexes whose associated double complexes are
isomorphic on the E1-page. This fact follows from the classical Hochschild–Konstant–Rosenberg
(HKR) theorem. Strictly speaking the HKR theorem applies only to the left-hand side, i.e. for
the algebra R. However, for the right-hand side, the Hochschild complex of the coalgebra C, it
suffice to observe that the Hochschild chain complex C∗(C) is actually double graded by the
tensor degree and the polynomial degree. Moreover, its graded k-linear dual agrees with
the Hochschild chain complex of the symmetric algebra sym(V ∨) to which we can apply HKR
theorem. We summarize the main results obtained in the following theorem.

Theorem 4.3. We have the following isomorphisms:

HH ∗(MF(R,W ))∼= HH ∗(Tw
b(CM )) ∼= HH ∗(CM );

HH BM
∗ (RW )∼= HH ∗(CM )∨.

Remark. When W has isolated singularities, the vector space HH ∗(CM ) is finite dimensional.
Moreover, on HH ∗(Tw

b(RW )) there exists a natural non-degenerate pairing that identifies it
with its dual space.

5. Equivariant matrix factorizations

In this section we study the orbifold version of Theorem 2.5 and its applications to categories of
equivariant matrix factorizations. Throughout the section we work over the ground field k = C
as we need to consider characters of groups.

5.1 Equivariant Koszul duality
Let C := S(V ) to be the symmetric coalgebra over a vector space V and let M : C → k be a
linear map on C that vanishes on scalar and linear terms. Consider a finite abelian group G
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acting on C via coalgebra morphisms and that the action preserves the linear map M , i.e. the
composition

C
g−→ C

M−→ k

is equal to M for any element g ∈ G. Given such data we would like to consider the dg category
of equivariant twisted complexes over the curved coalgebra CM . The objects are pairs (E,Q)
where E is a cofree C-comodule with a G-action of the form

E :=
⊕
i

C ⊗ Cχi .

Here Cχi denotes the one-dimensional G-representation associated to a given character χi and
we allow indices to repeat in the direct sum above. The linear map Q is a G-equivariant
C-comodule morphism on E. Moreover, Q satisfies the matrix cofactorization identity. The
morphism spaces between objects would be G-equivariant C-comodule maps. We denote this
category by Tw([CM/G]) to mimic the orbifold notation. As before we denote by Twb([CM/G])
the full subcategory consisting of finite-rank objects. Since the cobar construction is functorial,
we also have a G-action on the cobar algebra ΩCM . Thus, the category Tw([ΩCM/G]) can be
defined in a similar way.

The Koszul duality functors Φ and Ψ are defined in the same way as before. Namely for an
equivariant matrix cofactorization (E,Q) define

Φ(E) := ΩCM ⊗τ E

where Φ(E) inherits the tensor product G-representation. One can check that the functors Φ
and Ψ send equivariant objects to equivariant objects and equivariant morphisms to equivariant
morphisms. Moreover, the homotopies constructed in the proof of Theorem 2.5 can be made
G-equivariant by averaging if necessary. Thus, we have arrived at the following theorem.

Theorem 5.1. The functors Φ and Ψ restricted to the equivariant categories to give a homotopy
equivalence

Tw([CM/G]) ∼= Tw([ΩCM/G]).

5.2 Smash product algebras
To make better use of the above Theorem 5.1, we first need to make a change of category.
Namely we will switch from equivariant categories to categories of twisted complexes over a
smash product algebra. More precisely since G acts on the curved coalgebra CM in a way that
preserves the curved coalgebra structure, we could form the smash product curved coalgebra
CM ]G. As a vector space it is C ⊗ k[G] and the coproduct is defined by

x⊗ g 7→
∑

g1g2=g

(x(1) ⊗ g1)⊗ (g−1
1 (x(2))⊗ g2).

The curvature of CM ]G is defined by M on the component C ⊗ idG and zero otherwise. The dg
category Tw(CM ]G) is closely related to the equivariant dg category Tw([CM/G]). Observe that
the smash product coalgebra CM ]G carry natural G-action and CM ]G-linear maps are equivalent
to C-linear maps that are also G-equivariant. Thus, the category Tw(CM ]G) is a fully faithful
subcategory of Tw([CM/G]) consists of objects that are free CM ]G-comodules. Conversely every
objects of Tw([CM/G]) is a direct summand of an object in Tw(CM ]G) through the fully faithful
embedding. To see this observe that for any object (E,Q) ∈ Tw([CM/G]) form the object

g∗(E,Q) :=

(⊕
g∈G

g∗E,
⊕
g∈G

g∗Q

)
.
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One easily checks that g∗(E,Q) is an object of Tw(CM ]G). Such a relation between the two
categories are called equivalence up to factors (from [Kel99]). If two categories are equivalent up
to factors, then lots of properties of them are the same. For example, (classical) generators of the
smaller category are also (classical) generators of the bigger one. It is also proved by Keller [Kel99]
that the Hochschild type invariants are isomorphic for these two categories. Observe that Φ and
Ψ restrict to a homotopy equivalence

Tw(ΩCM ]G) ∼= Tw(CM ]G).

As a conclusion we summarize the previous discussion in the following commutative diagram.

Tw(ΩCM ]G)
Koszul duality //

inclusion
��

Tw(CM ]G)

inclusion
��

Tw([ΩCM/G])
Koszul duality // Tw([CM/G])

The vertical inclusions are all equivalences up to factors.

5.3 Applications to MFG(R,W )
The advantage of the smash product construction is that it is clear in this description the
object ΩCM ]G compactly generates the homotopy category of Tw(ΩCM ]G). Indeed for an object
F ∈ Tw(ΩCM ]G) we have

HomTw(ΩCM ]G)(ΩCM ]G, F ) = HomTw(Ω(CM ))(ΩCM , F )

through the inclusion mentioned above. By Corollary 2.10 if the latter is acyclic, then the dg-
module F is contractible over ΩCM . Averaging the contracting homotopy yields a contraction
over ΩCM ]G. Hence, arguing as in Corollary 2.10 shows that the object ΩCM ]G compactly
generates [Tw(ΩCM ]G)]. As the categories Tw(ΩCM ]G) and Tw([ΩCM/G]) are equivalent up
to factors, the object ΩCM ]G (through the inclusion functor) also compactly generates the
homotopy category of the latter one.

Applying the Koszul duality functor Ψ yields compact generators for the homotopy category
of Tw([CM/G]). Moreover, one can easily identify the generators by observing that the object
ΩCM ]G when considered as objects in Tw([ΩCM/G]) is isomorphic to the direct sum⊕

χ

ΩCM ⊗ Cχ

over the characters of G. Hence, its image under Ψ is the direct sum⊕
χ

Ψ(ΩCM )⊗ Cχ.

Observe that twisting by characters does not change the homology of ΩCM ⊗ Cχ and, hence,
Propositions 3.1 and 3.2 still apply which assert that their k-linear duals are (homotopy
equivalent to) matrix factorizations of the form

{kstab ⊗ Cχ | χ is a character for the group G}.

Theorem 5.2. Let notation be as above and assume that W has isolated singularities. Then
the category [MFG(R,W )] is classically generated by objects kstab ⊗ Cχ.
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Proof. It is enough to show that the subcategory [Twb(CM ]G)] is compact in [Tw(CM ]G)] in view
of Proposition 3.5. For this observe that taking cohomology commutes with taking G-invariants
and hence for a finite-rank object E we have

Hom[Tw(CM ]G)]

(
E,
⊕

Ei

)
:= H0

(
HomTw(CM ]G)

(
E,
⊕

Ei

))
= H0

(
HomTw(CM )

(
E,
⊕

Ei

))G
=
[⊕

H0(HomTw(CM )(E,Ei))
]G

=
⊕

Hom[Tw(CM ]G)](E,Ei).

Here we have used the fact that E is of finite rank and the group G is finite, which implies that
E viewed as an object in [Tw(CM )] is compact by Proposition 3.5. The theorem is proved. 2

5.4 Equivariant Hochschild homology
The computation of Hochschild homology of MFG(R,W ) can be done in the same way as in § 4.
Again we assume that W has isolated singularities throughout the discussion. We begin with an
isomorphism

HH ∗(MFG(R,W )) ∼= HH ∗(Tw
b([CM/G]))

as the two dg categories are opposite to each other by the k-linear dual functor D. Since the
compact generators Ψ(ΩCM ) ⊗ Cχ of Tw([CM/G]) lies inside Twb([CM/G]) which is compact
under the assumption of W having isolated singularities, we have

HH ∗(Tw
b([CM/G])) ∼= HH ∗(Tw([CM/G])c) ∼= HH ∗(Tw(CM ]G)c).

The latter isomorphism follows from the fact that the two categories are equivalence up to factors.
Finally we invoke the Koszul duality of the curved coalgebra CM ]G which gives a homotopy
equivalence

Tw(CM ]G)c ∼= Tw(Ω(CM ]G))c

between dg categories. From this homotopy equivalence and the fact that ΩCM ]G is a compact
generator, we conclude that

HH ∗(Tw(CM ]G)c) ∼= HH ∗(Tw(Ω(CM ]G))c) ∼= HH ∗(Ω(CM ]G)).

Combining the above isomorphisms yields the following isomorphism

HH ∗(MFG(R,W )) ∼= HH ∗(Ω(CM ]G)).

Then the same proof as in § 4 implies the following proposition.

Proposition 5.3. Let the notation be as above and assume that W has isolated singularities.
Then we have the following isomorphisms:

HH ∗(MFG(R,W ))∼= HH ∗(Tw
b([CM/G])) ∼= HH ∗(CM ]G);

HH BM
∗ (RW ]G)∼= HH ∗(CM ]G)∨.

Remark. The homology groups HH BM
∗ (RW ]G) are explicitly computed in [CT13, § 6] via certain

localization formula for Borel–Moore homology groups.
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6. Graded matrix factorizations

In this section, we study the category of graded matrix factorizations via Koszul duality. The
main ideas remain the same as in the orbifold case. The results obtained are closely related
to the work of Orlov [Orl09] (on the relationship between graded matrix factorizations and
derived category of coherent sheaves) and Seidel [Sei] (on the A∞ category of coherent sheaves
on Calabi–Yau hypersurfaces). Throughout the section we work over the ground field k = C.

6.1 Gradings
For a graded commutative ring S and a homogeneous curvature element W ∈ R of degree d,
one can define the dg category of graded matrix factorizations MFgr(R,W ) (see [CT13, § 2] for
a definition). As is explained in [CT13, § 2] this category is closely related to certain orbifold
construction. We recall some relevant results below.

The symmetric algebra S := S(V ∨) (non-complete) has a Z-grading by the ordinary
polynomial degrees. The polynomial degree of a homogeneous element f ∈ S will be denoted by
|f |. Consider G := Z/dZ acting on S by

î(f) := ζi|f |f

for ζ := exp(2π
√
−1/d), a dth root of unity. Clearly the G-action on S preserves the curvature

element W . This implies that the G-action in fact acts on the curved algebra SW . We can then
form the smash product curved algebra SW ]G. One theorem proved in [CT13, § 2.12] was the fact
that graded matrix factorizations can be regarded as Z-graded twisted complexes over SW ]G.
A subtle point there was that SW ]G does not form a Z-graded curved algebra with the usual
polynomial grading.

To fix this problem we need to introduce a new Z-grading on SW ]G. Note that the underlying
vector space of SW ]G is S⊗k[G]. The group algebra k[G] has a special basis indexed by characters
of G. Explicitly we denote by χi for i ∈ [0, d− 1], the characters of the group G. They act on G
by

χi(ĵ) := (ζd)
i·j .

Then the elements

Uχ :=
1

|G|
∑
g∈G

χ(g)]g

indexed by these characters form an orthogonal idempotent basis for the group algebra k[G].
Using this basis we can define a new Z-grading on the vector space S ⊗ k[G]. The homogeneous
elements are of the form

f ⊗ Uχj

for some homogeneous polynomial f ∈ S. Define an integer i ∈ [0, d− 1] by

i ≡ j − |f | (mod d).

Then the new grading of f ⊗ Uχj is defined by

deg(f ⊗ Uχj ) :=
2

d
(|f | − j + i).

We mention some important properties for this new Z-grading on SW ]G. First of all as promised
the curvature term W] idG has degree two with respect to this grading. To see this observe that

W] idG =
∑
χj

W ⊗ Uχj .
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Since |W | = d we have i = j and hence

deg(W ⊗ Uχj ) =
2

d
· |W | = 2

d
· d = 2.

Secondly the category of Z-graded twisted complexes over SW ]G is closely related to the category
of graded matrix factorizations. In fact, it was shown in [CT13, 2.12] that they are equivalent up
to factors. (There we considered SW ]G as a category, then the twist construction would yields,
in fact, an equivalence. Here we prefer to consider SW ]G as a curved algebra.) Namely there is
an inclusion

TwbZ(SW ]G) ↪→ MFgr(S,W )

which is fully faithful and an equivalence up to factors.

6.2 Graded dualization
Next we dualize the Z-graded curved algebra to consider a Z-graded curved coalgebra CM ]G
where C is the symmetric coalgebra S(V ). We still denote the polynomial degree for a
homogeneous f ∈ S(V ) by |f |. A new Z-grading on CM ]G is defined similarly. Namely
homogeneous elements in CM ]G are of the form

f ⊗ Uχj

and the degree of it is given by

deg(f ⊗ Uχj ) := −2

d
(|f | − j + i)

for the same i as in the case of algebras. With respect to this Z-grading the map M : C → k has
degree two. Hence, it forms a Z-graded curved coalgebra. When forming the category TwbZ(CM ]G)
we do not want to allow arbitrary coalgebra maps but only the direct sums of the homogeneous
ones. We introduce a notation to deal with such situations. Let E be a vector space with a
C∗-action, we denote by Egr the vector space defined by

Egr :=
⊕

Ei,

where Ei is the subspace of E on which C∗ acts by λi. With this notation we have

HomTwZ(CM ]G)(−,−) := [HomTw(CM ]G)(−,−)]gr.

Then the Z-graded k-linear dual operation D defines an equivalence

TwbZ(CM ]G)op ∼= TwbZ(SW ]G)

between dg categories.

6.3 Z-graded curved Koszul duality
The next step is to understand the curved Koszul duality for the Z-graded curved coalgebra
CM ]G. This is easily accomplished by matching the degrees. For this we define a Z-grading on
ΩCM ]G that matches with the new Z-grading on CM ]G. The homogeneous elements in ΩCM ]G
are of the form

[f1| · · · |fk]⊗ Uχj

for some character χj of the group G. Its degree is defined by

deg([f1| · · · |fk]⊗ Uχj ) := −2

d

(∑
l

|fl| − j + i

)
+ k,
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where the integer i ∈ [0, d− 1] is defined by

i ≡ j −
∑
l

|fl| (mod d).

Define the Z-graded Koszul duality functors by (the same formula as before)

E ∈ TwZ(CM ]G)
Φ7→ Ω(C)⊗τ E

F ∈ TwZ(ΩCM ]G)
Ψ7→ C ⊗τ F.

The degrees on Φ(E) can be defined by

deg([f1| · · · |fk]⊗ f0 ⊗ Uχj ) := −2

d

( k∑
l=0

|fl| − j + i

)
+ k,

where the integer i ∈ [0, d− 1] is defined by

i ≡ j −
k∑
l=0

|fl| (mod d).

Similar one can also define degrees for Ψ(F ). With respect to these gradings the twisted
differentials on Φ(E) or Ψ(F ) have degree one. Moreover, it is easy to see that Φ and Ψ
are homotopy equivalences by observing that the homotopy equivalences used in the proof of
Theorem 2.5 respect the new Z-grading (the homotopies are of degree −1).

Theorem 6.1. The functors Φ and Ψ are homotopy inverses between dg categories

TwZ(ΩCM ]G) ∼= TwZ(CM ]G).

6.4 Applications to MFgr(S,W )
We assume that W has isolated singularities from now on. One can argue in the same way as
in the orbifold case that ΩCM ]G compactly generates [TwZ(ΩCM ]G)]. Through the Z-graded
Koszul duality functor, Ψ(ΩCM ]G) defines a compact generator for [TwZ(CM ]G)]. The same
proof as in § 3 shows that the object Ψ(ΩCM ]G), in fact, is homotopy equivalent to an object in
TwbZ(CM ]G). Thus, its k-linear graded dual object in MFgr(S,W ) makes sense. To identify this
object we consider the natural forgetful functor from TwZ(CM ]G) to Tw(CM ]G). Note that this
is well-defined as the new Z-grading on CM ]G is in 2Z and, hence, its reduction modulo two
reduces to the purely even grading on the curved coalgebra CM ]G. Using the forgetful functor
we see that as matrix factorizations the object DΨ(ΩCM ]G) is given by⊕

i

kstab ⊗ χi.

Through the correspondence
TwbZ(RW ]G) ↪→ MFgr(S,W )

defined in [CT13, § 2], twisting by characters χj corresponds to twisting (j) of ordinary graded
S-modules. Hence, if we assume any lifting of the Z-grading on kstab, we conclude that the object
DΨ(ΩCM ) in the category MFgr(S,W ) given by the direct sum of the objects

kstab(d− 1), kstab(d− 2), . . . , kstab.

Theorem 6.2. Assume that W has isolated singularities, then the collection of objects
kstab(d− 1), kstab(d− 2), . . . , kstab classically generates [MFgr(R,W )].
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Proof. The theorem follows from the fact that the category TwbZ(CM ]G) is compact in
TwZ(CM ]G) which follows from the fact that taking cohomology of a differential of Z-degree one
(in particular, it is homogeneous) commutes with both taking G-invariants and the operation
− 7→ −gr. 2

Remark. In the Calabi–Yau situation, i.e. when dim(S) = d = deg(W ), the category [MFgr(S,W )]
is equivalent to the bounded derived category of coherent sheaves Dbcoh(X) on X := ProjS/W .
Denote by i : X ↪→ Pd−1 := ProjS the natural embedding of X into the projective space. Then
the above collection of generators corresponds to the collection

i∗ωPd−1 [d− 1], i∗(∧d−2ΩPd−1)[d− 2], . . . , i∗ΩPd−1 [1],OX

through a correspondence Dbcoh(X) ∼= [MFgr(S,W )]. This can be proved by observing that the
degree shift in [MFgr(S,W )] corresponds to the composition of the homological degree shift
functor and the Seidel–Thomas twist functor associated to the spherical object OX on Dbcoh(X),
see [BFK12].

Remark. The homology of the dg algebra ΩCM ]G is easily seen to be ∧∗(V )]G. This latter
notation is slightly misleading because we did not mean the smash product algebra. It is simply
the smash product vector space. The presence of the curvature term puts A∞ structure on
∧∗(V )]G via homotopy transfer property. However, this computation quickly gets complicated.
The author has not been able to describe it even in the case of elliptic curves. We mention two
closely related results in these directions. In an unpublished notes [Sei], Seidel has obtained the
above picture for an A∞ structure on ∧∗(V )]G via quite different methods. Explicit calculations
for A∞ structures on elliptic curves have been obtained by Polishchuk in [Pol11], again through
other methods. In latter case even the underlying vector space is different.

6.5 Hochschild homology of MFgr(S,W )
The Hochschild homology of the dg category MFgr(S,W ) can also be related with the Borel–
Moore Hochschild homology of a curved algebra. The proof is the same as the orbifold case
except that we use graded k-linear dualizing functor. We omit the proof here. The precise results
are stated in the following proposition.

Proposition 6.3. Let the notation be as above and assume that W has isolated singularities.
Then we have the following isomorphisms:

HH ∗(MFgr(S,W )) ∼= HH ∗(Tw
b
Z([CM/G])) ∼= HH ∗(CM ]G);

HH BM
∗ (SW ]G) ∼= HH ∗(CM ]G)∨,

where the ∨ denotes the graded dual operation.

Remark. Again the groups HH BM
∗ (SW ]G) has been computed in [CT13, § 6]. What is new here

is the existence of a Z-grading on these homology groups. In the Calabi–Yau situation, the dg
version of Calabi–Yau/LG correspondence shows that this computation provides an alternative
way to compute the Hochschild homology of Calabi–Yau hypersurfaces.
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Appendix A. Curved homological perturbation lemma

In this appendix we recall the homological perturbation technique as studied in [Cra04]. Then
we prove that the homological perturbation lemma remains true when curvatures are presented.
This is useful to study homotopy between precomplexes.

In this section we work with a k-linear abelian category C . Our primary application concerns
with C being the category of B-comodules for a coalgebra B over k.

A.1 Deformation retractions
Let (L, b) and (M,d) be two complexes over C . A deformation retraction between them consists
of the following data. There are morphisms

i : (L, b) → (M,d) and p : (M,d) → (L, b)

such that
p ◦ i = idL.

Moreover, there is a homotopy H between i ◦ p and idM , i.e. we have

i ◦ p = id+ dH +Hd.

The triple (i, p,H) is then called a deformation retraction between (L, b) and (M,d). If, in
addition, these maps also satisfy

Hi = 0, pH = 0 and H2 = 0, (A.1)

then it is called a special homotopy retraction.

A.2 Perturbations
A perturbation of the complex (M,d) is an odd map δ : M →M such that (d+δ)2 = 0. Following
the terminologies in [Cra04], we call δ small if (id− δH) is invertible. For a small perturbation
δ, define the operator

A := (id− δH)−1δ

and define the perturbed homotopy retraction operators by

b1 := b+ pAi, i1 := i+HAi, p1 := p+ pAH, H1 := H +HAH. (A.2)

The homological perturbation lemma states that the data (i1, p1, H1) defines a new special
deformation retraction between the perturbed complexes (L, b1) and (M,d + δ). This simple
lemma plays an important role in the homotopy theory of algebras.

A.3 Curved homological perturbation lemma
Next we prove a curved version of the homological perturbation lemma. Namely we assume the
same initial conditions for i, p, H. But for the perturbation, we do not assume that (d+ δ)2 = 0.
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Instead, we assume that

(d+ δ)2 lies in the center of the algebra End(M).

We denote this central element by F := (d+ δ)2 ∈ End(M) and call δ a curved perturbation.
The differential d1 := d+ δ no longer squares to zero but lies in the center of End(M). Such

a pair (M,d1) is called a precomplex. What curved homological perturbation achieves is the
fact one can still obtain a deformation retract between precomplexes by perturbing ordinary
complexes. The main result of this appendix is the following lemma.

Lemma A.1 (Curved homological perturbation lemma). Let (i, p,H) a special homotopy
retraction data between complexes (L, b) and (M,d). Let δ be a curved perturbation of (M,d).
Then formula A.2 defines a new special homotopy retract between the precomplexes (L, b1) and
(M,d1) in the following sense:

(i) (L, b1) is a precomplex;

(ii) d1 ◦ i1 = i1 ◦ b1 (i1 is a map of precomplexes);

(iii) b1 ◦ p1 = p1 ◦ d1 (p1 is a map of precomplexes);

(iv) p1 ◦ i1 = idL and i1 ◦ p1 = idM + d1H1 +H1d1 (homotopy retract);

(v) H1 ◦ i1 = 0, p1 ◦H1 = 0 and H2
1 = 0 (specialness).

Proof. The proof is analogous to the proof of the ordinary perturbation lemma in [Cra04]. We
basically only need to check the above formulas with a weaker condition that F is in the center
(weaker as zero is in the center). We begin with the following lemma. 2

Lemma A.2. We have the following:

(i) δHA = AHδ = A− δ;
(ii) (id− δH)−1 = id+AH and (id−Hδ)−1 = id+HA;

(iii) AipA+Ad+ dA = F + FAH + FHA.

Proof. The first two equations are direct computations and are the same as in [Cra04]. For the
last one, we have

AipA+Ad+ dA = A(id+ dH +Hd)A+Ad+ dA

= A2 +AdHA+AHdA+Ad+ dA

= A2 +Ad(HA+ id) + (AH + id)dA

= A2 +Ad(id−Hδ)−1 + (id− δH)−1dA

= (id− δH)−1[(id− δH)A2(id−Hδ)
+ (id− δH)Ad+ dA(id−Hδ)](id−Hδ)−1

= (id− δH)−1[δ2 + δd+ dδ](id−Hδ)−1

= F (id− δH)−1(id−Hδ)−1

= F (id+AH)(id+HA)

= F + FAH + FHA.

With these preparations, the proof of Lemma A.1 follows easily as an extension of the case
without curvature. Let us first prove part (A):
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b21 = (b+ pAi)(b+ pAi)

= bpAi+ pAib+ p(AipA)i

= bpAi+ pAib+ p(F + FAH + FHA−Ad− dA)i

= pF i+ pFAHi+ pFHAi

= pF i+ pFAHi+ pHFAi (F is central)

= pF i (specialness).

Thus, b21 is simply the restriction of F on its subspace L (via i and p). Hence, it is in the center
of End(L), which proves that (L, b1) is a precomplex. For part (B) we have

i1b1 − (d+ δ)i1 = (i+HAi)(b+ pAi)− (d+ δ)(i+HAi)

= ib+ ipAi+HAib+H(AipA)i− di− dHAi− δi− δHAi
= ipAi+HAib+H(F + FAH + FHA− dA−Ad)i

− dHAi− δi− (A− δ)i
= ipAi−HdAi− dHAi−Ai+HFi+HFAHi+HFHAi

= (ip−Hd− dH − id)Ai+HFi+HFAHi+HFHAi

= FHi+HFAHi+ FHHAi

= 0 (by specialness and F is central).

Similarly we check that p1 is a map of precomplexes:

b1p1 − p1(d+ δ) = (b+ pAi)(p+ pAH)− (p+ pAH)(d+ δ)

= bpAH + pAip+ p(AipA)H − pδ − pAHd− p(AHδ)
= bpAH + pAip− p(Ad+ dA)H + p(F + FAH + FHA)H

− pδ − pAHd− p(A− δ)
= pAip− pAdH − pAHd− pA+ pFH + pFAHH + pFHAH

= pFH + pFAHH + pFHAH

= 0 (by specialness and F is central).

This proves part (C). For part (D) we have

p1i1 = (p+ pAH)(i+HAi)

= pi+ pHAi+ pAHi+ pAHHAi

= id (by specialness).

In the reversed direction, we have

id+H1d1 + d1H1 − i1p1 = id+ (H +HAH)(d+ δ)

+ (d+ δ)(H +HAH)− (i+HAi)(p+ pAH)

=Hδ +HAHd+H(AHδ) + δH + dHAd+ (δHA)H

− ipAH −HAip−H(AipA)H

=Hδ +HAHd+H(A− δ) + δH + dHAd+ (A− δ)H
− ipAH −HAip+H(Ad+ dA)H −H(F + FAH + FHA)H

=HA(Hd+ id+ dH − ip) + (dH + id− ip+Hd)AH

−HFH −HFAHH −HFHAH
= 0 (again by specialness and F is central).
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Thus, we have shown that (i1, p1, H1) forms a deformation retraction. It still remains to prove
part (E). This is again a computation:

H1 ◦ i1 = (H +HAH)(i+HAi)

= Hi+HHAi+HAHi+HAHHAi

= 0;

p1 ◦H1 = (p+ pAH)(H +HAH)

= pH + pHAH + pAHH + pAHHAH

= 0;

H1 ◦H1 = (H +HAH)(H +HAH)

= HH +HAHH +HHAH +HAHHAH

= 0.

Thus, the lemma is proved. 2
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