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Boussinesq and non-Boussinesq gravity currents produced from a finite volume of heavy
fluid propagating into an environment of light ambient fluid on unbounded uniform
slopes in the range 0 ◦ ≤ θ ≤ 12 ◦ are reported. The relative density difference ε =
(ρ1 − ρ0)/ρ0 is varied in the range 0.05 ≤ ε ≤ 0.15 in this study, where ρ1 and ρ0 are
the densities of the heavy and light ambient fluids, respectively. Our focus is on the
influence of the relative density difference on the deceleration phase of the propagation.
In the early deceleration phase, the front location history follows the power relationship
(xf + x0)

2 = (KIB)1/2(t + tI), where (xf + x0) is the front location measured from the
virtual origin, KI an experimental constant, B the total buoyancy, t the time and tI the t
intercept. The dimensionless constant KI is influenced by the slope angle and the relative
density difference. In the late deceleration phase for the gravity currents on the steeper
slopes in this study (12 ◦, 9 ◦ and 6 ◦), an ‘active’ head separates from the body of
the current and the front location history follows the power relationship (xf + x0)

8/3 =
KVSB2/3V2/9

0 ν−1/3(t + tVS), where KVS is an experimental constant, V0 the total volume
of heavy fluid, ν the kinematic viscosity of fluid and tVS the t intercept. The dimensionless
constant KVS is shown to be influenced by the slope angle but not significantly influenced
by the relative density difference. In the late deceleration phase for the gravity currents on
the milder slopes in this study (3 ◦ and 0 ◦), the gravity currents maintain an integrated
shape without violent mixing with the ambient fluid and the front location history
follows the power relationship (xf + x0)

4 = KVMB2/3V2/3
0 ν−1/3(t + tVM), where KVM is

an experimental constant and tVM the t intercept. The dimensionless constant KVM is
shown to be influenced by both the slope angle and the relative density difference. While
the influence of the relative density difference on KVM is carried along for the gravity
currents on the milder slopes in the late deceleration phase, the relative density difference
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interestingly has no significant influence on KVS for the gravity currents on the steeper
slopes in the late deceleration phase. Our results suggest that the non-Boussinesq gravity
currents on the milder slopes may remain non-Boussinesq ones in the late deceleration
phase while the non-Boussinesq gravity currents on the steeper slopes may have become
Boussinesq ones in the late deceleration phase.

Key words: gravity currents

1. Introduction

Gravity currents are flows driven by density differences and occur ubiquitously in natural
and man-made environments (Simpson 1997; Ungarish 2009). For a long time, the
lock-exchange set-up has served as a paradigm configuration for studying the propagation
of gravity currents (Shin, Dalziel & Linden 2004; Adduce, Sciortino & Proietti 2012;
La Rocca et al. 2012a,b; Ottolenghi et al. 2016a). In the classic lock-exchange experiments,
two fluids of different densities are separated by a removable lock gate in a long horizontal
channel. The motion of the two fluids in the channel is initiated when the lock gate is
removed. The gravity currents in the classic lock-exchange set-up are also called planar
gravity currents as the flows are bounded in the spanwise direction by the channel walls.

Gravity currents may also be influenced by the presence of a sloping boundary. In the
literature, a number of studies have investigated planar gravity currents propagating on a
favourable slope (Beghin, Hopfinger & Britter 1981; Bonnecaze & Lister 1999; Pawlak
& Armi 2000; Rastello & Hopfinger 2004; Maxworthy & Nokes 2007; Maxworthy 2010;
Dai 2013a, 2014, 2015; Dai & Huang 2016; Negretti, Flòr & Hopfinger 2017; Ottolenghi,
Cenedese & Adduce 2017b; Steenhauer, Tokyay & Constantinescu 2017), while some have
investigated planar gravity currents propagating on an adverse slope (Jones et al. 2014;
Marleau, Flynn & Sutherland 2014; Lombardi et al. 2015; Ottolenghi et al. 2016b, 2017a).
For the planar gravity currents propagating on a favourable slope, Beghin et al. (1981)
observed that planar gravity currents may go through an acceleration phase followed by
a deceleration phase, and developed the thermal theory to describe the two phases of
motion. Dai (2013a, 2014) further categorised the deceleration phase of the planar gravity
currents propagating on a favourable slope into an early stage, where the buoyancy force is
in balance with the inertia force, and a late stage, where the buoyancy force is in balance
with the viscous force.

Compared with the planar gravity currents, the gravity currents propagating on a
horizontal or sloping boundary without being bounded in the spanwise direction have
received less attention (Cantero, Balachandar & Garcia 2007; La Rocca et al. 2008; Sahuri
et al. 2015; Dai & Wu 2016; Inghilesi et al. 2018). However, this configuration is more
similar to that of turbidity currents down a continental shelf and powder snow avalanches
(Hopfinger 1983; Ouillon, Meiburg & Sutherland 2019). The gravity currents propagating
on unbounded uniform slopes may also go through an acceleration phase followed by a
deceleration phase. Using the shallow water model, Webber, Jones & Martin (1993) and
Tickle (1996) predicted that the gravity currents on unbounded uniform slopes would take
a self-similar circular wedge shape. Using laboratory experiments, Ross, Linden & Dalziel
(2002) showed that the Boussinesq gravity currents on unbounded uniform slopes take a
shape which is more akin to a triangular wedge. Using high-resolution direct numerical
simulations, Zgheib, Ooi & Balachandar (2016) confirmed the observations made by
Ross et al. (2002) and reported that, for the Boussinesq gravity currents propagating on
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Gravity currents on unbounded uniform slopes

unbounded uniform slopes, the heavy fluid may initially propagate outward from the lock
in a diverging manner but converge towards the centre of the gravity currents at a later
time.

The Boussinesq gravity currents propagating on unbounded uniform slopes have
recently been investigated by Dai & Huang (2020). It is reported that there are two stages of
the deceleration phase for the Boussinesq gravity currents on unbounded uniform slopes
and different power relationships apply in the early and late stages of the deceleration
phase. This study is a continuation of the investigation on the Boussinesq gravity currents
on unbounded uniform slopes conducted by the authors. Our focus is on the influence of
the relative density difference on the deceleration phase of the propagation. The relative
density difference between the heavy fluid and light ambient fluid ε = (ρ1 − ρ0)/ρ0 is
varied in the range 0.05 ≤ ε ≤ 0.15 in this study, where ρ1 and ρ0 are the densities
of the heavy and light ambient fluids, respectively. We may quantitatively measure the
influence of the slope angle and the relative density difference on the propagation of
gravity currents. As we will show, the non-Boussinesq gravity currents on the steeper
unbounded uniform slopes in this study (12 ◦, 9 ◦ and 6 ◦) may have become Boussinesq
ones in the late deceleration phase while the non-Boussinesq gravity currents on the milder
unbounded uniform slopes in this study (3 ◦ and 0 ◦) may remain non-Boussinesq ones in
the late deceleration phase. In § 2, we summarise the theoretical relationships between the
front location and time in the early stage and late stage of the deceleration phase. The
experimental set-up is described in § 3. Qualitative and quantitative results are presented
in § 4 and the conclusions are drawn in § 5.

2. Theoretical background

The configuration of the problem is sketched in figure 1. The density of the heavy fluid
in the lock is ρ1 and the density of the light ambient fluid is ρ0. The relative density
difference is ε = (ρ1 − ρ0)/ρ0 or equivalently we may define the density ratio between
the ambient and heavy fluids as γ = ρ0/ρ1. The density ratio is related to the relative
density difference via γ = (1 + ε)−1. For the non-Boussinesq case, here we generalise the
Boussinesq wedge integral model in Dai & Huang (2020) without invoking the Boussinesq
approximation. In the wedge integral model, the width and height of the wedge are taken
as b = πl and h = l tan θ , where l represents the length of the wedge. The volume of the
wedge is V = S3l3 tan θ , where S3 = 1/3 is a shape factor for a triangular wedge (Ross
et al. 2002).

The convection of the gravity current is driven by the density difference between the
heavy fluid in the current and the light ambient fluid in the environment. The influence
of the drag force is relatively small compared with the influence of turbulent entrainment,
as discussed by Dai (2013a,b, 2014). Therefore, the drag force is neglected in our wedge
integral model for the non-Boussinesq case. Without the Boussinesq approximation, the
linear momentum equation takes the form

d
dt

((ρ + ρ0CA)VU) = ρ0B sin θ, (2.1)

where ρ is the density of the heavy fluid in the current, CA is the ‘added mass’ coefficient,
which takes into account the ambient fluid carried along with the gravity currents, U is the
velocity of the centre of mass of the current wedge, B = V0g(ρ1 − ρ0)/ρ0 is the buoyancy
which is conserved during the propagation of gravity currents and t is the time. The density
of the heavy fluid in the current, ρ, is not a constant and will gradually decrease due
to entrainment of light ambient fluid as the current propagates downslope. The added
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Figure 1. Sketch of the experimental set-up. The uniform slope makes an angle θ with the horizontal plane.
Panel (a) shows the top view and panel (b) shows the side view of the tank. In panel (a), l and b represent the
length and width of the self-similar wedge. In panel (b), h represents the height of the wedge. The heavy fluid
initially contained in the lock has density ρ1 while the light ambient fluid has density ρ0. The front location xf
is measured from the lock gate and the virtual origin is at a distance x0 upslope of the lock gate.

mass coefficients for a circular cylinder and a sphere are given as 1 and 0.5, respectively,
by Batchelor (1967). For a streamlined wedge of width b and length l, the added mass
coefficient for the wedge is estimated as CA = 0.5 in this study (Korotkin 2008).

With the assumption of turbulent entrainment (Ellison & Turner 1959), the mass
conservation takes the form

dV
dt

= αUAE, (2.2)

where AE = S4l2 tan θ is the area over which the entrainment takes place, S4 = 2
√

2 is
another shape factor (Ross et al. 2002) and α is the entrainment coefficient. From (2.2)
and using U = dx/dt, we may derive

l = S4α

3S3
x, (2.3)

where x is the distance measured from the ‘virtual origin’ to the centre of mass of
the wedge. By using U = dx/dt and the chain rule d/dt = Ud/dx to solve (2.2), the
independent variable in (2.2) is transformed from t to x. The ‘virtual origin’ is located
x0 upslope of the lock gate and can be identified by extrapolating the width of the wedge
in the upslope direction, as shown in figure 1. Upon substituting (2.3) into (2.1), we may
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Gravity currents on unbounded uniform slopes

derive the solution for the momentum equation, i.e.

U2 = U2
0

(1 + Δ)2

(X3 + Δ)
2 + U2

∞
(X4 − 1) + 4Δ(X − 1)

(X3 + Δ)
2 , (2.4)

where U0 is the initial mass-centre velocity,

U2
∞ = 27BS2

3 cos θ

2x2
0α

3S3
4(1 + CA)

and Δ = 1 − γ

γ

27S2
3V0

x3
0α

3S3
4 tan θ(1 + CA)

(2.5a,b)

and X = x/x0 is introduced for a clear and concise form of the solution (2.4).
Our wedge integral model predicts that, for gravity currents starting from a quiescent

condition, the centre of mass velocity reaches its maximum at X = XM , which satisfies the
following relationship

X6
M + 8ΔX3

M − 3(4Δ + 1)X2
M + 2Δ2 = 0, (2.6)

by setting the spatial derivative of (2.4) to zero. In the Boussinesq limit when ε → 0 (i.e.
γ → 1 and Δ → 0), we note that XM → 31/4 as previously shown by Dai & Huang (2020)
in the Boussinesq case.

Since in the experiments the front location is more easily measurable than the centre
of mass, we use the geometric relation for a triangular wedge (xf + x0) = x + l/2, i.e.
(xf + x0) = (1 + S4α/6S3)x, to express the front location xf in place of the centre of
mass location. Please note that the front location xf is measured from the lock gate and
the distance from the virtual origin to the front is given by (xf + x0). Consequently, the
front velocity is related to the centre of mass velocity via Uf = (1 + S4α/6S3)U and the
maximum front velocity Uf max can be expressed as

Uf max =
(

1 + S4α

6S3

)√
27BS2

3 cos θ

2x2
0α

3S3
4(1 + CA)

√√√√ (X4
M − 1) + 4Δ(XM − 1)

(X3
M + Δ)

2 . (2.7)

For gravity currents sufficiently far into the deceleration phase such that X � 1 and
X � 4Δ, the front velocity approaches the asymptote

Uf =
(

1 + S4α

6S3

)2
√

27BS2
3 cos θ

2α3S3
4(1 + CA)

(xf + x0)
−1. (2.8)

The wedge integral model has been obtained with the hypothesis of non-trivial or moderate
values of relative density difference and will be applied for relative density differences
in the range 0.05 ≤ ε ≤ 0.15. The application to cases with even larger relative density
difference at ε > 0.15 is not corroborated and is beyond the scope of the present work.
Since Δ ≈ O(ε), as we considered the relative density difference in the range 0.05 ≤ ε ≤
0.15, the condition X � 4Δ is no more stringent than X � 1. Upon integration, (2.8) can
be rewritten in the following form with an integration constant tI

(xf + x0)
2 = (KIB)1/2(t + tI), (2.9)

where

KI =
(

1 + S4α

6S3

)4 54S2
3 cos θ

α3S3
4(1 + CA)

, (2.10)

which is independent of B and is a function of the slope angle θ . According to the
Buckingham theorem, the dimensionless constant KI should be a function of the slope
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angle and the relative density difference. The dependence of the dimensionless constant
KI on the relative density difference is not explicit in (2.10) but is implicit via the influence
of the relative density difference on the entrainment coefficient α. The density difference
between the heavy fluid in the current and the light ambient fluid stabilises the interface
and the entrainment coefficient is expected to decrease as the relative density difference
increases (Ellison & Turner 1959; Hacker, Linden & Dalziel 1996; Hallworth et al. 1996;
Johnson & Hogg 2013).

From the scaling analysis, it has been shown that the relationship (2.9) is essentially a
statement of balance between the buoyancy force and inertia force (Dai & Huang 2020).
In the Boussinesq case, the relative density difference does not play a role since ε → 0
(γ → 1). In the non-Boussinesq case, the dimensionless constant KI is a function of both
the slope angle and the relative density difference. In this study, we shall term the time
period during which (2.9) applies the early stage of deceleration phase.

As will be shown later, for the gravity currents propagating on unbounded uniform
slopes equal to or greater than 6 ◦, an ‘active’ head separates from the body of the current in
the late deceleration phase. In the late deceleration phase, when the viscous force becomes
more important, the viscous force per unit mass scales as ν(xf + x0)t−1δ−1V0

−1/3, where
the viscous stress per unit density is estimated as ν(xf + x0)t−1δ−1, the thickness of
the boundary layer at the interface between the current and ambient fluid is estimated
as δ ∼ (νt)1/2 and V0

1/3 is an estimate for the length scale for the ‘active’ current
wedge (Dai & Huang 2020). When a balance between the buoyancy force per unit mass,
which scales as B(xf + x0)

−3, and the viscous force per unit mass, which scales as
ν(xf + x0)t−1δ−1V0

−1/3, is struck for the ‘active’ current head, the following relationship
applies in the late deceleration phase, i.e.

(xf + x0)
8/3 = KVS

(
B2V2/3

0
ν

)1/3

(t + tVS), (2.11)

where KVS is an experimental constant and tVS the t intercept.
For the gravity currents propagating on unbounded uniform slopes equal to or less than

3 ◦, the gravity currents maintain an integrated shape. In the early stage of deceleration
phase, when the buoyancy and inertia forces are in balance, the front location history
similarly follows the relationship (2.9). In the late stage of the deceleration phase, the
gravity currents maintain an integrated shape and the viscous stress per unit density,
ν(xf + x0)t−1δ−1, is applied over the whole top area, which scales as (xf + x0)

2.
Therefore, the viscous force per unit mass scales as ν(xf + x0)

3t−1δ−1V0
−1. When the

buoyancy force per unit mass, B(xf + x0)
−3, and the viscous force per unit mass are in

balance, the front location history follows the power relationship

(xf + x0)
4 = KVM

(
B2V2

0
ν

)1/3

(t + tVM), (2.12)

where KVM is an experimental constant and tVM the t intercept. The experimental constant
KI for the Boussinesq gravity currents propagating on an unbounded horizontal plane can
be estimated as 5.71 and 3.62, based on the experiments of Hoult (1972) and Huppert
& Simpson (1980), respectively. The experimental constant KVM for the Boussinesq
gravity currents propagating on an unbounded horizontal plane can be estimated as 1.24
based on the experiments of Hoult (1972). In the non-Boussinesq case, according to
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Gravity currents on unbounded uniform slopes

the Buckingham theorem, the experimental constants KVS and KVM are expected to be
functions of both the slope angle and the relative density difference.

3. Experimental set-up

A sketch of the tank used in the experiments is provided in figure 1 with top and side views.
The tank was used for the Boussinesq gravity currents on unbounded uniform slopes in
Dai & Huang (2020), to which the readers are referred for other details of the experimental
set-up.

The rectangular tank has dimensions of 1.6 m in width, 0.6 m in depth and 2.5 m in
length and all four sides were constructed by transparent Perspex walls for visualisation
purposes. A Perspex board was installed near the bottom of the tank to act as an unbounded
uniform slope and the slope angle could be adjusted in the range of 0 ◦ ≤ θ ≤ 12◦. The
lock has dimensions of b0 = 10 cm in width, h0 = 8 cm in height and l0 = 10 cm in length
and was mounted on the upslope end of the Perspex board. The heavy fluid in the lock was
set into motion when the gate in the lock was removed.

Potassium permanganate was added in the heavy fluid for visualisation purposes. A
Sony HDR-PJ670 was positioned 4 m above the free surface of ambient fluid for the top
view images and a Canon EOS 700D was positioned at approximately 4 m away from
the sidewall of the tank for the side view images. Both cameras have spatial and temporal
resolutions of 1920 × 1080 at 24 frames per second. The Canon EOS 700D camera was
rotated at the same angle as the slope such that the x and y axes in the images align with
the downslope and wall-normal directions.

In the experiments, sodium chloride solution was chosen as the heavy fluid while tap
water was chosen as the ambient fluid. The kinematic viscosity of the sodium chloride
solution is taken to be the same as the tap water as ν = 1.1 × 10−2 cm2 s−1. Densities of
the heavy fluid and ambient fluid were measured by a density meter with an accuracy of
10−3 g cm−3. The relative density differences were chosen at ε = 0.15, 0.10 and 0.05 in
the experiments and the reduced gravity values g′

0 = g(ρ1 − ρ0)/ρ0 at the three relative
density differences were approximately g′

0 ≈ 147.15, 98.1 and 49.05 cm s−2, respectively.

The Reynolds numbers at the three relative density differences were Re =
√

g′
0h0h0/ν ≈

25 000, 20 000 and 15 000, respectively.

4. Results

In the following, we shall present the results for the non-Boussinesq gravity currents
propagating on unbounded uniform slopes θ = 12◦, 9 ◦, 6 ◦, 3 ◦, 0 ◦ in order. The
dimensions of the lock and the densities of the heavy fluid and ambient fluid were
maintained unchanged throughout the experiments. On each slope angle, at least five
repeated runs were performed in order to make qualitative and quantitative observations.
Other experimental parameters are listed in table 1.

4.1. Non-Boussinesq gravity currents on an unbounded uniform 12 ◦ slope

4.1.1. Qualitative features
Figures 2 and 3 show the top view and side view images for a gravity current with ε =
0.15 (γ = 0.87) propagating on an unbounded uniform 12 ◦ slope. After the lock gate is
removed, the heavy fluid in the lock collapses and spreads outward from the lock. As
will be shown later, the maximum front velocity is reached at t ≈ 1.67 s, after which the
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Case θ (deg.) γ ; ε g′
0 (cm s−2) tmax (s) xf max (cm) Uf max (cm s−1)

12I 0.87; 0.15 147.18+0.08
−0.02 1.87+0.80

−0.19 32.47+5.78
−2.97 23.92+0.46

−2.44

12II 0.91; 0.10 98.17+0.07
−0.06 1.93+0.39

−0.10 26.25+4.50
−2.50 18.17+1.29

−1.05

12III 0.95; 0.05 48.88+0.03
−0.04 2.70+0.47

−0.37 25.32+9.70
−3.83 12.70+0.31

−0.30

9I 0.87; 0.15 147.01+0.13
−0.03 1.73+0.10

−0.07 29.97+2.02
−1.97 21.22+0.54

−0.37

9II 0.91; 0.10 97.95+0.09
−0.03 2.00+0.17

−0.17 25.65+2.35
−2.15 16.56+0.57

−0.64

9III 0.95; 0.05 48.86+0.14
−0.03 2.70+1.30

−0.37 24.01+9.49
−3.89 11.67+0.40

−0.84

6I 0.87; 0.15 147.15+0.02
−0.07 1.67+0.17

−0.17 27.08+0.93
−1.82 18.95+0.62

−1.07

6II 0.91; 0.10 98.24+0.05
−0.01 1.88+0.12

−0.22 23.75+3.25
−3.25 14.93+0.85

−0.91

6III 0.95; 0.05 49.05+0.03
−0.04 2.43+0.40

−0.10 22.15+4.35
−2.15 11.01+1.08

−0.96

3I 0.87; 0.15 147.09+0.05
−0.06 1.70+0.13

−0.03 24.70+1.05
−0.70 18.15+0.64

−0.40

3II 0.91; 0.10 98.07+0.08
−0.03 1.80+0.03

−0.12 21.60+0.39
−1.08 14.67+0.13

−0.29

3III 0.95; 0.05 48.98+0.03
−0.04 2.43+0.07

−0.10 20.50+1.25
−1.75 10.70+0.51

−0.26

0I 0.87; 0.15 147.14+0.05
−0.02 1.80+0.20

−0.13 21.70+1.53
−1.45 17.13+0.45

−0.17

0II 0.91; 0.10 98.24+0.05
−0.03 2.17+0.17

−0.17 17.65+2.10
−1.40 13.40+0.48

−0.35

0III 0.95; 0.05 48.87+0.03
−0.04 2.70+0.13

−0.03 14.95+1.05
−1.20 10.01+0.75

−0.39

Table 1. Table showing operational parameters, including the slope angle θ , density ratio γ , relative density
difference ε = (1 − γ )/γ , reduced gravity g′

0, time tmax and front location xf max, measured from the lock
gate, at which the gravity currents reach the maximum front velocity Uf max. Each value is the average of five
experiments. The error estimates are to add and subtract the maximum and minimum values and are not the
root-mean-square estimates.

gravity current moves into the deceleration phase. The gravity current takes a wedge shape,
which grows in width and height as the gravity current propagates downslope, as shown
in figures 2 and 3 at t = 2, 8 s. As shown in figure 2 at t = 15, 20 s, an ‘active’ part of the
wedge separates from the body of the current and leaves the inactive part moving slowly
behind. The side view images show the edge of the ‘active’ part of the wedge is uplifted,
in that the interface between the ‘active’ part of the wedge and ambient fluid is raised, in
the final stage of propagation. Our observation on the separation of the ‘active’ head and
mixing with the ambient fluid in the final stage of propagation is persistent for the gravity
currents on an unbounded uniform 12 ◦ slope at all relative density differences, including
ε ≈ 0.15, 0.10, 0.05 (γ ≈ 0.87, 0.91, 0.95). Such an observation for the non-Boussinesq
gravity currents is similar to the Boussinesq case (Dai & Huang 2020), but holds a clue
to the possibility that the non-Boussinesq gravity currents on an unbounded uniform 12 ◦
slope may have become Boussinesq ones in the final stage of propagation, as we will
discuss later. Other top view and side view images for the gravity currents at ε ≈ 0.10,
0.05 (γ ≈ 0.91, 0.95) are qualitatively similar and are omitted here for brevity.

4.1.2. Quantitative results
From the side view images of the gravity current, as shown in figure 3, the front location
can be extracted as the furthest location reached by the gravity current and the front
velocity can be calculated. Figure 4 shows the front location and front velocity histories

917 A23-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.300


Gravity currents on unbounded uniform slopes

80(a) (b)

(c) (d)

40

0

–40

–80
0 60 120 180 240

0 60 120 180 240

0 60 120 180 240

0 60 120 180 240

80

40

0

–40

–80

80

40

0

–40

–80

80

40

0

–40

–80

Figure 2. Experiment 04/09/17-2: top view images for the gravity current on an unbounded uniform 12 ◦ slope.
The reduced gravity of the heavy fluid in the lock was g′

0 = 147.15 cm s−2, i.e. ε ≈ 0.15 (γ ≈ 0.87). Distances
in the downslope and spanwise directions are in units of cm. Time instances are chosen at (a–d) t = 2, 8, 15,
20 s.
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Figure 3. Experiment 04/09/17-2: side view images for the gravity current on an unbounded uniform 12 ◦
slope as shown in figure 2. Distances in the downslope and wall-normal directions are in units of cm. Time
instances are chosen at (a–d) t = 2, 8, 15, 20 s.

for the gravity current at ε ≈ 0.15 (γ ≈ 0.87) propagating on an unbounded uniform 12 ◦
slope. From the front velocity history, it is observed that the gravity current moves into
the deceleration phase after reaching its maximum front velocity Uf max ≈ 24.38 cm s−1

at t ≈ 1.67 s.
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Figure 4. Experiment 04/09/17-2: front location history (a) and front velocity history (b) for the gravity current
propagating on an unbounded uniform 12 ◦ slope. The reduced gravity of the heavy fluid in the lock was
g′

0 = 147.15 cm s−2. The maximum front velocity Uf max ≈ 24.38 cm s−1 occurs at t ≈ 1.67 s. The front
location is in units of cm, front velocity is in units of cm s−1 and time is in units of s.

To examine the front location history in the early and late stages of the deceleration
phase, we plot the front location and time in terms of (xf + x0)

2 vs t in figure 5(a) and
(xf + x0)

8/3 vs t in figure 5(b). Here, (xf + x0) represents the front location measured
from the virtual origin, which can be identified by extrapolating the width of the wedge in
the upslope direction, as shown in figure 1. In the early deceleration phase, the gravity
current propagates downslope with an integrated wedge shape and figure 5(a) reveals
that the front location history follows the power relationship (2.9) during 5 � t � 10 s.
In the late deceleration phase, an ‘active’ head separates from the body of the current and
figure 5(b) reveals that the front location history follows the power relationship (2.11)
during t � 10 s.

Based on the slope of the best fit to the early deceleration phase and the buoyancy
B = 117 720.00 cm4 s−2, the experimental constant KI = 111.80 is calculated according to
(2.9). The entrainment coefficient α = 0.149 is then calculated based on the experimental
constant KI and (2.10). The front location history begins to deviate from the power
relationship (2.9) at t � 10 s, when the front Reynolds number based on the front velocity
and front thickness, Ref = Uf h/ν, is approximately Ref ≈ 6000. Based on the slope of the
best fit to the late deceleration phase, the experimental constant KVS = 3.49 is calculated
according to (2.11). Other dependent variables, including the experimental constant KI ,
the entrainment coefficient α and the experimental constant KVS, for the gravity currents
propagating on unbounded uniform 12 ◦, 9 ◦ and 6 ◦ slopes are all listed in table 2.

4.2. Non-Boussinesq gravity currents on unbounded uniform 9 ◦ and 6 ◦ slopes
Non-Boussinesq gravity currents propagating on unbounded uniform 9 ◦ and 6 ◦ slopes are
qualitatively similar to the non-Boussinesq gravity currents propagating on an unbounded
uniform 12 ◦ slope and their images are omitted for brevity. We summarise the influence of
the slope angle and the relative density difference for the non-Boussinesq gravity currents
on unbounded uniform 9 ◦ and 6 ◦ slopes and the readers are referred to tables 1 and 2 for
other quantitative measures.
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Figure 5. Experiment 04/09/17-2: relationship between (a) (xf + x0)
2 and t and (b) (xf + x0)

8/3 and t for the
gravity current propagating on an unbounded uniform 12 ◦ slope. The reduced gravity of the heavy fluid in
the lock was g′

0 = 147.15 cm s−2. The front location is in units of cm and time is in units of s. The solid
line in (a) represents the straight line of best fit to the early deceleration phase and the fitting equation is
(xf + x0)

2 = (KIB)1/2(t + tI), where KI = 111.80, B = 117720.00 cm4 s−2, x0 = 38.27 cm and tI = −0.43
s. The solid line in (b) represents the straight line of best fit to the late decelearation phase and the fitting
equation is (xf + x0)

8/3 = KVSB2/3V2/9
0 ν−1/3(t + tVS), where KVS = 3.49 and tVS = −4.72 s. The maximum

front velocity Uf max ≈ 24.38 cm s−1 occurs at t ≈ 1.67 s.

Case α x0 (cm) KI tI (s) KVS tVS (s)

12I 0.145+0.007
−0.018 39.18+6.30

−9.18 122.53+44.84
−15.86 −0.57+0.84

−0.68 4.04+0.613
−0.550 −4.89+1.61

−1.48

12II 0.152+0.009
−0.008 41.54+5.45

−6.54 110.68+10.74
−8.27 −0.56+0.53

−0.52 3.91+0.464
−0.425 −6.35+1.04

−1.79

12III 0.157+0.015
−0.007 42.05+1.17

−3.05 104.00+20.81
−24.04 −0.75+1.3

−0.97 4.14+0.439
−0.425 −7.34+1.52

−2.08

9I 0.158+0.011
−0.009 40.98+6.31

−3.28 99.36+14.61
−15.60 −0.23+0.17

−0.33 3.67+0.273
−0.247 −5.53+1.22

−1.36

9II 0.164+0.012
−0.010 44.44+3.27

−2.84 91.28+13.75
−14.17 −0.32+0.73

−1.75 3.78+0.458
−0.375 −7.06+1.54

−1.53

9III 0.171+0.005
−0.006 45.46+7.20

−7.87 84.39+6.05
−5.18 −0.57+1.02

−4.44 3.61+0.557
−0.562 −7.05+3.06

−2.64

6I 0.183+0.019
−0.017 45.92+5.77

−4.12 72.51+17.36
−14.87 0.41+0.35

−0.41 2.89+0.361
−0.643 −4.39+4.06

−2.23

6II 0.193+0.026
−0.011 47.38+4.31

−4.38 64.36+8.54
−16.01 0.72+0.54

−0.93 2.81+0.266
−0.250 −5.41+3.49

−2.12

6III 0.201+0.020
−0.021 49.11+4.88

−8.08 61.03+13.58
−8.26 0.95+1.14

−0.82 2.70+0.366
−0.279 −5.14+5.60

−4.20

Table 2. Table showing the dependent variables for gravity currents propagating on unbounded uniform 12 ◦,
9 ◦, 6 ◦ slopes, including the entrainment coefficient α, distance from the virtual origin to the lock gate x0,
experimental constant KI , t intercept tI in (2.9), experimental constant KVS and t intercept tVS in (2.11). The
subscripts I and VS represent the inertial phase and viscous phase on the steeper slopes in our study (12 ◦, 9 ◦,
6 ◦), respectively. Each value is the average of five experiments. The error estimates are to add and subtract the
maximum and minimum values and are not the root-mean-square estimates.

Figure 6 shows the experimental constant KI against the slope angle at different values
of relative density difference. In our slope angle range, based on our experiments and
Ross et al. (2002), it can be concluded that the experimental constant KI increases as the
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Figure 6. Dimensionless constant KI as a function of the slope angle θ and the relative density difference ε.
Symbols: �, ε ≈ 0.15 (γ ≈ 0.87); ◦, ε ≈ 0.10 (γ ≈ 0.91); �, ε ≈ 0.05 (γ ≈ 0.95); ∗, ε ≈ 0.02 (γ ≈ 0.98)
reported by Dai & Huang (2020); �, values reported by Ross et al. (2002), in which 0.011 ≤ ε ≤ 0.039
(0.962 ≤ γ ≤ 0.989).
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Figure 7. Entrainment coefficient α as a function of the slope angle θ and the relative density difference ε.
Symbols: �, ε ≈ 0.15 (γ ≈ 0.87); ◦, ε ≈ 0.10 (γ ≈ 0.91); �, ε ≈ 0.05 (γ ≈ 0.95); ∗, ε ≈ 0.02 (γ ≈ 0.98)
reported by Dai & Huang (2020); �, values reported by Ross et al. (2002), in which 0.011 ≤ ε ≤ 0.039
(0.962 ≤ γ ≤ 0.989); �, values reported by Zgheib et al. (2016).

slope angle increases and as the relative density difference increases. Figure 7 shows the
entrainment coefficient α against the slope angle at different values of relative density
difference. It is found that the entrainment coefficient also depends on the slope angle and
decreases as the relative density difference increases, as shown in figure 7 and the inset. It
is worth noting that the gravity currents propagating on unbounded uniform 12 ◦, 9 ◦, 6 ◦
slopes maintain a wedge shape in the early deceleration phase and we may use the wedge
integral model (2.10) to calculate the entrainment coefficient. As will be shown later, the
gravity currents propagating on an unbounded uniform 3 ◦ slope and on an unbounded
horizontal boundary do not take the wedge shape and we shall not use the wedge integral
model to calculate the entrainment coefficient for the gravity currents on an unbounded
uniform 3 ◦ slope and on an unbounded horizontal boundary.

As listed in table 2 and shown in figure 8, the experimental constant KVS increases as the
slope angle increases but, surprisingly, appears not to be strongly influenced by the relative
density difference. As shown in figure 8, for 0.05 ≤ ε ≤ 0.15, KVS varies erratically in
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Figure 8. Dimensionless constant KVS as a function of the slope angle θ . The influence of the relative density
difference on KVS is not significant in the range 0.05 ≤ ε ≤ 0.15. Symbols: �, ε ≈ 0.15 (γ ≈ 0.87); ◦, ε ≈
0.10 (γ ≈ 0.91); �, ε ≈ 0.05 (γ ≈ 0.95).

80(a) (b)

(c) (d)

40

0

–40

–80
0 60 120 180 0 60 120 180

0 60 120 180 0 60 120 180

80

40

0

–40

–80

80

40

0

–40

–80

80

40

0

–40

–80

Figure 9. Experiment 07/26/17-2: top view images of the gravity current propagating on an unbounded
uniform 3 ◦ slope. The reduced gravity of the heavy fluid in the lock was g′

0 = 147.15 cm s−2, i.e. ε ≈ 0.15
(γ ≈ 0.87). Distances in the downslope and spanwise directions are in units of cm. Time instances are chosen
at (a–d) t = 6, 10, 15, 20 s. In this experiment, the maximum front velocity Uf max ≈ 18.00 cm s−1 occurs at
t ≈ 1.67 s.
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Figure 10. Experiment 07/26/17-2: side view images for the gravity current propagating on an unbounded
uniform 3 ◦ slope as shown in figure 9. Distances in the downslope and wall-normal directions are in units of
cm. Time instances are chosen at (a–d) t = 6, 10, 15, 20 s.

the range 3.49 ≤ KVS ≤ 4.66 at θ = 12◦, 3.05 ≤ KVS ≤ 4.24 at θ = 9◦ and 2.25 ≤ KVS ≤
3.26 at θ = 6◦. The fact that the influence of the relative density difference on KVS is not
significant suggests that the non-Boussinesq gravity currents on unbounded uniform 12 ◦,
9 ◦ and 6 ◦ slopes may have become Boussinesq ones in the late deceleration phase.

4.3. Non-Boussinesq gravity currents on an unbounded uniform 3 ◦ slope
Non-Boussinesq gravity currents propagating on an unbounded uniform 3 ◦ slope are
qualitatively different from the non-Boussinesq gravity currents on unbounded uniform
12 ◦, 9 ◦ and 6 ◦ slopes. The gravity current maintains a shape more akin to a disk even in
the late deceleration phase, as shown by the top view and side view images in figures 9
and 10.

In the early deceleration phase, figure 11(a) shows that the front location history follows
the power relationship (2.9) during 5 � t � 15 s and we may calculate the experimental
constant KI = 26.70, which is listed in table 3. At t � 15 s, the front location history
begins to deviate from the power relationship (2.9) when the front Reynolds number is
approximately Ref ≈ 2000. In the late deceleration phase, figure 11(b) shows that the front
location history follows the power relationship (2.12) during t � 15 s and we may calculate
the experimental constant KVM = 94.37, which is also listed in table 3. The experimental
constant KVM is evidently not only a function of the slope angle but also a function of the
relative density difference. The influence of the relative density difference is carried along
into KI during the early deceleration phase and into KVM during the late deceleration phase
for the gravity currents on an unbounded uniform 3 ◦ slope.

4.4. Non-Boussinesq gravity currents on an unbounded horizontal boundary
We also performed the experiments on the gravity currents on an unbounded horizontal
boundary, of which the morphology (not shown) is qualitatively similar to the gravity
current on an unbounded uniform 3 ◦ slope.
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Figure 11. Experiment 07/26/17-2: relationship between (a) (xf + x0)
2 and t and (b) (xf + x0)

4 and t for the
gravity current propagating on an unbounded uniform 3 ◦ slope. The reduced gravity of the heavy fluid in
the lock was g′

0 = 146.87 cm s−2. The front location is in units of cm and time is in units of s. The solid
line in (a) represents the straight line of best fit to the early deceleration phase and the fitting equation is
(xf + x0)

2 = (KIB)1/2(t + tI), where KI = 26.70, B = 117 720.00 cm4 s−2, x0 = 13.15 cm and tI = −1.05 s.
The solid line in (b) represents the straight line of best fit to the late deceleration phase and the fitting equation
is (xf + x0)

4 = KVMB2/3V2/3
0 ν−1/3(t + tVM), where KVM = 94.37 and tVM = −8.67 s. The maximum front

velocity Uf max ≈ 18.00 cm s−1 occurs at t ≈ 1.67 s.

Case x0 (cm) KI tI (s) KVM tVM (s)

3I 9.08+4.06
−2.26 22.20+4.49

−5.07 −1.05+0.27
−0.26 85.29+9.07

−8.12 −9.24+0.89
−2.14

3II 11.91+4.37
−4.34 19.22+1.09

−2.46 −1.42+0.22
−0.28 75.05+5.05

−7.56 −12.02+0.17
−0.23

3III 9.06+5.51
−4.63 17.02+1.99

−2.23 −1.05+1.17
−1.02 69.47+4.95

−4.60 −15.55+2.45
−1.96

0I 7.98+4.17
−5.10 9.24+0.76

−1.16 0.34+1.60
−0.99 18.29+3.28

−4.58 −4.32+1.52
−1.67

0II 7.19+3.25
−1.34 8.52+0.78

−0.49 −1.20+0.49
−0.37 14.11+2.98

−2.54 −7.31+1.86
−2.31

0III 5.73+4.91
−3.48 8.29+2.23

−1.45 −1.96+0.49
−0.61 11.47+4.39

−2.23 −5.91+3.86
−5.57

Table 3. Table showing the dependent variables for gravity currents propagating on a 3 ◦ unbounded uniform
slope and on an unbounded horizontal boundary, including the distance from the virtual origin to the lock gate
x0, experimental constants KI , t intercept tI in (2.9), experimental constant KVM and t intercept tVM in (2.12).
The subscripts I and VM represent the inertial phase and viscous phase on the milder slopes in our study (3 ◦
and 0 ◦), respectively. Each value is the average of five experiments. The error estimates are to add and subtract
the maximum and minimum values and are not the root-mean-square estimates.

For the gravity currents on an unbounded horizontal boundary, the experimental
constant KI tends to increase as the relative density difference increases, as shown in
table 3. In the late deceleration phase, the experimental constant KVM is a function of
both the slope angle and the relative density difference, as listed in table 3 and shown
in figure 12. The influence of the relative density difference is carried along into the
late deceleration phase on KVM for the gravity currents on an unbounded horizontal
boundary. Our observations suggest that the non-Boussinesq gravity currents on an
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Figure 12. Dimensionless constant KVM as a function of the slope angle θ and the relative density difference ε.
The influence of the relative density difference on KVM is clear, as also shown in table 3. Symbols: �, ε ≈ 0.15
(γ ≈ 0.87); ◦, ε ≈ 0.10 (γ ≈ 0.91); �, ε ≈ 0.05 (γ ≈ 0.95).

unbounded uniform 3 ◦ slope and on an unbounded horizontal boundary may still remain
non-Boussinesq ones in the late deceleration phase.

5. Conclusions

Experiments on the Boussinesq and non-Boussinesq gravity currents produced from a
finite volume of heavy fluid propagating into an environment of light ambient fluid on
unbounded uniform slopes in the range 0 ◦ ≤ θ ≤ 12◦ are presented. The relative density
difference covers the Boussinesq and non-Boussinesq cases in the range 0.05 ≤ ε ≤ 0.15
in this study. After the lock gate is removed, the gravity currents go through an acceleration
phase and move into the early and late stages of the deceleration phase. Our focus in this
study is on the influence of the relative density difference on the deceleration phase of the
propagation.

For the gravity currents propagating on unbounded uniform 12 ◦, 9 ◦ and 6 ◦ slopes, in
the early deceleration phase, the gravity currents take a wedge shape and the front location
history follows the power relationship (2.9), in which the dimensionless constant KI is a
function of both the slope angle and the relative density difference. In the late deceleration
phase, an ‘active’ head separates from the body of the current and mixes with the
ambient fluid. The front location history in the late deceleration phase follows the power
relationship (2.11), in which the dimensionless constant KVS is influenced by the slope
angle but not significantly influenced by the relative density difference. The observation
that the relative density difference has no significant influence on the dimensionless
constant KVS in the late deceleration phase suggests that the non-Boussinesq gravity
currents on unbounded uniform 12 ◦, 9 ◦ and 6 ◦ slopes may have become Boussinesq ones
in the late deceleration phase.

For the gravity currents propagating on an unbounded uniform 3 ◦ slope and on an
unbounded horizontal boundary, the gravity currents maintain an integrated disk shape
throughout the motion. In the early deceleration phase, the front location history follows
the power relationship (2.9) and the dimensionless constant KI is a function of both the
slope angle and the relative density difference. In the late deceleration phase, the gravity
currents still maintain an integrated disk shape without the separation of an ‘active’ head
from the body of the gravity currents. The front location history in the late deceleration
phase follows the power relationship (2.12), in which the dimensionless constant KVM is
influenced by both the slope angle and the relative density difference. The influence of
the relative density difference is carried along into the late deceleration phase on KVM and
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such an observation suggests that the non-Boussinesq gravity currents on an unbounded
uniform 3 ◦ slope and on an unbounded uniform horizontal boundary may still remain
non-Boussinesq ones in the late deceleration phase.

Our experiments indicate that, depending on the slope angle, two different flow
morphologies are possible concerning the final stage of the non-Boussinesq gravity
currents propagating on unbounded uniform slopes. More importantly, our results further
indicate that the non-Boussinesq gravity currents on the milder unbounded uniform slopes
in this study (3 ◦ and 0 ◦) may remain non-Boussinesq ones in the late deceleration
phase while the non-Boussinesq gravity currents on the steeper unbounded uniform
slopes in this study (12 ◦, 9 ◦ and 6 ◦) may have become Boussinesq ones in the late
deceleration phase. The above findings on the basis of dimensional arguments are in
accordance with our observation that the mixing for the gravity currents on the steeper
unbounded uniform slopes in the late deceleration phase is more violent than the mixing
for the gravity currents on the milder unbounded uniform slopes in the late deceleration
phase.
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