
Preface

Two of the most important and useful inequalities in the theory of differential
equations are the Hardy inequality
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and that of Rellich:
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each inequality holding for an appropriate class of functions u. Details of the
long history and wide applications of the Hardy inequality are given in [15]
and [110] (see also [108]); note that the special case p = 2 of it can be regarded
as a mathematical representation of Heisenberg’s uncertainty principle. As for
the Rellich inequality, we refer to [15] for background information and observe
that the case p = 2 is again distinguished in that it has implications for the
self-adjointness problem for Schrödinger operators with singular potentials.

Motivated by the demands of various applications (see, for example, Chap-
ter 1 of [40]), fractional versions of these results have been obtained in recent
times. For example, when s ∈ (0, 1), a fractional analogue of the Hardy in-
equality takes the form

c(n, s, p)
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|u(x)− u(y)|p
|x − y|n+sp dx dy

for all u in a class of functions depending on whether ps − n is positive or neg-
ative. There are important applications for versions of the classical and frac-
tional inequalities in which integration occurs over an open subset � of Rn;
these present interesting and challenging problems involving the geometry of
�. The Rellich inequality has also enjoyed substantial development in the last
few years.
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The natural setting for these later inequalities is that of fractional Sobolev
spaces which, after their introduction in the 1950s by Aronszajn, Gagliardo
and Slobodeckij, have found applications in a vast number of questions involv-
ing differential equations and nonlocal effects: see, for example, the references
given in [142]. Details of the historical background are given in [171]. Our
objective in this book is to present an introduction to such spaces and to go on
to establish inequalities such as those mentioned above.

Chapter 1 is devoted to topics that are mainly quite familiar, and are given
here for the convenience of the reader and also to establish some standard nota-
tion. There follows a brief account of classical Sobolev spaces, including some
of the basic embedding theorems. In Chapter 3 fractional Sobolev spaces on an
open subset� ofRn are introduced: if s ∈ (0, 1) and p ∈ [1,∞), such a space is

Ws
p (�) :=
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u ∈ Lp(�) : (x, y) �−→ |u(x) − u(y)|
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p +s
∈ Lp (�×�)
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and is endowed with the norm

‖u‖s,p,� :=
(∫

�

|u|p dx +
∫

�

∫

�

|u(x)− u(y)|p
|x − y|n+sp dx dy

)1/p

.

The term

[u]s,p,� :=
(∫

�

∫

�

|u(x)− u(y)|p
|x − y|n+sp dx dy

)1/p

featured here is the so-called Gagliardo seminorm; it plays the role occupied
by the Lp norm of the gradient in the classical first-order Sobolev space. Note
that the condition s ∈ (0, 1) is essential if triviality is to be avoided, for when
s ≥ 1 and � are connected, then by Proposition 2 of [33] the only measurable
functions such that

∫

�

∫

�

|u(x)− u(y)|p
|x − y|n+sp dx dy < ∞

are constants. When the underlying space � is bounded and has sufficiently
smooth boundary these fractional spaces can be identified with certain Besov
spaces. This enables such matters as embedding theorems to be taken over from
the theory of Besov spaces. However, the loss of control of constants (in em-
bedding inequalities, for example) and the conditions imposed on the boundary
make it desirable to supplement the general impression given by the Besov
space approach by arguments based on the concrete definition of the fractional
spaces. These spaces not only have similarities to those of classical Sobolev
type but also exhibit differences: for example, the Poincaré inequality holds for
all bounded open subsets of Rn in the fractional case but not in the classical
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situation. Details of the behaviour of the Gagliardo seminorm as s → 1− and
s → 0+ (see [24], [33], [34] and [134]) are presented together with an indi-
cation of an alternative approach given by Milman et al. ([136], [107]) using
interpolation theory. For additional illustration of the role that interpolation
can play in fractional spaces see [31]. The chapter concludes with a brief dis-
cussion of fractional powers of the Laplacian (in connection with which we
mention [112]) and associated eigenvalue problems. Chapter 4 provides a brief
look at eigenvalue problems set in fractional spaces: we describe some of the
most fundamental results relating to the fractional Laplacian and fractional p-
Laplacian in the hope that those unfamiliar with this material will find it as
fascinating as we do.

Chapter 5 presents a survey of results on Hardy inequalities in the context of
classical Sobolev spaces typified by the inequality

∫

�

|∇u(x)|pdx ≥ C(p,�)
∫

�

|u(x)|p
δ(x)p

dx, u ∈ C1
0(�),

where � is an open set in Rn, n ≥ 1, p ∈ (0,∞), δ(x) = inf{|x − y| : y ∈
R

n \ �}, and C(p,�) is a positive constant which depends on p and � but not
on u. Properties of the distance function δ depend on the geometry of � and its
boundary, and these are important features of the inequality. Hardy inequalities
have always attracted a good deal of interest, but the volume of high-quality
work in this area does seem to have grown dramatically in this century. The
literature is now so enormous as to make the selection of results to include
in this book difficult; the choice is inevitably personal and some significant
results are bound to have been omitted. Although it is not possible in these
pages to give proofs of all the results that we do mention, precise references
are provided when proofs are not. We also present the inequality of Laptev and
Weidl on R2 \ {0} in which the gradient ∇ of Hardy’s inequality is replaced by
the magnetic gradient ∇ + νA, where A is a magnetic potential of Aharonov–
Bohm type. Discrete versions of the resulting inequality are also discussed. The
Hardy theme is continued in Chapter 6 in the fractional setting.

Finally, in Chapter 7 the focus is on the Rellich inequality. To set the scene,
results obtained in classical Sobolev spaces are surveyed and then some recent
developments of a fractional nature are presented.

Chapters are divided into sections and sections are sometimes divided into
subsections. Theorems, Corollaries, Lemmas, Propositions, Remarks and equa-
tions are numbered consecutively. At the end of the book there are author, sub-
ject and notation indexes.
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