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LINEAR MAPS LEAVING INVARIANT SUBSETS OF
NONNEGATIVE SYMMETRIC MATRICES

HANLEY CHIANG AND CHI-KWONG LI

Let 5 be a certain set of nonnegative symmetric matrices, such as the set of symmetric
doubly stochastic matrices or the set, of symmetric permutation matrices. It is proven
that a linear transformation mapping S onto S must be of the form X >-> PtXP for
some permutation matrix P except for several low dimensional cases.

1. INTRODUCTION

There has been considerable interest in studying linear transformations on matrix
spaces leaving a certain subset invariant, that is, mapping the subset onto itself; see
[4]. For example, if S is the set o f n x n doubly (sub-)stochastic matrices or the set of
n x n (sub-)permutation matrices, and V = span 5 is the linear span of 5, then a linear
transformation <f>: V —• V satisfying (p(S) — S must be of the form

(1) X^PXQ or X^PX'Q

for some n x n permutation matrices P and Q. In [1], the authors of this paper solved
the open problem in [4] concerning linear transformations on span S satisfying <f>(S) — S,
where <S is the set o f n x n even permutation matrices, that is, permutation matrices
with determinant one. It was shown that for n ^ 5, the transformation has the form (1)
for some permutation matrices P, Q such that det(PQ) = 1. When n ̂  4, there may be
other types of transformations and they are also characterised.

In [5], the authors studied linear transformations (j> satisfying <j>(S) = 5 , where S
is the set of symmetric doubly stochastic matrices or the set of symmetric doubly sub-
stochastic matrices. It was shown that such transformations have the form

(2) X M- PlXP

for some permutation matrix P. The analysis in [5] depends on some intricate graph
theory. In this paper, we give a short, direct proof for this result, and we study linear
maps leaving invariant other matrix sets S or their convex hulls, where S is
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222 H. Chiang and C-K. Li [2]

S P n : the set o f n x n symmetric permutation matrices; or

T n : the set o f n x n permutation matrices corresponding to the identity or trans-
positions, that is, 2-cycles.

The following notations will also be used in our discussion:

M n : the set o f n x n real matrices;

SDS n : the set o f n x n symmetric doubly stochastic matrices;

P n : the set o f n x n permutation matrices;

E n : the set of extreme points of SDSn;

V n : the set of symmetric matrices in Mn with equal row sums and column sums;

/„: the identity matrix in M n ;

Jn: the matrix in M n with all entries equal to one;

Tij-. the matrix obtained from /„ by interchanging the ith and jth. rows;

Jn
 == Jn ln.

Evidently we have
T n = { / „} U {T{j : l ^ i < j ^ n ) .

Moreover, we have the following description of E n (see [2, 3]).

PROPOSITION 1 . 1 . T ie set E n consists of matrices in M n that are permuta-
tionally similar to the direct sums of matrices of the following forms:

(a) The 1 x 1 matrix (1);

(b) Tie 2 x 2 matrix I 1 ;

(c) Tie A; x A; symmetric matrix with 1/2 at its (r,s) position with {r,s}
— {1, k} or {r, s} = {i, i + 1} for i = 1 , . . . , k — 1, and with zero elsewhere,
where k is an odd integer ^ 3.

Clearly, for a compact convex set /C, a linear map <fr leaves K. invariant if and only
if 4> leaves invariant the set of extreme points of K. Since <S is the set of extreme points
of conv<S for S — T n , S P n and E n , we see that a linear operator <j> satisfies <f>(S) — S if
and only if <̂ >(conv S) = conv <S.

We shall present some preliminary results and characterise those linear maps that
leave invariant T n or conv T n in Section 2. We then characterise those linear maps that
leave invariant S P n or conv S P n in Section 3 and treat the problem for E n or SDSn in
Section 4.

We thank Professor Bit-Shun Tam for some helpful comments on an earlier draft of
our paper and for showing us the preprint [5].
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2. P R E L I M I N A R Y R E S U L T S

PROPOSITION 2 . 1 . T i e set T n is a basis for V n . Consequently, there is a

one-one correspondence between bijections from Tn to Tn and linear maps <p : V n -> V n

satisfying <j>(S) = S for S = T n or conv T n .

PROOF: Recall that Ty- is the matrix obtained from /„ by interchanging the ith and
jth rows, that is, Ty corresponding to the transposition permutation that interchanges i
and j . If A = (a^) e Vn , then

A= Yl

for some suitable [i € K so that the row sums and column sums on both sides match.
Thus, A € spanTn. Also, if YL^ijTij + ^ = 0, then all btj = 0 and so must b0. Hence,

Tn is a linearly independent generating set of Vn, that is, T n is a basis for Vn.

The last assertion is clear. D

COROLLARY 2 . 2 . LetS be any of the sets: En , SP n , Tn , conv En, conv SPn,
convTn. Then span<S = Vn.

PROOF: Clearly, the linear span of a set is the same as the linear span of the convex
hull of the set. We focus on 5 = En, SP n , or T n . Evidently, we have T n C S P n C E n

C Vn, and hence
span T n C span SP n C span E n C Vn.

By Proposition 2.1, we have spanTn = Vn. The result follows. D

We need the following well-known result in our discussion. We give a short proof for

completeness.

LEMMA 2 . 3 . IfX e M n satisfies PlXP = X for all P 6 P n , then X = rln + sJn

for some real numbers r and s.

PROOF: Let X - {x{j) satisfy PlXP = X for all P € P n . All the diagonal entries
of X must be equal; otherwise, if xn ^ Xjj for some i ^ j , then let P = Ty be the
permutation matrix which interchanges rows i and j of /„, and it would follow that
PlXP ^ X. Now, all the off-diagonal entries in the same row of X must be equal;
otherwise, if Xy ^ xik are two off-diagonal entries in the same row, then let P — Tjk, and
it would follow that PlXP y£ X. By a similar argument, all of the off-diagonal entries
in the same column of X must be equal. Finally, for any two off-diagonal entries a;y- and
xkl, we have x{j = xki = xkt. D

LEMMA 2 . 4 . Let S — SP n or En. Then a matrix Ae S is actually in Tn if and

only if

{In,A} = {X € 5 : (7n + 2 ^ - X ) / 2 e c o n v 5 } .

Consequently, if<t>: Vn -• Vn satisfies 0(5) = S and <£(/„) = /„, then 0(Tn) = Tn.
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PROOF: (=>) Suppose A = /„. Then clearly X = In is the only matrix in S such
that (/„ + 2A — X)/2 G conv 5 . Suppose A — Ttj, the matrix that corresponds to the
transposition interchanging i and j . If X G 5 satisfies (/„ + 2A — X)/2 G conv 5, then X
can only have nonzero entries at the diagonal positions and the (i,j) and (j, i) positions.
Thus, X = In or Tij.

(<=) Suppose 5 = E n and A G 5 has a k x k submatrix in rows and columns
i\,...,ik such that k ^ 3 is odd and the (r,s) entry of A is 1/2, where {r,s} = {ik,ii}
or {r,s} = {ijyij+i} with j = l,...,k-l. Then (/„ + 2A- X)/2 G SDSn for any
AT = TTS with (r,s) = (ij-,ij+1) or (i<t,ii). Next, suppose 5 = En or SP n and J4 G <S
satisfies .A € SP n \ Tn . Then there exists 7y G Tn not equal to /„ or A such that
In + A-Tij = Ye SP n . Thus, (/„ + 2A-To-)/2 = (A + K)/2 G convSPn C conv5.

The last assertion is clear. D

3. SYMMETRIC PERMUTATION MATRICES

In this section, we characterise linear maps leaving invariant the sets SPn or
conv SP n . Since SP n = T n for n ^ 3, we exclude these cases in our theorem. Note
that Tpq,Tra G Tn correspond to disjoint transpositions if and only if p,q,r,s are all
distinct.

THEOREM 3 . 1 . Let S — SP n or its convex hull. For n ^ 5, a linear map
(j>: V n —> Vn satisfies <j>(S) — S if and only if there is P G P n such that <j> has the form
X !-»• P*XP. For n = 4, a Jin ear map cj> : V4 -> V4 satisfies 0(5) = 5 if and only if
4>{h) = hand<l> permutes the sets {Tn,T3i}, {T13,T2i}, and {T14,T23}.

We establish several lemmas to prove Theorem 3.1. We begin with the following
well-known result. A proof is given for completeness.

LEMMA 3 . 2 . Tiiere exist Ai,...,Ane SPn such that A^-\ \-An-Jn. Con-
sequently, the matrix Jn/n G conv SP n .

PROOF: Recall that the complete graph Kn is the graph with n vertices such that
there is an edge connecting any two vertices. Depict the vertices 1, . . . ,n of Kn as the
points 1, e2*/",..., e'2^""1)*/" on the complex plane and its edges as straight line segments.

Suppose n = 2k + 1 is odd. We identify every matrix in SP n as a permutation,
and express the matrix in terms of its cycle decompositions (as a permutation). Let
Ai = (l)(2,n)(3,n - 1) • • • (k + l,k + 2) G SP n correspond to the loop at vertex 1
together with the collection of the k edges in Kn that are parallel to the edge joining
vertices 2 and n. Let A2 = (2)(3,1)(4, n)(5, n - 1) • • • (k + 2, k + 3) G SP n correspond to
the loop at vertex 2 together with the collection of the k edges in Kn that are parallel
to the edge joining vertices 3 and 1. Similarly, for j = 3 , . . . ,n — 1, let Aj — (j)(j
+ 1, j — 1) • • • G SP n correspond to the loop at vertex j together with the collection of
the k edges in Kn that are parallel to the edge joining vertices j + 1 and j -I. Finally,
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let An = (n)(l , n - 1)(2, n — 2) • • • (A;, k + 1) G S P n correspond to the loop at vertex n
together with the collection of the k edges in Kn that are parallel to the edge joining
vertices 1 and n — 1. One readily checks that Jn — A\ + • • • + An.

We extend the above construction to the case when n + 1 = 2k + 2 is even as
follows. We construct Ai from the At in the preceding paragraph by replacing (i) with
(i,n+ 1). For example, Ax = ( l , n + l)(2,n)(3,n - 1) • • • (fc + 1, k + 2) G S P n + i . Then
J n + 1 = A i + ••• + ! „ + J n + i . D

LEMMA 3 . 3 . Let F n be the sum of matrices in S P n . Then F n = fn-\In + fn-2Jn,
where / t = | S P t | .

(a) We have h = 1, /2 = 2, / 3 = 4, and A = A - i + {k - l)A_a > 2A-i for
A; ^ 4 .

(b) Let gn = fn-\ — /n-2- For n ^ 5, a matrix 4̂ G S P n is the identity matrix
if and only if

{Fn - gnA)/(fn - gn) € conv SP n .

PROOF: For any P G P n , we have
A ) p = Y2 p t A P = H A = Fn.

AsV

By Lemma 2.3, Fn is a linear combination of/„ and Jn. Clearly, there are /n_i matrices
in SP n with 1 at the (1,1) entry, and there are /n_2 matrices in S P n with 1 at the (1,2)
entry. Thus, Fn = / n _ x / n + /n_2 Jn.

(a) We have /„ = /n_i + (n — l)/n-2 because both sides of this equation are equal
to the common row sum of Fn. Now, it is easy to check that / i = 1, /2 = 2, fa = 4,
h = 10, / 5 = 26. So, / 5 > 2/4 > 4/3. If A > 2}k_.x > 4/jfc_2 for some A; ^ 5, then

A+i " 2A = fk + *A-i - 2(A-i + (* - l )A- 2 ) > 0.

By the principle of induction, the last assertion follows.

(b) Suppose n ^ 5. If A = /„, then (Fn - gnA)/(fn - gn) = Jn/n € convSPn. If

A has an off-diagonal entry equal to one, then Fn — gnA has an off-diagonal entry equal

to /n_2 -gn = 2/n_2 - fn-i < 0, and thus (Fn - gnA)/(fn - gn) £ conv SP n . D

LEMMA 3 . 4 . Let n ^ 4. If <t>: V n -+ V n satisfies 0(5) = 5, where S = SPn or
convSPn, then </>(Fn) = Fn and 4>(In) = In.

P R O O F : Define Fn as in Lemma 3.3. Since </>(SPn) = S P n , clearly <j)(Fn) = Fn. For
n £ 5, if 0(/B) = A, then (Fn - ft,i4)/(/B - gn) = 4>{(Fn - <?„/„)/(/„ - gn)) = cf>(Jn/n)

€ conv S P n . By Lemma 3.3(b), we see that A = In.

For n = 4, let Bu B2, B3 be the three elements in S P 4 \ T 4 . Then Bl + B2 + B3 = J4,

and thus J4/3 G conv S P 4 . Since F4 = 4 / 4 + 2 ^ , it follows that a matrix A G S P 4 satisfies
(F4 - 4A)/6 G conv S P 4 if and only if A = 74. By arguments similar to those in the last
paragraph, we see that <£(/4) = 74. D
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PROOF OF THEOREM 3.1: For n ^ 5, the sufficiency part can be verified readily. For
n = 4, suppose <j>(U) = I4 and (j> permutes the sets {T^T^}, {T13,T24}, and {T14,T23}.
Since every element in S P 4 \ T 4 has the form Tpq+Trs-In where {p,q,r,s} = {1,2,3,4},
we have </>(Tp, + Trs - / „ ) = Ttj +Tkl -/„ where {i,j, k, 1} = {1,2,3,4}. Thus, <f> will map
the set S P 4 \ T 4 onto itself. So, <£(SPn) = SPn, or equivalently, 0(conv SPn) = conv SP n .

To prove the converse, assume that <l> leaves invariant S P n and conv SP n . Then <j> is
bijective. By Lemmas 3.4 and 2.4, <j>{In) = /„ and <£(Tn) = T n . Note that Tpq,Trs € T n

correspond to disjoint transpositions if and only if Tm + TTS — /„ 6 S P n . Thus, <j> maps
pairs of disjoint transpositions to pairs of disjoint transpositions. Since <f> is bijective, we
are done if n = 4.

Suppose n ^ 5. It suffices to show that <f> can be converted to the identity mapping
on V n by the composite of a sequence of mappings of the form X i-> P<j>(X)Pt. In
the following discussion, we say that two different transpositions Ty and Tki overlap if
{i,j} I"1 {kJ} is a singleton, that is, Ty and Tki are not disjoint transpositions. Now,
any two members in {Ttj : 2 < j ^ n} overlap, so the same must be true for {</>(Tij) :
2 ^ 3' ^ n). Since <j>{Ti2) and 0(Ti3) overlap, we can replace <j> by a mapping of the
form X i-> P<t>{X)Pl so that <j>(X) = X for X = /„, Tu, and T13. Since </>(Tu) = Tpq

overlaps with each of 7\2 and T13, we see that p = 1 or (p, q) = (2,3). If the latter holds,
then <j){Ti5) = TT3 overlaps with each of T12,Ti3, and r23, which is impossible. So, we
have <t>(Tu) = T\s for some s ^ 4. We may assume that s — 4; otherwise, replace <̂>
by the mapping X •->• T4s0(X)T4j. Repeating the same arguments, we may assume that
(j){T\j) = Tij for j = 1 , . . . , n. Now, T23 is the only matrix in T n that is disjoint with TXj
for all j > 4. So, </>(T23) = T23. Similarly, we have </>(T2j) = T2j for all j ^ 4. Inductively,
we see that <j>{TTS) = TTS for all r, s. Since <£ fixes every element in a spanning set for Vn,
the result follows. D

4. SYMMETRIC DOUBLY STOCHASTIC MATRICES

In this section, we give a different proof of the result in [5] concerning the charac-
terisation of linear maps leaving invariant the sets E n or convEn = SDSn. Note that if
n = 2, then E n reduces to T n . So, we assume that n > 3 in our consideration.

THEOREM 4 . 1 . Suppose n ^ 3. Let S be E n or conv E n = SDSn. A linear map

<f>: V n —> V n satisfies <£(<S) = S if and only if there is P € P n such that 0 has the form
X .-> PlXP.

The sufficiency part of Theorem 4.1 can be verified readily. We divide the proof of
the necessity part into several lemmas. Similar to the proofs in the previous section, a
key step is to show that <j>{In) = In (see Lemma 4.4).

To represent matrices in E n , we use the following notation. Each matrix in E n will
be represented formally as a product of 1-cycles, 2-cycles, and odd cycles of length at
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least 3. The presence of an 1-cycle (ix) in the product will mean that the matrix has 1
in the (ii,i\) position; the presence of a 2-cycle (11,12) will mean that the matrix has 1
in the (ii, 12) and (12, h) positions; the presence of a fc-cycle (ii, 12,13,..., u ) , where k is
an odd integer ^ 3, will mean that the matrix has 1/2 in the (ii,ik) and (ik, ix) positions
as well as in the (ij,ij+i) and (ij+i,ij) positions for j = 1,2,.. .,k — 1. For example,
A = (3)(1,2)(4,5,6) € E 6 means that the matrix A has 1 in the (3,3), (1,2), and (2,1)
positions, has 1/2 in the (4,5), (4,6), (5,4), (5,6), (6,4), and (6,5) positions, and has 0
in all other positions.

LEMMA 4 . 2 . Suppose n ^ 3. Let Cn be the sum of matrices in E n . Tien

(3) Cn = anln + bjn

for some positive numbers an and bn.
(a) If n ^ 3, then an < 2bn.

(b) Suppose n ^ 3 and n / 4 , and let A € En. Tien all nonzero entries of A
equal 1/2, that is, A can be represented as a product of odd cycles each of
length at least 3, if and only if

(Cn - 2bnA)/(on + (n- 3)bn) G SDSn.

PROOF: For any P e Pn, clearly

A)p = Z ! p t A P =
By Lemma 2.3, Cn = anln + bnJn for some positive real numbers a,, and bn.

(a) Note that an is equal to the number of matrices in En with 1 in the (1,1)
position. Thus, an = |En_i|. Now, the common row sum of Cn is an + (n - l)fen, and
since each member of E n in the summation that produces Cn contributes an increment
of 1 to the row sum, it follows that

|En| =an + (n- l)6n = |EB_i| + (n - l)6n.

Thus, bn = (|En| - |En_!|)/(n - 1). So, an < 2bn if and only if

2( |En |-PEn-l | )
lE«-il < ^ T j '

or equivalently,

(4) (n + l ) |En_1 |<2 |En | .

Let 2En be the multi-set (that is, a set with elements counting multiplicities) such
that every matrix in En appears exactly twice in 2En. (We sometimes refer to two
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identical matrices in 2En as two copies of a matrix of a given form.) To prove (4), it
suffices to construct a n n + 1 element multi-set S(X) in 2En for each matrix X G En_!
such that the union \J S(X) (counting multiplicities) is a proper subset of 2En with

(n + l) |En_x| elements.

To achieve our goal, for each X G En_!, we construct the n + 1 element multi-set

S(X) as follows. First, we associate each X e En_i with the two identical matrices

(5) X © [n] € 2En.

To determine the other n — 1 matrices in S(X), we consider two types of matrices in

En_L

T Y P E 1. A G En_i has nonzero diagonal entries at the ii,i2,---,iP positions with 1
^ ii < • • • < ip ^ n — 1 for some p ^ 1, that is, the cycle decomposition of A includes
the 1-cycles (ii), •• •, (ip). For r = l , . . . , n - l , we construct Ar G 2En as follows.

(i) If A has (r) as an 1-cycle in the cycle decomposition, replace (r) by the

2-cycle (n, r) to obtain Ar;

(ii) if A has (r, i) as a 2-cycle in the cycle decomposition, replace (r, i) by the
3-cycle (n, r, i) to obtain AT\

(iii) if A has (r, j i , . . . , j*) as an odd cycle with k > 1 in the cycle decom-
position, replace the cycles (ii) and (r, j i , . . . , jk) in A by the single odd
cycle (ii,n,r,j\,... ,jk) to obtain Ar. Here we always assume that j \ < jk',
otherwise, rewrite the cycle {r,ju..., jk) as (r,jk,jk-i, • • •, ji)-

For every matrix A G En_i , the cycle decomposition of AT € 2En has n in a cycle of
length at least 2, so Ar will not be of the form (5). Now, let 5(^4) consist of A\,..., An-i
and the two identical matrices A © [n] in 2En. If we consider the union of S(A) for all
Type 1 matrices A G En_i , we have the following observations.

1. The two identical matrices A G 2En of the form (n,ji,J2){- • •) that contains at
least one 1-cycle will be used in the construction of S(A) for a unique Type 1 matrix A;

namely, one copy of A will appear as Ah for A = (ju j2){- • •) G En_i , and the other copy
will appear as Ah for the same A G En_i.

2. Exactly one of the two identical matrices A G 2En of the form A = {n,j)(- • •)

will be used in the construction of S(A) for a unique Type 1 matrix A. In fact, the matrix
A will appear as A, in S(A) for A — (j)(- • •) G En_i, that is, A is obtained from A by
replacing (n,j) with (j).

3. At most one of the two identical matrices A G 2En of the form

A = (n,j2,J3, • • -,jk-ijk){- • •)

with k > 5 will appear in 5(^4) for a Type 1 matrix A, which is unique if it exists.
In fact, by our construction, if j 3 < jk-u then there exists Ax G En_i such that A

https://doi.org/10.1017/S0004972700037618 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037618


[9] Linear maps 229

€ S(.4i) if and only if Ax = (jk){h,J3,• • -,jk-i)(- • •) and j k < ip for every 1-cycle (zp)
in A; if j3 > jk-i, then there exists A2 6 En_i such that A G S(A2) if and only if A2

= {J2){jk,jk-u• • -,J3){- • •) and j 2 < iP for every 1-cycle (ip) in A.

T Y P E 2. B € En_j has no nonzero diagonal entries, that is, the cycle decomposition of
B has no 1-cycles. For r = l , . . . , n — 1 , we construct the matrix BT as follows.

First, in the cycle decomposition of B e En_i, replace the indices 1,2,..., n - 1
respectively by 1,2,..., r — 1, r + 1 , . . . , n, and then construct Br by inserting the 1-cycle
(r) into the resulting matrix. In the cycle decomposition of Br, if n is contained in a
3-cycle, that is, Br = {r)(n, j\,j2)(- ••)> t n e n t n e t w 0 identical matrices Br € 2En were
already used up in the construction of S(A) for Type 1 matrices A; in such case, we
modify Br by changing (r)(n, j x , j2)(- • •) to (n, r){ji)(j2)(- • •).

Since a Type 2 matrix does not have an 1-cycle, the above construction will not result
in a matrix of the form Y © [n] € 2En. Let S(B) consist of the matrices Bi,..., Bn-\
and the two identical matrices B © [n] 6 2En. If we consider the union of S(B) for all
Type 2 matrices B € E,,-!, we have the following observations:

1. Excluding matrices of the form (5), at most one of the two identical matrices
in 2En of any given form will appear in the union of S(B) for all Type 2 matrices B.
Indeed, if B e 2En has exactly one 1-cycle (i) where i < n, then at most a single copy of
B will appear in S(B) for the unique Type 2 matrix B € En_i formed by removing (i)
from the cycle decomposition of B and replacing the indices l , 2 , . . . , i - l , i + l , . . . , n
with 1,2,..., n — 1, respectively.

If B 6 2En has exactly two 1-cycles and n is contained in a 2-cycle, that is, B
— tii){J2)(n, i)(- • •), then exactly one copy of B will appear in S(B) for the unique Type
2 matrix B formed by constructing the intermediary matrix {n,ji,j2)(i)(- • •), removing
(i) from the cycle decomposition, and replacing the indices 1,2,.. .,i — l , i + l , . . . , n i n
the intermediary matrix with the indices 1,2,..., n — 1, respectively. No other forms of
B e 2En will appear in S(B) for a Type 2 matrix B 6 En_!.

2. The union of S(B) for all Type 2 matrices B € En_i will not contain any
matrices of the form (n,ji, j2)(- • •) € 2En and thus will not contain any matrices in 2En

of which two copies were used up in the construction of S(A) for Type 1 matrices A.

Thus, |J S(X) (counting multiplicities) is a subset of the multi-set 2En. If

n / 4 , this union is a proper subset of 2En because any matrix in 2En with a cycle
decomposition having n in a 3-cycle and having no 1-cycles does not belong to S(X) for
any X € En_i. For n = 4, since C4 = 5/4 + 3 ^ , we have a4 < 264. This completes the
proof of (a).

(b) (<=) If there is some nonzero entry of A that is not 1/2, then A has an 1 in
either a diagonal entry or an off-diagonal entry. If 1 is in the (i, i) diagonal position of
A {i < n), then the (i,z) position of Cn - 2bnA is an - 2bn < 0. If 1 is in the (i,j)
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off-diagonal position of A, then the (i,j) position of Cn — 2bnA is 6n — 2bn < 0. In either
case,

(Cn - 2bnA)/(an + (n - 3)6n) £ SDSn.

(=>) If every nonzero entry of A € En is equal to 1/2, then all the diagonal entries
of 2bnA are 0 and all the off-diagonal entries of 2bnA are either 0 or bn. Thus, Cn — 2bnA
is a nonnegative matrix with a common row sum and column sum of an + (n - l)bn - 2bn

= an + (n- 3)6n, giving (Cn - 2bnA)/{an + (n - 3)6n) € SDSn. D

LEMMA 4 . 3 . Suppose n ^ 3 and n ^ 4. Let £>„ be t ie sum of matrices A in E n

such that all nonzero entries of A equal 1/2. Tien Dn — CnJn for some positive number

PROOF: Note that except for n — A, there are matrices in E n with all nonzero entries
equal to 1/2. In fact, if n is odd, then a matrix in E n corresponding to the long cycle
( 1 , 2 , . . . , n) will be such a matrix; if n ^ 6 is even, then there are matrices whose cycle
decompositions consist of two odd cycles, each of length at least 3.

It is easy to check that PtDnP = Dn for any P € P n . By Lemma 2.3, Dn is a linear
combination of /„ and Jn. Now, each matrix in En with all nonzero entries equal to 1/2
has all diagonal entries equal to 0. So, Dn = Cn Jn for some positive number Cn. D

LEMMA 4 . 4 . If 4> : V n ->• V n satisfies <j>(S) = S, where S = E n or SDSn, then

*(/») = In-

PROOF: Since <j> maps a spanning set of V n onto itself, <j> is a bijective linear map
on Vn. Now, convEn = SDS n . Thus, 0(En) = EB if and only if ^(SDSn) = SDSn.

Define Cn and Dn as in Lemmas 4.2 and 4.3. Since <£(En) = En, we have <j>{Cn) — Cn.

Suppose n ^ 4. By Lemma 4.2 (b), if X € En has all nonzero entries equal to 1/2, then
so does 4>(X). Thus, we have <l>(Dn) = Dn. Since /„ is a linear combination of Cn and
£>„, we see that <j>(In) = /„•

Suppose n = 4. Then C4 = 5/4 + 3J4. One easily checks that a matrix A e E4

satisfies (C4 - 5A)/9 e SDS 4 if and only if

A e B = {h, (1)(2,3,4), (2)(1,3,4), (3)(1,2,4), (4)(1,2,3)}.

Let G = X) A = 2/4 + J4. Then </>(B) = B and </>(G) = G. Since /4 = 3G - C4, we have

4>{U) = <t>(3G - C4) = 3«i(G) - 0(C4) = 3G - C4 = /4. D

P R O O F OF THE NECESSITY PART OF THEOREM 4.1: By Lemmas 4.4 and 2.4, we
may assume that <£(/„) = In and <£(Tn) = Tn. If n = 3, one readily checks that there is
P € P 3 such that P<t>(X)Pl = X for all X g T 3 \ {/3}. Thus, <f> has the asserted form. If
n ^ 5, then one can use arguments similar to those in the proof of Theorem 3.1 to show
that <f> has the asserted form.

Suppose n = 4. One can again use the arguments similar to those in the proof of
Theorem 3.1 to show that pairs of disjoint transpositions are mapped to pairs of disjoint
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transpositions. We may assume that <£(Ti2) = T12 and <j>{TX3) = Ti3; otherwise, replace

0 by a mapping of the form X i-> P(f>(X)Pt for some suitable P G P 4 . Since T14 is not

disjoint with T12 and T13, we have <j>{T14) e {TU,T23}. Let A = T12 + T13 + T14. Then

l £ E 4 satisifes (.4 - X) /2 € SDS4 if and only if X € {Ti2,Ti3,TM}. Thus, there are

exactly 3 elements Y € E 4 such that (<j>(A) - Y)/2 € SDS4. However, if 0(T14) = r23,

then <j>(A) = T12 + 7\3 + T23, and y € E4 satisifes (<£(v4) - Y)/2 e SDS4 if and only if

Y = T12,T13,T23, or (1,2,3)(4), which is a contradiction. Thus, <£(7\4) = T14. One can

then use the arguments similar to those in the proof of Theorem 3.1 to conclude that <j>

has the asserted form. D

We note that one can also prove the necessity part of Theorem 4.1 using the argu-

ments in Assertions 3 and 4 from the proof of [4, Theorem 2.2].
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