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Abstract

Fast pixelated detectors incorporating direct electron detection (DED) technology are increasingly being regarded as universal detectors for
scanning transmission electron microscopy (STEM), capable of imaging under multiple modes of operation. However, several issues remain
around the post-acquisition processing and visualization of the often very large multidimensional STEM datasets produced by them. We
discuss these issues and present open source software libraries to enable efficient processing and visualization of such datasets. Throughout,
we provide examples of the analysis methodologies presented, utilizing data from a 256 × 256 pixel Medipix3 hybrid DED detector, with a
particular focus on the STEM characterization of the structural properties of materials. These include the techniques of virtual detector
imaging; higher-order Laue zone analysis; nanobeam electron diffraction; and scanning precession electron diffraction. In the latter, we
demonstrate a nanoscale lattice parameter mapping with a fractional precision ≤6 × 10−4 (0.06%).
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Introduction

One of the greatest revolutions in scanning transmission electron
microscopy (STEM) in recent years is the development and use of
fast pixelated detectors incorporating direct electron detection
(DED) technology, and these are rapidly becoming a key compo-
nent of the imaging system for a modern STEM. Ophus (2019)
has provided an excellent review of the area, and Tate et al.
(2016), Yang et al. (2015), and Krajnak et al. (2016) have
described some suitable detectors for different applications in pix-
elated STEM imaging. Part I (Nord et al., 2020) of this work
briefly discussed the general benefits of fast pixelated detectors
for use in STEM and presented software solutions for their hard-
ware control, and for the acquisition, real-time processing and

visualization, and storage of data from them. An increasing num-
ber of Python packages are being developed by the electron
microscopy community with capability to process four-
dimensional (4D) STEM (4D-STEM) data, including HyperSpy
(de la Peña et al., 2018), LiberTEM (Clausen et al., 2019),
py4DSTEM (Savitzky et al., 2019, 2020), pycroscopy (Somnath
et al., 2019), and pyXem (Johnstone et al., 2019).

In this present article, Part II, we discuss post-acquisition data
exploration and analysis of a variety of STEM datasets acquired
with a fast pixelated detector, using the fpd (fpd devs, 2015;
fpd demos devs, 2018) and pixStem1 (pixStem devs, 2015)
Python libraries, with a focus on their use in mapping the struc-
tural properties of materials. These include the techniques of vir-
tual detector imaging (Rauch & Veron, 2005; Gammer et al.,
2015), higher-order Laue zone STEM (HOLZ-STEM; Huang
et al., 2010; Nord et al., 2019), nanobeam electron diffraction
(NBED; Béché et al., 2009), and scanning precession electron dif-
fraction (SPED; Vincent & Midgley, 1994). Throughout, we pro-
vide examples of the application of these techniques to data
recorded with a Medipix3RX hybrid counting DED detector
(henceforth referred to as Medipix3) (Ballabriga et al., 2013)
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mounted in STEMs with 200 kV electron sources, though the tech-
niques and software packages discussed here extend to data from
other detectors. The names of the specific functions, classes, meth-
ods, modules, and packages used in the examples given are speci-
fied in the main text or the figure captions in typewriter font.

Both of the software libraries presented are made available
under the free and open source GPLv3 license, allowing transpar-
ency of the implemented algorithms, and the ability for anyone to
use and to further improve upon them. The libraries themselves
draw on the rich ecosystem of mature Python libraries
(Oliphant, 2007), including ones for optimized numerical
(Oliphant, 2006) and scientific (Jones et al., 2001) computing,
image processing (van der Walt et al., 2014; Gouillart et al.,
2016), and data visualization (Hunter, 2007).

The pixStem library is built upon HyperSpy and extends its
capabilities to common pixelated STEM tasks, with a focus on
processing HOLZ data. A key difference between the pixStem
and fpd packages is that the latter library is a lower level one,
similar in style to NumPy but with added classes, GUIs and
plotting capabilities built-in where needed. A higher-level
object-oriented interface will be added in a future version. A
detailed description of every feature of the pixStem and fpd
libraries can be found in the documentation and example
Jupyter (Kluyver et al., 2016) notebooks available online (fpd
devs, 2015; pixStem devs, 2015; fpd demos devs, 2018) and
will not be replicated here. Instead, in the following sections,
we describe some of the general techniques employed by the
libraries for efficient data processing, for data visualization,
and the main features of the libraries for the structural charac-
terization of materials.

The paper is organized as follows. Section “General
Techniques” outlines general techniques for handling postpro-
cessing of the large 4D-STEM datasets typically produced by
fast pixelated detectors. In the section “Data visualization”, ways
of visualizing the datasets are discussed. Section “Virtual detector
images” covers the various methods of generating virtual images
from the 4D datasets, using annular dark-field (ADF) contrast
from a noncrystalline soft material as an example. In the section
“Higher-order Laue zone analysis”, HOLZ-STEM data analysis is
explained, which allows for the retrieval of information about the
periodicity of a crystalline sample in the direction parallel to the
electron beam. Lastly, general lattice image processing is discussed
in the section “Lattice analysis”, with a focus on diffraction imag-
ing. Using test data obtained in the SPED mode of acquisition
(Vincent & Midgley, 1994) of a custom system (MacLaren et al.,
2020), we demonstrate that a lattice parameter fractional precision
of 6 ×10−4 is possible using a probe with a spatial resolution of
1.1 nm. This precision value is approximately 2–3× larger than
the best ones reported in the literature using standard probes in
a SPED mode (Rouvière et al., 2013) and patterned probes in stan-
dard STEM mode (Guzzinati et al., 2019; Zeltmann et al., 2020).

A future Part III of this work will cover post-acquisition pro-
cessing and visualization of data from fast pixelated detectors for
differential phase contrast imaging.

General Techniques

The primary challenge to the post-acquisition processing of data
from fast pixelated detectors is the size of the data, which can
easily be much greater than the available system memory on cur-
rent generation computers. For example, a spatial scan with 1k ×
1k points recording data from a 512 × 512 pixel detector would

occupy ∼977 GB when stored in 32-bit integer format. In addi-
tion to this, in some types of processing, at least the same
amount of memory is required to process the data, putting the
potential memory requirements well into the terabyte range.
For STEM imaging, smaller scan sizes of 256 × 256 or 512 ×
512 points with a 256 × 256 pixel detector at lower bit depth
are often adequate to observe the specific feature of interest. In
these cases, and for 16-bit data, the memory requirements are
more modest, being 8.6 and 34.4 GB (in SI units), but the prob-
lem of available system memory and efficient computation cur-
rently remains.

One solution to these issues is out-of-core processing, where
the data are stored on disk and only parts of it are loaded into
memory when needed. As an example, to generate a bright-field
image from a STEM dataset, each reciprocal space image may
be loaded one at a time from a hard drive into memory, a sum
of each image performed, with the resulting single values stored
in memory, and the diffraction pattern memory reused to store
the next image. This is an extreme example and, in reality, mul-
tiple images may be loaded into memory at once and processed
across multiple CPU cores in parallel to achieve significant perfor-
mance improvements.

Out-of-core processing is termed “lazy-loading” in HyperSpy
and was recently added through the use of Dask (Dask
Development Team, 2016), a library which abstracts away the
complexities of out-of-core processing. The pixStem library relies
on HyperSpy for out-of-core processing, whereas the fpd library
was implemented before out-of-core processing was available in
HyperSpy and so implements its own methodology, relying on
HyperSpy for Gatan Digital Micrograph file access.

The two libraries can both also process in-memory data. When
processing out-of-core data on disk, there are several ways of
making the data exploration and analysis more efficient.
Chunking the dataset in a compressed HDF5 (The HDF Group,
1997–2018) file, as discussed in Part I (Nord et al., 2020), in
the scan and detector dimensions by partitioning the diffraction
pattern data into several pieces, can greatly speed up data process-
ing by both reducing the data reading and decompression time,
and by reducing the in-memory array sizes. For example, if one
wants to make a bright-field image by using a small virtual aper-
ture, most of the diffraction pattern can be ignored. Without
chunking the detector dimensions, each full image and, thus,
the entire dataset must be read. However, when a 256 × 256 pixel
diffraction pattern is partitioned into 16 × 16 chunks and the
bright-field disc is located within one such chunk, only 0.39% of
the dataset has to be read and processed. The use of HDF5 files
for data storage brings with it many additional benefits, and
these are discussed more fully in Part I (Nord et al., 2020).

In both packages, reading of chunked data from disk may be
aligned to the chunk size when possible to optimize read times.
The size of the data read into memory can be set to be indepen-
dent of the chunk size or be multiples thereof, allowing data to be
processed even on systems with limited memory and processing
power. Additionally, many of the algorithms in the fpd and
pixStem library can be set to operate using one CPU core or,
by default, to employ all available cores to process the in-memory
data chunk in parallel, enabling significant speed increases over
single core processing.

Binning the data is another implemented method that can
increase data processing speed. Detector resolution is an impor-
tant factor when considering the influence of binning on data
analysis. Most fast DEDs have relatively few pixels compared to
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conventional CCD-based detectors and the reduction in pixel
counts on rebinning can limit the ability to extract the maximum
signal from the data. In many cases, however, modest rebinning
can be applied without significant changes in the signal-to-noise
ratio (SNR), or large rebinning can be applied to vastly increase
the processing speed. If the data were recorded using a detector
that has no readout noise and that counts electrons only in the
pixel in which they entered the detector’s sensor, then the noise
would be Poissonian and, for some analyses, such as center of
mass, rebinning has almost no affect on the SNR of the analysis
result.

The Medipix3 detector (Ballabriga et al., 2013) has a noise-free
readout when the counting threshold is set above the level of the
detector’s intrinsic noise and, at electron beam energies up to 80
keV, the detector is capable of a near perfect response, counting
electrons mainly in the pixel of entry (Mir et al., 2017).
However, 200 keV electrons can travel long distances in the sensor
and are counted by multiple pixels (McMullan et al., 2007), giving
rise to a point spread function of a few pixels. This correlation
modifies the noise profile of the detector from pure Poisson sta-
tistics. However, rebinning the data, even by a small extent, nul-
lifies the correlated component of the noise, resulting in a
Poissonian noise profile at the expense of lower detector resolu-
tion. While rebinning tends to have little effect on the SNR of
the result of many analysis techniques, it can improve it in
some cases, and the speed improvements it brings are particularly
useful when performing live data processing, as discussed in Part I
(Nord et al., 2020), or for rapid post-acquisition assessment of the
data while on the microscope.

The binning of data can also be used to reduce the dataset size
to the point where it can fit in memory. For example, binning the
detector dimensions of a 256 × 256 × 256 × 256 12-bit dataset by 2
along each axis reduces the size by a factor of 4 from 8.6 GB down
to a more manageable 2.1 GB.

Data Visualization

Once a dataset has been acquired, it is important to be able to
visualize the raw data and to be able to correlate it with the results
produced from processing the dataset. The DataBrowser class of
the fpd.fpd_file module allows basic GUI-based data inspection,
using by default the pre-rendered sum image for navigation if one
of our HDF5 files (Nord et al., 2020) is supplied, and loading
images on-the-fly as needed. The class can also display data
from other sources, such as in-memory NumPy arrays and mem-
ory mapped files, and so it is also useful when inspecting data
immediately after acquisition and before conversion of the data
to the HDF5 format.

To demonstrate the DataBrowser class, we use it to display a
recently published nanobeam diffraction dataset (Temple et al.,
2018b) from a cross section of a patterned, epitaxially grown
FeRh/NiAl/MgO sample (Temple et al., 2018a). FeRh, in its B2
structure, exhibits a tunable first-order transition at a temperature
of 370 K, which is accompanied by a ferromagnetic to antiferro-
magnetic ordering transition (Lewis et al., 2016). These properties
make FeRh of interest for a number of applications, including data
storage and sensors. In the following, we present an analysis of the
crystal structure, a key property in determining the magnetic
ordering, using the methodology detailed later, in the section
“Lattice analysis”.

The top row of Figure 1 shows the screenshots of the two GUI
windows of the DataBrowser class. The navigation image in

Figure 1a is a user-supplied one showing the diffraction pattern
lattice parameter, k, parallel to the growth direction, as indicated
by the black arrows in Figures 1a and 1b (the other annotations
in Fig. 1a have been added to the GUI image for this presentation
of the data). The diffraction pattern at the location in the scan
marked by the bottom white square in Figure 1a is shown in
Figure 1b. The displayed diffraction pattern can be selected by
clicking anywhere in the navigation image or by dragging the
white marker with the mouse, enabling the dataset to be examined.

The extent of the FeRh and NiAl layers and the MgO substrate
are readily identifiable from regions of uniform color in the nav-
igation image of Figure 1a. The black region in this image is from
nanocrystalline platinum deposited prior to forming the cross sec-
tion and has been masked in the image. Beneath the Pt layer, the
top and side sections of the FeRh layer have been modified by a
combination of the 1 kV Ar+ etching used in the sample pattern-
ing (Temple et al., 2018a) and damage done during focused ion
beam cross-section preparation, creating disordered regions and
grains of different FeRh structures.

While the changes in the mapped lattice parameter are indic-
ative of different grains, the other lattice parameters must be con-
sidered when defining a grain. In Figures 1c–1j, we show
diffraction patterns outlined in the same color as the regions
from which they are taken in Figure 1a, with the exact single
scan pixel location of each pattern marked by the equivalently
labeled white or black boxes within each region. The diffraction
patterns from the NiAl layer (Fig. 1j) and the epitaxial section
of the FeRh layer (Fig. 1i) are both consistent with a B2 structure
when viewed along the [011] direction, as reported previously
(Temple et al., 2018a), while the MgO pattern (Fig. 1b) is consis-
tent with the NaCl structure when viewed along the [100]
zone-axis. The regions labeled in Figures 1d–1h each have a dif-
fraction pattern consistent with a chemically disordered bcc crys-
tal structure (Temple et al., 2018a), with the rotation of the crystal
orientation, lattice parameter, and strain varying between regions
(cf. Figs. 1e–1g). Over the imaged area, approximately half of the
FeRh material is in a disordered phase.

In addition to the structural analysis of the type discussed
above, the ability to inspect the 4D dataset in this manner is par-
ticularly useful in magnetic imaging, where the source, either
magnetic or crystalline, of apparent beam-shifts can be interro-
gated by navigating the 4D dataset using a color vector magnitude
image produced from the analysis [examples of vector magnitude
plots of this type may be seen in Paterson et al. (2019)]. This type
of beam-shift processing will be discussed further in Part III.

More configurable plotting of data from our HDF5 files (Nord
et al., 2020), such as plotting along different axes, may be achieved
by opening the EMD formatted (EMD authors, 2019) datasets
embedded in the HDF5 file in HyperSpy (de la Peña et al.,
2018). This can be performed with the fpd_to_hyperspy function
of the fpd.fpd_file module or by loading them directly through
the pixStem or HyperSpy libraries. Furthermore, the datasets
may also be loaded into any custom analysis or visualization
code written in Python using the fpd_to_tuple function which
relies on the h5py library (Collette, 2013), or indeed any of the
many other languages supporting the HDF format (The HDF
Group, 1997–2018).

Virtual Detector Images

Traditional STEM detectors are routinely used to generate image
contrast by collecting the signal from electrons scattered through
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different angles by the sample under study, from bright-field (BF;
LeBeau et al., 2009; MacLaren et al., 2013), through annular
bright-field (ABF; Hammel & Rose, 1995; Findlay et al., 2010)
to ADF, and high-angle annular dark-field (HAADF;
Pennycook & Jesson, 1991; Hartel et al., 1996). However, these
detectors offer a limited range of often mutually exclusive fixed
collection angles at any given camera length. By using a pixelated
detector, the range of scattering angles is resolved and this pro-
vides great flexibility in the both the number and range of collec-
tion angles from which images may be constructed by applying
“virtual” apertures to the dataset in software (Rauch & Veron,
2005; Rauch & Véron, 2014). In addition to allowing greater
insight into the sample properties, pixelated detectors have the
potential benefit of being more dose efficient than segmented
diode or photomultiplier tube detectors (Shibata et al., 2010) by
avoiding repeated scans when multiple collection angles are
required, and also do not require the careful calibration (Jones
et al., 2018) that traditional STEM detectors do in order to min-
imize errors in quantitative imaging. Furthermore, when there are

no de-scan coils in a system, or where they are not perfectly set
up, movement of the probe position on the detector will occur;
an effect that is especially apparent in large area scans. This can
be corrected for in software when using a pixelated detector,
whereas with fixed geometry detectors, a range of collection
angles depending on the probe position would be sampled, poten-
tially giving rise to nonintuitive or nonquantitatively-interpretable
contrast in the resultant image.

In many cases, this effect is not a significant one, but when it is,
the data may be corrected during HDF5 file creation (Nord et al.,
2020) or the data may be corrected afterwards. Multiple methods
may be used to determine the direct beam position. Thresholded
center of mass and edge-filtered phase correlation techniques,
such as those implemented in the fpd.fpd_processing module,
can be used in many cases and will be discussed in detail in
Part III with regards to differential phase contrast imaging.
Canny edge detection combined with Hough transforms may
also be used, but this tends to be much slower than other methods
due to the increased computational requirements of the technique.

Fig. 1. Example of the DataBrowser class showing (a) a user-supplied navigation image and (b) the diffraction pattern from the scan point marked by the white
square at the bottom of (a). The dataset is from an FeRh sample (Temple et al., 2018a, 2018b) and the navigation image is the diffraction pattern lattice parameter
in pixels along the material layer growth direction, obtained by analyzing the data using the methodology detailed in the section “Lattice analysis”. This direction is
marked by the vertical arrow in (a). The equivalent axis is marked by a similar arrow in (b) and is rotated with respect to the scan axes. The black region in (a) is
from electron and ion beam deposited platinum and has been masked. All other annotations in (a) have been added to the GUI screenshots to mark the locations
of the diffraction patterns shown in panels (c–j). Details of the acquisition from the referenced publications are a scan size of 256 × 256 points, a probe step size of
0.93 nm, and a semi-convergence angle <1 mrad.
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This approach, implemented in the find_circ_centre function of
the same module, is demonstrated in the section “Direct beam
characterization” along with an edge-fitting technique.

Accurate knowledge of the center position is clearly important
when using it as basis for making radial profiles in order to pre-
vent mixing of scattering angles and, thus, maintain angular res-
olution. All of the aforementioned methods for center finding
work well for diffraction patterns acquired with a low convergence
angle beam in cases where there is no overlap between the diffrac-
tion discs. When there is a large degree of overlap between the
discs, such as in data acquired with a high convergence angle
beam, the task becomes more difficult (examples of these sorts
of images are shown in Figures 4a–4c, discussed later). If the sam-
ple is on-axis, the aforementioned methods should work well.
However, a small misalignment of the zone-axis is a common
issue in crystalline TEM samples, due to the sample thinning pro-
cess imparting a slight bend in the samples. This can cause the
intensity in the center part of the diffraction pattern to shift,
resulting in a misidentification of the center position of the direct
beam. For some cases, edge detection followed by Hough trans-
forms can work surprisingly well, as can thresholded center of
mass, if the threshold is chosen carefully. Another way of mitigat-
ing this is scanning a smaller area; this limits the misalignment
(and also de-scan), but is not always desirable when large fields
of view are required. A potential solution to this issue in particu-
larly difficult samples is to acquire a reference dataset in vacuum
with exactly the same experimental settings, except for the sample
stage position. Here, only the direct beam is visible, so calculating
the center position is trivial, but care must be taken to ensure that
the sample does not deflect the beam due to electromagnetic
fields, electrostatic charging, or the sample being slightly tapered.
Another possibility is having reference areas within the dataset,
for which the center position can be interpolated for the whole
field of view. Aspects of these issues, in particular, de-scan correc-
tion, will be covered more thoroughly in Part III.

Some idea about the characteristic scattering angles of a sam-
ple may be obtained from direct inspection of a single or averaged
diffraction pattern, or by calculating the radial profiles of their
intensities. Depending on the sample properties, this process
may be improved by examining other measures of contrast,
such as the variance or maximum values across the scan axes.
For the biological sample used here, there is little difference in
the apparent contrast from these measures and, as we will show,
it is not always simple to determine which scattering angles
yield the best contrast in virtual images. As an example, in
Figure 2, we plot the radial distribution of scattering intensity
from a microtome section of a mouse liver. The inset shows the
diffraction pattern summed over all scan positions (this is the
same as what is sometimes referred to as a position averaged con-
vergent beam electron diffraction (PACBED) pattern, without
dividing by the number of scan points) that was pre-calculated
during conversion of the 4D data to our HDF5 format (Nord
et al., 2020). We will stay in pixels for the simplicity of the discus-
sion, but the images may be calibrated in scattering angle or,
equivalently, reciprocal space units (such as k or Q). Marked by
arrows in the diffraction pattern are two rings of different widths;
these are more easily visible at around pixels 63 and 102 in the
mean intensity profile (also arrowed). The drop in intensity
beyond in the corners of the image marks the aberration-limited
field of view of the probe-corrected JEOL ARM200cF STEM
(McVitie et al., 2015) in the objective-off mode that was used
to record the data.

The scattering angles marked by the peaks in Figure 2 may be
used to define one or more virtual apertures. These are simply
arrays with values between 0 and 1, corresponding to regions out-
side and inside the collection angles of interest, respectively, and
are applied to the whole dataset by multiplication and then sum-
ming the total counts for each mask. Methods for doing this are
provided in the synthetic_aperture and synthetic_images func-
tions from the fpd.fpd_processing module, and by the virtua-
l_annular_dark_field method of pixStem’s PixelatedSTEM
class. The resulting virtual detector images allow the contribu-
tions to different scattering angles to be spatially resolved. This
approach also works well when using arbitrary, nonannular
masks, such as when selecting one or more diffraction spots,
where the contrast produced may be used to determine the loca-
tion and extent of different phases or lattice defects (Gammer
et al., 2015).

With out-of-core processing from compressed HDF5 files,
these calculations may take several seconds, depending on the
scan size, the computer hardware, and the data chunking. This
approach is thus well suited to generating images from known col-
lection angles. While inspection of the diffraction pattern is suit-
able for identifying the relevant angles in simple cases, it is far
more useful to gain live feedback on the changes in spatial con-
trast from alteration of the virtual detector collection angles. To
enable this, the fpd.fpd_processing module also provides the
VirtualAnnularImages class. This class maps the radial_profile
function, discussed above, across all scan points using the map_i-
mage_function function of the same module, and then generates
weighted cumulative sums of the radial profiles that may be
looked-up at a later point to form the virtual detector image
from any given detector geometry. This intermediate dataset is
typically ∼40–50 times smaller than the 4D one and is currently
stored within the class since it can easily fit in memory. For the
data in Figure 2, the size is reduced from 8.6 GB to 195MB.
The significantly smaller size of 3D datasets also makes them
much more amenable to multivariate analyses such as non-
negative matrix factorization (NMF), independent component
analysis (ICA), and principal component analysis (PCA).

Fig. 2. Radial distribution of scattering intensity from the summed diffraction pat-
tern, shown in the inset, of a 256 × 256 probe position scan of a mouse liver micro-
tome section, calculated using the fpd.fpd_processing.radial_profile function. The
pixel spacing was 1.2 nm, the exposure was 4 ms, the semi-convergence angle was
0.436 mrad, the camera length was 180 cm, and the condenser aperture was 10
μm. The arrows mark the location of peaks of intensity.
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Once instantiated, virtual images with any possible continuous
set of scattering angles may be generated near-instantaneously
using the annular_slice method of the class. This calculation time
is on the order of milliseconds and, unlike the more flexible synthe-
tic_images approach, the image calculation time does not change
with aperture size. A current limitation of this efficiency saving is
that center position is taken to be constant across the scan; however,
it is not a fundamental one and it could be removed in a future ver-
sion. As was noted above, in many cases, this limitation is not an
issue and, when it is, techniques are available to align the data.

Live feedback on the influence of the virtual detector angles on
image contrast may be obtained using the plot method of the
VirtualAnnularImages class. Figure 3 shows the two plots created
by the plot method (Figs. 3a, 3b) applied to the same data as was
used in Figure 2, and images created from the dataset (Figs. 3c–
3i). The two vertical features are endoplasmic reticula, each stud-
ded with ribosomes. Figure 3a shows a navigation window con-
taining the virtual detector controls, while Figure 3b shows the
live image produced by the virtual detector. The navigation win-
dow contains a user-supplied navigation image (in this case, a
summed diffraction pattern), a measure of the real-space image

contrast as a function of the scattering angle, and controls for
the starting, ending and center radii for the virtual detector.
The detector position and extent are indicated by the red lines
in the two plots, and the radii may be changed via the horizontal
slider controls with instant updates to the virtual detector image.
The real-space image contrast is measured here by the ratio of the
variance in the virtual detector image, σ2, to the image mean, N.
For a flat image with Poissonian noise, σ2 is purely from the noise
and is equal to N, so the contrast measure, σ2/N, would give a
value of 1. For nonflat images with the same noise properties,
contrast values greater than 1 indicate image signal. Additional
noise in the source images will increase the base level and alter
the linearity of the contrast parameter of the virtual detector
images but it should remain monotonic with image signal.
Similar normalized variance measures are routinely applied in
fluctuation electron microscopy (Voyles & Muller, 2002), where
the variation is calculated across the azimuth at each radii (scat-
tering angle) in each single image (Hart et al., 2016). The contrast
measure used here is different; it is for the image produced from
each single pixel width detector, calculated across all radii near
instantaneously using the class itself.

Fig. 3. (a,b) Example of the VirtualAnnularImages class, allowing interactive plotting of virtual annular detector images with instantaneous updates. The sample
data are the same as that used for Figure 2, a scan of a mouse liver microtome section showing endoplasmic reticula studded with ribosomes. The partial height
colored windows and annotations in (a) have been added to the regular display to mark the locations of the detector geometries used to generate the virtual
aperture images in (c–i), from BF to DF. The arrows in (a) show the location of the peaks in the radial distribution presented in Figure 2. The intensity ranges
in (c–i) are set to 0.2–99.8% of the range for each panel, and the color bars in each panel show the counts in thousands.
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The peaks in the scattering angle dependence plot show which
angles produce strong contrast, and are a useful aid in determin-
ing the range of angles on which to focus. In the case of the bio-
logical sample shown, several peaks are visible, but none of them
align with those seen in the radial distribution of Figure 2 (these
are also marked by red arrows in Fig. 3a), contrary to what one
would expect if the local peaks in diffraction intensity produce
images with more contrast. Figures 3c–3i show the virtual images
produced at the geometries indicated in the annotations, from BF
to ADF, at locations between and at the peaks of maximum con-
trast. The geometries are also indicated in Figure 3a by the partial
height windows matching the order of the images and their col-
ored outlines.

Within the DF, there are three peaks of the contrast parameter,
at approximately 46, 79, and 126 pixels (Figs. 3e, 3g, 3i), and these
are where the images do indeed show the highest contrast and
range of spatial frequencies, allowing the ribosomes to be better
resolved, with the best contrast produced from the highest of
these scattering angles. To estimate the SNR of each individual
image, we apply to them the single image autocorrelation method
(Thong et al., 2001) implemented in the snr_single_image func-
tion of the fpd.utils module. This approach exploits the fact that
noise is spatially uncorrelated, whereas the signal is correlated,
allowing extrapolation of the autocorrelation function to zero
image displacement to be used to estimate the noise-free signal
power and, thus, the noise power. The optimum extrapolation
method depends of the properties of the image and our imple-
mentation supports a number of methods. For the data in
Figure 3, a linear extrapolation method is adequate and gives

values of 20–37 for the first six images (Figs. 3c–3h), and 71
for the highest scattering angle image (Fig. 3i), confirming that
it does indeed have a much higher SNR. These SNR values are
the power values with the signal magnitudes taken from the
changes in the images, as defined in the original method, and
thus give measures of the useful contrast.

For the biological sample used here, there is very little Bragg
scattering and the ADF contrast changes in the angular range
acquired of up to ∼15 mrad is likely to be due to incoherent
Rutherford scattering from light elements. The rings visible in
the diffraction pattern and its radial distribution are equivalent
to d-spacings of approximately 0.35 and 0.22 nm and may be
indicative of characteristic bond lengths or periodicities in mole-
cules but, as we have shown, do not always yield images of the
greatest useful contrast.

The ability to interrogate and reconstruct STEM images show-
ing different contrast from a single scan, post-acquisition, as out-
lined above, makes the technique of virtual detectors a very
powerful one. In addition, unlike the similar hollow cone tech-
nique (Krakow & Howland, 1976; Tsai et al., 2016), only one
scan is required to generate many types of contrast, making it
dose efficient, which is especially useful in beam-sensitive
materials.

While we demonstrate the utility of applying virtual detectors
with data from a biological sample, the technique is useful in
many other applications, where different navigation images may
be more appropriate. For example, in polycrystalline samples,
the navigation image may be a diffraction pattern from a specific
grain, identified from navigating the dataset with the

Fig. 4. Processing of HOLZ diffraction rings from a La0.7Sr0.3MnO3 (LSMO) and LaFeO3 (LFO) bilayer film grown on SrTiO3 along the [111] direction. The data were
acquired on a probe corrected JEOL ARM200cF, with an acceleration voltage of 200 kV, a convergence semi-angle of 20.4 mrad, a scan step size of 0.37 nm and with
a total scan size of 64 × 64 points. STEM diffraction pattern of the (a) STO and (b) LFO, plotted on a logarithmic scale, with the electron beam parallel to the [110]
direction. LaFeO3 has an extra inner HOLZ ring due to doubling of the unit cell (arrowed). (c) Schematic of the processing, first using thresholded center of mass to
find the center of the pattern, then radial averaging across the azimuth around this point. (d) Radial distribution of (a) and (b). The arrow shows the inner HOLZ
peak from (b). The insets to (d) show the region around the HOLZ peak, with a power law fitted to the background. (e) Region around the HOLZ peak, with the
power law from (d) subtracted, showing the background is accurately removed, and with a 1D Gaussian profile fitted to the data. Numbers showing the center
position and sigma of the Gaussian. (f) Result of the processing for the bilayer system, showing the bright LSMO and LFO regions in the virtual ADF (106–163
mrad) image, and bright LFO region in the HOLZ contrast.
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DataBrowser class (see Fig. 1) or a similar method. It is then
straightforward to set annular apertures that select specific
spots, thereby identifying the extent of the grain of interest and
the locations of similar grains. More advanced analysis for
out-of-plane and in-plane structural analysis is discussed next,
in the sections “Higher-order Laue zone analysis” and “Lattice
analysis”, respectively.

Higher-Order Laue Zone Analysis

The intersection of the Ewald sphere with parallel reciprocal
planes of a crystal gives rise to concentric circles of reciprocal
space where the Bragg condition is met, leading to constructive
interference in the diffraction pattern. The central region of the
diffraction pattern is formed by the crystal structure perpendicular
to the electron beam and is called the zeroth-order Laue zone
(ZOLZ). Diffraction spots in HOLZ correspond to intersection
of Ewald’s sphere with parallel planes of reciprocal lattice points
offset along the electron trajectory (formally the electron wavevec-
tor in reciprocal space) (Emslie, 1934; Jones et al., 1977). Thus, for
an on-axis diffraction pattern, periodicity parallel to the beam
results in rings of intensity in the diffraction pattern, as shown
in Figures 4a and 4b. The radius, r, of the ring in reciprocal
space for the first-order Laue zone is given by:

r = 2 sin−1

����
l

2dz

√( )
, (1)

where λ is the wavelength of the electron and dz is the lattice
period parallel to the electron beam. An equivalent relation was
originally derived by Emslie (1934) in a different form that incor-
porated the camera length. Similar relations may be derived for
higher order Laue zone rings. It has long been recognized that
high-angle coherently scattered intensity concentrated in HOLZ
rings may affect the contrast in HAADF images (Spence et al.,
1989).

Because of the dependence of the radius on the out-of-plane
structure, the presence of HOLZ rings can be used to obtain infor-
mation about the structure parallel to the electron beam: the
smaller the radius of the Laue zone ring, the larger is the distance
between atomic planes parallel to the electron beam. This was
originally proposed as a method for studying altered periodicity
in dislocation core structures (Spence & Koch, 2001) and was
later successfully used to determine the periodicity along the
beam direction in sodium cobaltite using a simple thin annular
detector setup (Huang et al., 2010).

Alternative approaches to obtaining such information from
crystals are to tilt the sample to high angles, or take multiple spec-
imens containing the same kind of feature cut at different angles
and reconstruct using either diffraction tomography (Kolb et al.,
2007; Mugnaioli et al., 2009) or atomic resolution discrete tomog-
raphy (MacLaren & Richter, 2009; Van Aert et al., 2011;
MacLaren et al., 2013). These approaches are not applicable to
all samples (e.g., they could not be used on a dislocation core).
They are also time-consuming and either use statistical recon-
struction from multiple specimens or multiple sample areas
(and so assume that the different areas imaged all contain exactly
the same structure, just imaged along different directions), or, in
the case of the tomographic approach, use a large radiation dose
on one area. Moreover, using a thin annular detector is inflexible
and needs camera length tuning to get this to work, thus using a

fast pixelated detector and detecting and processing the HOLZ
data after acquisition is far more flexible for a variety of systems.

One example of a class of materials with structural distortions
that cause a change in the size of the unit cell is perovskite oxides,
which often exhibit a doubling of the unit cell as a result of octa-
hedral tilting (Glazer, 1972). These distortions are important to
characterize, as they can heavily influence functional properties
such as ferromagnetism and ferroelectricity. This is especially
important in thin film systems, as much of the interesting physics
resides in the detailed crystallographic structure of these films.
One such example is La0.7Sr0.3MnO3 (LSMO) and LaFeO3

(LFO) bilayer films grown on SrTiO3 (STO) (Hallsteinsen et al.,
2016; Nord et al., 2019). While previous work has been performed
using ABF or BF imaging in STEM (Aso et al., 2013; Wang et al.,
2016; Kim et al., 2017; Nord et al., 2017) to characterize the
in-plane oxygen atom movements associated with the octahedral
tilting, it is also possible that there are atom movements resulting
in a periodicity change along the beam direction. Specifically,
while researchers in perovskites and related oxides often talk
about octahedral tilting, this rarely happens in isolation and is
usually associated with the modulation of cation positions, a fea-
ture that is likely to result in a significant diffraction signal.

Figure 4a shows the STEM diffraction pattern of the nondis-
torted cubic STO substrate imaged along the [110] direction,
which has one visible Laue zone ring. The diffraction pattern of
the LFO film is shown in Figure 4b, which is noncubic due to
structural distortions, and is similar to the LSMO pattern except
for having an extra Laue zone ring at lower scattering angles
(arrowed). The intensity of this additional ring is proportional
to the amount of distortion and can, for example, be used to char-
acterize the strength of the atomic movements as a function of
position in thin film structures (Nord et al., 2019) as described
below. Additionally, a fine structure can appear in the HOLZ
rings and they can split into more than one ring, which may
reveal additional subtle details about the structure (Peng &
Gjønnes, 1989), and this can be recorded in scanned diffraction
datasets at a suitable camera length.

The first step in the processing (Fig. 4c) is finding the center
position of the diffraction pattern for each probe position. This
is necessary due to the fact that the shift and the tilt of the elec-
tron beam is not always perfectly separated in the scanning coils,
especially for larger scan areas, and there is no de-scan coil setup
in the microscope used in this work, resulting in the diffraction
pattern center moving as a function of beam position. As dis-
cussed in the section “Virtual detector images”, finding the center
position can be nontrival for high convergence angle diffraction
patterns like we have here. However, for these samples, the
zone-axis remained sufficiently aligned across the scan area for
it to be possible to find accurate center positions using a thresh-
olded and masked center of mass procedure. The mask removes
the higher scattering angles, so only the region containing the
BF disc is included. Then, the thresholding sets all values below
the chosen threshold to zero, and all above it to one. The center
of mass calculation is done on this masked and thresholded
image, resulting in the center position of the diffraction pattern.
For more difficult sample data, acquiring a reference dataset in
vacuum and performing the same center of mass calculation on
this dataset can often provide accurate center positions. Some
alternatives techniques for center finding are demonstrated in
the section “Direct beam characterization”.

Next, integration is performed along the azimuth for each
probe position to generate radial dependencies, as previously
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discussed in the section “Virtual detector images”, using the
aforementioned center positions of the diffraction patterns. This
reduces the 4D dataset to 3D: 2 probe dimensions and 1 dimen-
sion with intensity as a function of scattering angle, as shown in
Figure 4d. By removing one dimension, the data size is reduced by
a factor of around the number of pixels on the longest axis of the
detector (256, in our case), making it much more manageable and
easier to fit into the computer memory. This radial averaging is
also useful for data exploration of large datasets like this, due to
the much smaller data size, as demonstrated in the section
“Virtual detector images”. One complication is distortions caused
by the projection system, leading to features which should be
round becoming elliptical. When doing the radial averaging,
this distortion causes a broadening of the HOLZ peak (Figs. 4d,
4e). However, for sufficiently small distortions, this does not
heavily affect the total intensity in the peak. Ideally, this should
be corrected for by calculating the diffraction distortions from a
reference dataset. However, as the focus of this analysis was the
intensity of the peak, no such corrections were performed here.

After the radial distribution has been calculated, the HOLZ
ring is reduced to a HOLZ peak shown by the arrow in
Figure 4d. To extract the intensity from only the peak, a power
law is simultaneously fitted to both the regions before and after
the peak. The fits are shown in the insets in Figure 4d, both for
the STO which does not have the extra HOLZ peak, and for
LFO which has an extra HOLZ peak at lower scattering angles.
While a power law is not the optimal function to fit to this
type of background over long distances, it works well for extract-
ing the HOLZ peaks over a relatively short range of scattering
angles, as shown by the level background of the corrected profiles
in Figure 4e.

After background correction, the profiles may be analyzed by
simply summing the intensity in the HOLZ peak to give a map
of the level of structural distortion, as shown in Figure 4f.
Pairing the HOLZ processing with virtual ADF generated from
the same radially averaged data, one can see that the extra
HOLZ ring is indeed present only in the LFO layer. More infor-
mation can also be extracted by fitting a 1D Gaussian to the peak,
as shown in Figure 4e, giving information about changes in the
scattering angle (center position) and variation in scattering
angle (standard deviation). Further information on the material
aspects from a detailed analysis of this system are published else-
where (Nord et al., 2019). This type of analysis is best suited for
monocrystalline materials, especially epitaxial thin films and het-
erostructures, or polycrystalline materials with large grains (e.g.,
domain-structured functional oxides with different orientations
of the principal axes of the cell), as the technique requires the
crystal to be imaged along a zone axis. While it may be performed
at atomic resolution, this is not necessary, and this technique has
the advantage that it yields information about the modulation of
atomic positions along a column without requiring atomic resolu-
tion, as demonstrated in previous analyses of this effect
(Borisevich et al., 2010; Azough et al., 2016).

Lattice Analysis

Analyzing the crystal structure of materials has been a part of
electron microscopy since its inception. A number of techniques
in TEM can be used for atomic resolution imaging, most fre-
quently phase contrast TEM (high-resolution TEM, HRTEM)
and HAADF STEM. Nevertheless, diffraction-based techniques
have been the main method for structure solution or analysis

throughout the history of electron microscopy, notwithstanding
the advantages of the image-based techniques for giving local
crystallographic information, especially where this varies with
position such as in thin films, heterostructures, and around
defects and precipitates.

Selected area electron diffraction (SAED) can localize the sam-
ple region from which data are collected to ∼100s nm, much
higher than the nanometer or even Ångström length scales that
imaging with high-energy electrons can potentially allow.
Recently, however, scanned diffraction techniques have been on
the increase, especially with the rise of faster electronic detectors
(initially CCD/scintillator arrangements, but more recently direct
electron detectors). Moreover, the development of SPED (Vincent
& Midgley, 1994) has allowed collection of spatially resolved dif-
fraction data down to areas of 2 nm or less with very high preci-
sion of the reciprocal lattice parameters.

Convergent beam techniques provide the highest spatial reso-
lution by imaging with a probe formed by a large diffraction-
limiting aperture, and it is these techniques that have seen the
greatest application in materials science in a number of areas,
including grain size and orientation determination, molecular
structure solutions, and material strain measurement. Strain is a
particularly important property that influences the functionality
of a wide range of materials, with perhaps the most notable
class of materials being semiconductor devices (Cooper et al.,
2016; Bashir et al., 2019).

A number of techniques for strain measurements have been
developed (Béché et al., 2013), including dark-field electron
holography (DFEH; Hÿtch et al., 2008; Cooper et al., 2009;
Béché et al., 2011), NBED (Béché et al., 2009), SPED (also
referred to as nanobeam precession electron diffraction (NPED);
Rouvière et al., 2013; Midgley & Eggeman, 2015), scanning
moiré fringe (SMF) analysis (Su & Zhu, 2010; Naden et al.,
2018), HRTEM geometrical phase analysis (GPA; Hÿtch et al.,
1998), and atomic column spacing displacement characterization
(Nord et al., 2017). Of these, the best fractional strain precision
reported is with SPED at 2 × 10−4 (Rouvière et al., 2013); however,
very recent work with patterned probes (Guzzinati et al., 2019;
Zeltmann et al., 2020) have achieved precisions approaching the
same value.

Analysis of such 2D lattice images can be performed with a
range of packages, including Atomap, optimized for atomic reso-
lution STEM imaging (Nord et al., 2017); CrysTBox for HRTEM,
SAED, and convergent beam electron diffraction (CBED) imaging
(Klinger, 2017); library-based approaches to crystal phase and ori-
entation identification (Rauch et al., 2010); and ones recently
developed specifically for 4D-STEM (Savitzky et al., 2019;
Zeltmann et al., 2020). With the rise in the use of fast pixelated
detectors in TEM and STEM and the consequent ability to record
large data volumes in short times, the need arises for the ability to
analyze large numbers of diffraction patterns accurately and auto-
matically. These include images with point-like lattice vertices,
created by imaging under Fraunhofer conditions, and in CBED
imaging, where the lattice vertices are discs. In the following sec-
tions, we report simple processing methodologies that are applica-
ble to general lattice analysis and, in particular, to diffraction
patterns produced by techniques, including CTEM, CBED,
NBED, and SPED.

To demonstrate our technique, we apply it to a commercially
available crystalline MgO substrate imaged in a JEOL
ARM200cF TEM operated at 200 kV in SPED mode using a cus-
tom (MacLaren et al., 2020) DigiSTAR precession system from
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NanoMEGAS. MgO is a widely studied material (Yang et al.,
2006) that is used in magnetic tunnel junctions (Parkin et al.,
2004; Zhu & Park, 2006) and is of interest as a room temperature
ferromagnetic insulator when strained (Jin et al., 2015).
Unstrained MgO has an NaCl-type cubic crystal structure
which produces a diffraction pattern with a square projection of
the reciprocal space lattice when viewed along the 〈100〉 zone
axes. The sample was prepared by application of a standard
focused ion beam milling procedure (Schaffer et al., 2012) to a
multilayered structure. Electron energy-loss spectroscopy mea-
surements in a probe-corrected STEM mode with convergence
and collection semi-angles of 29 and 36 mrad, respectively,
using a GIF Gatan QuantumER 965 spectrometer, showed that
the ratio of thickness, t, to inelastic mean free path, λ, (t/λ) of
the sample was 0.59. Using an MgO density of 3.58 g/cm2

(Egerton, 2011), λ is 137 nm, giving the thickness of our MgO
sample as 81 nm, sufficiently thick for there to be significant
dynamical effects from multiple elastic scattering.

The standard precession system was modified (MacLaren et al.,
2020) to employ a Medipix3 detector instead of a fast video
recording of the fluorescent screen using an external CCD cam-
era. This modification enables improved imaging fidelity and effi-
ciency through the higher detective quantum efficiency and the
noise-free readout properties of the direct electron counting
detector. Compared to static probes, precessing the electron
beam reduces dynamical effects by incoherently averaging over
a range of diffraction conditions to give a pseudo-kinematical dif-
fraction pattern, resulting in more uniform diffraction pattern
discs (Midgley & Eggeman, 2015).

In the experiment, test data was acquired by imaging MgO
along the [100] axis under the following conditions: the beam
was precessed at an angle of 1.5° over a 10 ms exposure; the
microscope was operated in TEM-L mode, with a spot size of 5;
the condenser aperture was 20 μm; the semi-convergence angle
was determined from the MgO lattice to be 1.1 mrad; the camera
length was 100 cm; and the scan pixel size was 2.2 nm. No explo-
ration of the acquisition parameter space or subsequent optimiza-
tion of the parameters was performed.

Correcting for the overestimation of the electron counts
recorded by the Medipix3 by a factor of 4 due to scattering of
200 kV primary electrons between pixels [see McMullan et al.
(2007) for a discussion], we estimate the dose to be approximately
4.5 × 105 e−/nm2. While this is above the low-dose regime needed
for most soft or beam-sensitive materials of 102–105 e−/nm2

(Yakovlev & Libera, 2008), there is great scope to reduce the
dose through reduction in beam current or, as pointed out by
MacLaren et al. (2020), by increasing the precession rate in
other microscopes that support it.

To enable the SPED datasets to be used more easily, the top-
spin_app5_to_hdf5 function of the fpd.fpd_io module allows
conversion of data originally recorded in the flat native
NanoMEGAS TopSpin app5 format to the multidimensional
HDF5 format outlined in Part I (Nord et al., 2020).
Alternatively, the Merlin system (Plackett et al., 2013) through
which the Medipix3 data are acquired can be programmed to out-
put the data directly to a raw file, while the acquisition is being
performed and controlled by the TopSpin software. These data-
sets can be processed by the fpd and pixStem libraries in a num-
ber of ways, including the previously covered virtual detector
imaging and Laue zone analyses, and differential phase contrast
(DPC) analyses for field mapping, which will be covered in Part
III. Indeed, the benefits of SPED brought about by averaging

over a range of diffraction conditions has great potential to also
improve DPC imaging, as others have very recently also noted
and investigated (Mawson et al., 2020).

Machine learning (ML) approaches to structure analysis have
recently been applied to SPED data (Martineau et al., 2019). In
contrast, the methodology described below is a “bottom up”
one that optimizes precision without knowledge of the context
of each image. The processing methodology is modular in design,
allowing modification or addition of processing steps, as needed
for the specific application and, indeed, could be complemented
by ML approaches. Below, we outline the main steps without
going into the many options provided to tailor the analysis to
the sample data and, subsequently, assess the precision of the
technique applied to this dataset.

The general process can be divided into the four main stages of
(i) direct beam detection and characterization, (ii) feature extrac-
tion and filtering, (iii) lattice parameter estimation, and (iv) syn-
thetic lattice inlier detection and fitting. These steps are outlined
in Figures 5–8, which include slightly modified versions of the
plots optionally produced by the relevant analysis functions
applied to the first diffraction pattern of the MgO SPED scan.
Each figure will be discussed in turn; the final results of the anal-
ysis are shown in Figure 9 and will be discussed later.

Direct Beam Characterization

The first stage in the process is to find the direct beam position
and size. Figure 5a shows three images produced in this analysis.
The first shows the original image, the second shows the image
processed with Canny edge detection, and the third shows the
results of a circular Hough transform (Gouillart et al., 2016),
where the red circle represents the position and size of the
detected disc. This transform generates a 2D Hough space for
each radius, with values proportional to the correlation of the
edge image and the nominal circle centered at each possible coor-
dinate (the dimensions of the space). The center of the optimized
circle is obtained with sub-pixel resolution by fitting 2D
Gaussians to each peak in Hough space, or the images may be
upscaled. If the lattice vertices are point-like, then the size of
the circle represents an effective radius. If the vertices are discs,
such as those produced by a convergent beam (or are of any
other shape), then a template of the beam image may optionally
be formed for use in edge-filtered cross-correlation in order to
estimate the position of all vertices in the next steps. As several
others have noted, procedures of this type can improve the accu-
racy of the image registration results by relying more on feature
shapes than image intensities (Schaffer et al., 2004; Krajnak
et al., 2016; Pekin et al., 2017). An important parameter in the
analysis is the disc edge profile, and this can be estimated by con-
verting the central beam image to polar coordinates, as shown in
the inset in Figure 5b, and then fitting error functions to the edge
region, as shown in the main panel. Through this process, the disc
diameter and a new center position are also obtained from fitting
to the angle dependence of the extracted error curve center posi-
tions. Finally, a filtered reference image may be created from the
central beam image, using the extracted disc edge width, as shown
in Figure 5c. This step further reduces the influence of intensity
diffracted from the BF disc, which will not be uniform across
all scan points and within all diffraction discs. These nonunifor-
mities in intensity are most easily visible as texture in the right-
most image in Figure 5c, which shows the difference between
the real disc and the uniform processed one.
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This first stage need only be done once for each dataset, unless
the direct beam moves a significant distance during the scan. If
this is the case, the direct beam position may be estimated at
each scan position using the technique described above, by center
of mass as discussed in the section “Higher-order Laue zone anal-
ysis”, or by any other means.

Vertex Identification

The second stage in the analysis is to find the position and size of
all the potential lattice vertices and then, optionally, to filter these
so that only those with inversion symmetry are retained. The
results of one way of processing the images to extract potential lat-
tice points are shown in Figure 6. The first step is to perform
Laplacian of Gaussian (LoG) blob detection with a supplied
radius range, based on the direct beam radius (or effective radius

for Fraunhofer imaging conditions). The detected features are
shown in Figure 6a by the red circles. If the lattice vertices are
point-like, 2D Gaussians may optionally be fitted to extract sub-
pixel peak locations. For nonpoint-like or disc-shaped vertices,
pixel-resolution edge-filtered cross-correlation (CC) can be used
with the template image of the direct beam produced in the
first stage. This result is shown in Figure 6b, where the CC
peaks, marked by red crosses, indicate the location of maximum
correlation, corresponding to the identified vertex locations. By
the nature of lattices, cross-correlation can give rise to many
false peaks, as is visible in the figure. Therefore, these are filtered
by the LoG data which is in general more reliable but which has a
higher noise level. Specifically, only those points located within
some distance of the LoG vertex coordinates are kept. The
peaks retained in this step are marked by black circles. Also at
this stage, 2D Gaussian functions can be optionally fitted to the

Fig. 5. Lattice analysis stage 1: (a) finding the direct beam, (b) characterization of the disc edge properties, and (c) forming a template using, respectively, the
find_circ_centre, disc_edge_properties, and make_ref_im functions from the fpd.fpd_processing module. The lines in (b) are error functions fitted to the data (sym-
bols) taken from the direct beam image converted to polar coordinates, plotted in the inset. The inset also shows the measured diameter of the disc, D, and the
optimized center coordinates of the extracted edges. The error in the latter is 0.01 pixels.

Fig. 6. Lattice analysis stage 2: extracting features and filtering them by inversion symmetry using the blob_log_detect and friedel_filter functions of the fpd.tem_-
tools module. The red circles in (a) show the blobs detected using LoG applied to a logarithmically scaled image. (b) The results of edge-filtered cross-correlation
with a template image, with red crosses indicating peak locations and black circles those filtered for the next step by the LoG data. Green circles in (c) show the
discs removed by “Friedel” filtering (see main text for details).
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Fig. 7. Lattice analysis stage 3: lattice parameter estimation. (a) Lattice vector combinations in Cartesian (left) and polar (right) coordinates. (b) Lattice angle (left)
and magnitude (right) estimates (only one of the two lattice vector magnitude plots is shown).

Fig. 8. Lattice analysis stage 4: lattice parameter extraction. (a) Analysis data (solid symbols) filtered by synthetic lattice (open symbols) inlier detection and (b) the
lattice optimized through least squares fitting, where the total error between the two lattices (indicated in the annotations) is minimized. The blue symbol in (b)
shows the direct beam location. Outliers would be marked by crosses; however, all data are inliers in this case.
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vertices to extract the peak locations with sub-pixel accuracy, as
was done here. A comparison of the different analysis levels will
be given in the section “Analysis precision”, with reference to
Figure 10.

Next, the data are filtered according to Friedel’s law (Friedel,
1913), removing points that, within some relative and absolute
error, have no equivalent point at the location inverted about
the center coordinate. Most of the potential vertices are retained
in this example, as shown in Figure 6c, with only those at the
edges being removed (shown in green). In this step, the center
coordinate may be updated based on the systematic differences
in positions of the pairs of diffraction spots, which allows small
changes in the position of the direct beam to be accounted for.
In this case, the (cy, cx) value was updated to (129.03, 128.97),
as shown in the figure annotations.

Lattice Estimation

The previous two stages only extract the positions and sizes of
potential lattice vertices and assume nothing of the relationship
between these positions, the lattice properties. In the next two
stages, the lattice properties are estimated and then optimized
from the filtered vertex locations, as shown in Figures 7 and 8,
respectively.

There are many potential ways of estimating lattice parameters
and we discuss two of these. First, we use a simple statistical
approach, as shown in Figure 7. To improve the statistics, all com-
binations of lattice vectors are computed (left of Fig. 7a) and con-
verted into polar coordinates (right of Fig. 7a). Next, a histogram
is generated from the polar data (left of Fig. 7b), with optional 1/
r2 weighting applied to increase the significance of nearer neigh-
bor data, where r is the Euclidean distance. An expected symme-
try of the lattice may be provided at this stage to further improve
the analysis. Two peaks are identified from this histogram,
marked by the red lines, corresponding to two lattice vector
angles. The polar data are then sliced at these angles and a histo-
gram generated (right of Fig. 7b); the equivalent location is
marked by a yellow band in the right-hand panel of Figure 7a.
The histogram is processed using peak detection or Fourier anal-
ysis to extract the lattice magnitudes along these directions, yield-
ing a complete estimate of the lattice parameters.

This simple approach to lattice estimation works best when the
sample is on or near a low-order zone axis, and there is a single
crystallographic phase within the beam diameter. When multiple
lattices are present within a single image, alternative methods to
lattice parameter estimation such as clustering and inlier detection
may prove to be useful, and can easily be incorporated in the pre-
sented processing methodology without modification of the pre-
vious or next steps.

The lattice_from_inlier function of the fpd.tem_tools module
provides an alternative method of lattice estimation that requires
less configuration. This function generates lattices for all combi-
nations of two of each of the first n potential lattice vertex coor-
dinates in distance from the direct beam position, and returns the
lattice parameters with the maximum number of inliers to the
synthetic lattice, as determined by comparison of the Euclidean
distance between matched vertices to a supplied threshold.
When multiple lattices have the same number of inliers, one is
selected by a user-supplied criterion which, by default, is set to
the maximum of the geometrical mean of the lattice parameter
magnitudes. This reduces the chances of integer divisions of the
lattice parameters being found. As a consequence of this

approach, this function typically returns different equivalent lat-
tice parameters across a uniform material. The parameters may
be homogenized using the lattice_resolver function described
below. Compared to the statistical approach used above with ref-
erence to Figure 7, this approach is, in general, more robust
against additional spots being present in the image, less robust
against there being many missing spots, and produces a slightly
less precise but still perfectly usable initial estimate of the lattice.

Lattice Optimization

In the fourth and final step, using an estimate of the lattice mag-
nitudes and angles (generated by any method), a synthetic lattice
is created and data inliers to the model are selected. This synthetic
lattice and experimental data are shown as solid and open sym-
bols in Figure 8a. Next, the lattice is fitted to the inliers using
least squares optimization, resulting in the final lattice shown in
Figure 8b. Constraints and bounds on and between lattice param-
eters can be applied during the fitting process, but none were used
for this test data.

The modular design of the lattice analysis makes it easy to
assess each processing step, allowing optimization of the analysis
parameters, and to customize the processing by inserting addi-
tional steps or removing existing ones. Once the processing con-
ditions are established on a test image or images, the analysis may
be applied to many images in parallel by passing a user created
function to the map_image_function function of the
fpd.fpd_processing module.

The four stages outlined above often result in a single unit cell
per material. However, as mentioned earlier, it is possible for the
particular unit cell returned within a material to change between a
number of equivalent unit cells. To condition the data, as an addi-
tional step, the lattice parameters extracted can be resolved in spe-
cific directions using the lattice_resolver function of the
fpd.tem_tools module. This generates a small synthetic lattice
using the extracted lattice parameters and then identifies the
new lattice vectors by finding those lattice points at angles closest
to user specified values. This is especially useful when mapping
lattice parameters across epitaxial interfaces between differing
materials, where in- and out-of-plane strain may be of particular
interest. Potential alternatives that are likely to meet with success
include clustering and ML approaches applied to the extracted
lattice parameters or parameters derived therefrom. Compared
to applying ML approaches to images directly, applying them
to the extracted data would vastly reduce the size of the data
to be processed (by a factor of several thousands), and also
automatically accounts for any de-scan in the measurement
as the calculated basis vectors are insensitive to the pattern
center position.

MgO Results

Figure 9 shows the results of analyzing the complete MgO SPED
dataset, using a reference image for cross-correlation and applying
sub-pixel peak fitting. A comparison of the different levels of pro-
cessing applied the same data is shown in Figure 10 and will be
discussed in the section “Analysis precision”.

Figures 9a and 9b show the real and reciprocal sum images for
the dataset. The reciprocal space coordinate system is defined in
Figure 9c. The origin is located at the top left corner, the coordi-
nates of the direct beam are (cy, cx), and the lattice parameters are
defined by the magnitudes, a and b, and the angles, α1 and α2.
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The six lattice parameters extracted from the data are shown in
Figures 9d–9f, with the angles between lattice vectors, Δα, and
the ratio of the lattice magnitudes, b/a, shown in Figures 9g
and 9h, respectively.

The mean angle between lattice vectors in the SPED data is
90.86 ± 0.08° (0.09%), and the mean ratio of the lattice vector
magnitudes is 1.007 ± 0.002 (0.16%), making for a slightly skewed
lattice, and is evidence of strain in our multilayer sample. By
comparison, the equivalent lattice vector magnitude ratio for
the nanodiffraction MgO data in Figure 1 from a different sample
and analyzed by the same method was 1.020 ± 0.006 (0.6%).
Although both datasets are influenced by nonuniformities in
the MgO, the difference in the variance of the data will reflect
to some extent the improvements obtainable by precessing the
electron beam.

Care in interpreting the results must be taken in order to rule
out the influence of image distortion (Mahr et al., 2019). This may
be done in a number of ways, including: recording two or more
scans at different sample rotations; recording a reference lattice
against which strain parameters (Rouvière & Sarigiannidou,
2005) can be calculated; or by correcting the lattice vertices by
the application of an affine or other transformation to the vertex
coordinates from a suitable calibration.

The center coordinates approximately describe planes due to
de-scan (as discussed before). However, in samples supporting
magnetic or electric fields or exhibiting mean inner potential
changes, the beam shifts extracted in these parameters can give
useful DPC contrast. Aspects of DPC analysis will be discussed
in Part III of this work.

Analysis Precision

Figure 10 shows how the cumulative addition of edge-filtered
cross-correlation (Fig. 10b) and sub-pixel peak finding
(Fig. 10c) each improve upon the LoG analysis (Fig. 10a). The
third row contains the same data as shown in Figures 9d–9f,
but the color map scale here is maximized for each panel, with
the limits of the ranges shown on each color bar.

The same main features are present in the LoG (first row) data
as are in the third row data, but the noise level is much higher and
there is a degree of digitization, obscuring the more subtle fea-
tures. Edge-filtered cross-correlation gives a large improvement,
with the spread in parameter values generally reduced and the
results are less digitized. This is because the processing technique
reduces the influence of intensity variations within the discs and
because it is inherently more sensitive to the location of the discs.
This will be especially true when the beam is not precessed, such
as in CBED or NBED patterns where nonuniformities in the disc
intensities can be significantly larger. The improvement over the
LoG plus CC results (Fig. 10b) obtained by the addition of
peak fitting, shown in Figure 10c, are mainly in the deep sub-pixel
range, with a reduction in the random noise level.

To estimate the SNR in these analyses, we applied the same
single image autocorrelation power SNR estimation (Thong
et al., 2001) methodology used in the section “Virtual detector
images” to the data shown in Figure 10. Here, a second-order
polynomial extrapolation of the autocorrelation function was
used after de-trending the images with a plane fit, and the signal
level was taken from the known zero rather than using the

Fig. 9. MgO SPED data analysis results. (a) Real and (b) reciprocal space sum images for an 80 × 20 pixel scan (176 × 44 nm, pixel size: 2.2 nm) using a 256 × 256 pixel
Medipix3 detector. The reciprocal space coordinate system is shown in the annotations in (b) and in the schematic in (c). (d–f) Spatially resolved lattice parameters
and (g) lattice angle delta and (h) lattice parameter magnitude ratio histograms and maps.
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variation in the images. The resulting power SNR values for the a
parameters are 64 and 70 dB for the LoG plus CC and LoG plus
CC with sub-pixel peak fitting analyses, respectively (the results
from the other parameters are similar). The pixelation in the
LoG data means we cannot easily extract an accurate SNR esti-
mate for this dataset using this method. However, an estimate
of the SNR may be made using the LoG plus CC with sub-pixel
peak fitting analysis data as a reference, and this yields a value
of 47 dB for the LoG analysis.

The smooth, continuously varying features of our test MgO
data means we cannot interpret the level of precision of our
approach from the standard deviation of the parameters.
However, because we have extracted an estimate of the SNR
ratio, we may use this parameter to estimate the fractional preci-
sion as 1/

�����
SNR

√
. The results give a fractional precision of 3.1 ×

10−4 (0.03%) in the LoG plus CC with sub-pixel peak fitting

analysis which, with an a parameter of 41.5 pixels, corresponds
to a fractional precision of 0.01 pixels of the detector. The frac-
tional precision of the LoG plus CC analysis is about half as
good at 6.6 × 10−4. The theoretical full-width half-maximum
(FWHM) spatial resolution of the Airy probe in our measure-
ments, estimated using the airy_fwhm function of the fpd.tem_-
tools module, is 1.1 nm, which is consistent with direct imaging
of the probe. However, at the precession angle used in the exper-
iment (1.5°) and for our sample thickness (81 nm), the center of
the probe will describe circles of a diameter of 2.1 nm at the sur-
faces of the sample and, thus, the actual spatial resolution of the
measurement will be poorer than that defined by the static probe.
In fact, ignoring the increased weighting of the sampling of the
specimen in its vertical center, the FWHM defined resolution of
the probe will be given by the diameter of the circle described
by the beam. Importantly, if our 2.2 nm scan pixel data were over-
sampled, our precision estimates may be overly optimistic. As a
simple check of this, we repeated the analysis using only every
other pixel, giving an interpixel spacing of 4.4 nm, and found
the SNR values of the LoG plus CC and LoG pluts CC with sub-
pixel peak fitting analyses decreased to 62 and 64 dB, correspond-
ing to precision values of 8.2 × 10−4 (0.08%) and 6.0 × 10−4

(0.06%), respectively.
Using the alternative approach of wavelet-based Gaussian

noise estimation (Donoho & Johnstone, 1994; Gouillart et al.,
2016) yielded very similar fractional precision results to those
from the previous analysis with a larger inter-pixel spacing: 7.9
× 10−4 for the LoG plus CC analysis, and 5.6 × 10−4 for the
LoG plus CC with sub-pixel peak fitting approach, giving cre-
dence to the results. Rebinning the data by a factor of 2 along
each axis before performing the SNR calculations gives precision
values around 4.5 × 10−4 for both methods. The improvement
over using every other pixel is partly due to the increased dose
at the same spatial resolution.

Further work is required to determine the optimum acquisi-
tion parameters for the accuracy of the analysis. For example,
the noise-free readout of the Medipix3 and the relatively low
number pixel count of 256 × 256 for a single die (versus several
1,000 s for a typical CCD detector), may mean that better results
would be obtained by increasing the camera length so that only
the lowest order spots are imaged. Alternatively, different DEDs
with higher pixel counts may be used, or more pixels may be
added to a Medipix3 detector by tiling the detector chips. The
Medipix3 family of detectors are 3-side buttable (Ballabriga
et al., 2013), and thus may be tiled in 2 ×N arrays (Bücker
et al., 2020), with larger pixels at the joints which must be
accounted for. Furthermore, employment of the through-silicon
via feature of the Medipix3 family can allow tiling on all four
sides of the sensor in even larger arrays (Tick & Campbell,
2011; Ponchut et al., 2015) with minimal dead areas for the read-
out circuitry.

At the small level of material distortion found here, the frac-
tional precision of the lattice parameters is the same as that of
the associated strain parameters. Very recent reports of strain
measurements using patterned probes in the literature
(Guzzinati et al., 2019; Zeltmann et al., 2020) approach the best
values reported from standard Airy probes in SPED acquisitions
(Rouvière et al., 2013), but with potential benefits of improved
dose efficiency. The fractional precision of 6 × 10−4 obtained
here with a DED is approximately 3× higher than the value
from the latter (of ≤ 2 × 10−4) with a similar spatial resolution,
but using exposures 100× smaller and a detector with 64× fewer

Fig. 10. Comparison of analysis of the MgO SPED data used in Figure 9 with three
different approaches (in rows) of generating the diffraction disc centers: (a)
Laplacian of Gaussian (LoG), (b) LoG plus cross-correlation (CC), and (c) LoG plus
CC plus sub-pixel peak fitting. The units of the data are the same as in Figure 9, pixels
and degrees. The color bar ranges are matched to the data range of each panel.
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pixels (256 × 256 DED versus a 2k × 2k CCD). Our results corre-
spond to an approximately 3× higher sub-pixel precision. We
cannot compare the beam dose between the two experiments,
but we note that the aperture used in our experiment was 2–4×
the radius of that used in the referenced work which, taking
account of the different exposure times, would give a 25–12.5×
reduction in dose in our experiment with a DED if the emission
currents were the same. With the noise-free readout of the
Medipix3 and the ability to operate in continuous mode, where
every individual electron is counted with no gaps, there is great
scope for further reducing the sample dose in SPED for use
with beam-sensitive materials (MacLaren et al., 2020).

Method Applicability and Efficiency

We demonstrate the flexibility of our simple lattice analysis
method by applying it to the four synthetic lattice images
shown in Figure 11. These images were generated by sub-pixel
Fourier shifting 2D Gaussian spots of peak intensity 1,024 and
include Poissonian noise. The lattices have (a) square, (b) rectan-
gular, (c) hexagonal, and (d) oblique unit cells. These cover four
of the five shapes available in 2D space; the remaining one being
the rhombic lattice which only differs from the oblique one by
having equal lattice vector magnitudes. The extracted parameters
are shown in the insets of Figure 11, with the nominal values in
parentheses. The agreement between the numbers in this some-
what idealized case is less than around 0.006 pixels and 0.006°,
corresponding to an average error of 0.003%, and gives some
idea of the accuracy of the algorithm at this electron dose.
Ultimately, the final noise and precision achievable will depend
on the sample; the imaging conditions, including the dose and
beam shape; the characteristics of the detector and its number
of pixels; and the parameters used in the analysis.

Despite the widely varying lattice size, aspect ratios, and sym-
metries, the same analysis parameters were used to extract the

lattice properties across all four datasets in Figure 11 at the
same time, demonstrating the ability of the approach to character-
ize multiple materials in a dataset without prior knowledge or
constraints on what they are. An example of the application of
this feature is given in the section “Data visualization”, where
multiple phases were identified from experimental nanobeam dif-
fraction data without modification of the analysis parameters.
However, many analysis parameters may be specified to improve
the parameter extraction in real data, including the ability to apply
arbitrary constraints on the lattice parameters, potentially allow-
ing more accurate data extraction for known materials by removal
of unneeded degrees of freedom.

In data with only Poissonian noise, the relative error of the
extracted parameters, sv/�v, will generally follow:

sv

�v
= m���

N
√ , (2)

where N is the total counts and m is a constant that varies with
the analysis method used and the properties of the source data,
such as the intensity distribution within each lattice spot or
disc. To estimate m in our approach, we calculated the ratio of
the standard deviation to the mean of the smaller lattice param-
eter, a of the synthetic lattice in Figure 11d across approximately
1,000 images with different Poisson noise, as a function of the
total dose, N. This data is plotted as red circles in Figure 12 for
the LoG plus sub-pixel peak fitting analysis of each image,
along with a fit to the data of the above equation (black line).
The value of m is 0.018 across the dose range investigated of
273 to 140k counts (see inset for examples of a typical lattice ver-
tex as a function of dose). By comparison, the same accuracy data
for an analysis by fitting a 2D Gaussian function to each of just
two of the lattice vertices is shown as blue crosses and has a
much higher m value of 0.178. The equivalent m value obtained
by reducing N to the counts in 2 of the 21 vertices is 0.039, around
twice that found by using all vertices, showing the benefit of using
all available counts.

This approach of fitting to the complete lattice makes use of
every vertex and all available signal, optimizing the accuracy for
a given dose, as well as extracting more information in the form
of the other lattice parameters. The imperfections in real data

Fig. 11. Four different synthetic lattices and, in the inset text, the results of their anal-
ysis using identical processing parameters. The nominal values are given in parenthe-
ses. All spots were of equal counts before application of Poissonian noise.

Fig. 12. Relative error of the smaller lattice parameter magnitude, a, of the lattice in
Figure 11d as a function of dose. The data were analyzed using LoG feature detection
plus sub-pixel peak fitting, using the full lattice (all points) and the central spot and
one other point (two points). The inset shows example images of every other spot as
a function of dose, on a logarithmic intensity scale.
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will mean that the precision of our approach applied to such data
will most likely be significantly lower than the characteristic val-
ues reported in Figure 12, and will be dependent on the properties
of the sample and the detector, but the benefits of our approach
will remain; specifically, that by using all vertices, the signal is
used optimally and the effect of systematic variations in vertex
properties, such as background variations, will be reduced.

Regardless of the source of the data, once the shape of a lattice
has been characterized, it is then possible to extract additional
information. For diffraction data, this includes strain mapping,
the number and spatial extent of different phases or grains (see
Fig. 1), and the spot intensities for structure factor characteriza-
tion (Midgley & Eggeman, 2015) and structure determination
(Mugnaioli et al., 2009; Clabbers et al., 2017; Bücker et al.,
2020), and for the analysis of noncentrosymmetric crystals.
Intensity mapping may be done by generating a synthetic aperture
based on the extracted lattice parameters and then applying it to
the data, as discussed in the section “Virtual detector images”, or,
for point-like spots, fitting a 2D Gaussian to the peak regions
using the functions provided in the fpd.utils module, which are
also used in the sub-pixel peak finding described above, yielding
details of the peak properties.

Summary

In this work, we discussed the key issues around post-acquisition
analysis of data from fast pixelated detectors and presented soft-
ware libraries to allow efficient data processing and visualization.
We provided examples of their use across a number of applica-
tions in the area of structural characterization, including the tech-
niques of virtual detector imaging for BF and DF imaging, HOLZ
analysis for extraction of structural information along the path of
the beam, and nanobeam and scanning precession electron dif-
fraction for lattice parameter determination and strain analysis.

While the data analysis algorithms and libraries presented are
applicable to data from any detector, the examples provided show
that highly dose efficient active pixel direct electron detectors such
as the Medipix3 perform excellently as universal STEM detectors,
despite their relatively low pixel counts. Indeed, we have demon-
strated a nanoscale lattice parameter mapping in an SPED mode
with a fractional precision ≤6 × 10−4, approaching the best values
reported in the literature. Furthermore, in addition to being of use
as a regular STEM detector, with every electron being recorded
noise-free, there is excellent prospects for the application of the
detector to the characterization of beam-sensitive materials.

The software packages presented are hosted in public reposito-
ries (fpd devs, 2015; pixStem devs, 2015; fpd demos devs, 2018),
are under active development and contain many more features
than are covered in this part or in Part 1 (Nord et al., 2020) of
this work. These packages are provided under an open source
licence, allowing full transparency of the algorithms implemented
and for them to be continually improved upon by the community.

Part III of this work will cover post-acquisition processing and
visualization of data from fast pixelated detectors for differential
phase contrast imaging.
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