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ALGEBRAS OF CANCELLATIVE SEMIGROUPS

JAN OKNINSKI

The Jacobson radical J(K[S]) of the semigroup ring K[S] of a cancellative semi-
group S over a field K is studied. We show that, if J(K[S]) ^ 0, then either
S is a reversive semigroup or K[S] has many nilpotents and J(.fif[P]) ^ 0 for a
reversive subsemigroup P of 5. This is used to prove that J(K[S]) = 0 for every
unique product semigroup S.

Let K[S] be the semigroup ring of a cancellative semigroup 5 over a field K. Our
aim is to show that the semiprimitivity problem for K[S] can often be reduced to the
case where 5 has a group of fractions. This allows to prove that J(K[S}) = 0 whenever
•S is a unique product semigroup, which answers the question asked in [4, Problem 23].
Here, J(K[S\) denotes the Jacobson radical of K[S]. We refer to [1, 3, 4] for the basic
facts on semigroups, semigroup rings and graded rings used in this note.

If 5 is not a monoid, then let S1 be the monoid obtained by adjoining a unity
element to S. Otherwise, let S1 — S. Recall that S is left reversive if it satisfies the
right Ore condition: aS C\tS ̂  0 for every a,t G S. This is equivalent to the fact that
S has a group of classical right fractions, see [1]. The left reversive congruence ps on
S1 is defined for a,t e S1 by the rule (a, i) G p if axS f~l txS ± 0 for every x £ 5 , [5].
The restriction of ps to S will also be denoted by ps, or by p if unambiguous. It is
known that p is left cancellative. A subset Z of 5 is said to be left group-like (or left
unitary) if a € Z whenever z £ Z, a E S and za 6 Z.

Our approach is based on the following observation, which allows us to cover S
with a collection of its nice subsemigroups.

LEMMA 1. For every t G S1 the set St = {a G 5 | (ira, tn) G p for some r, n ^ 1}
is a left group-like subsemigroup of S.

PROOF: Let «,u € St. Then (tru, tn) € p and (t'a, t>) G p for some r,n,i,j ^ 1.
The latter implies that (ti+rau, t'+ru) G p. But (ti+ru, t'+n) G p. Hence (ti+rau, ti+n)
G p, and so au £ St. Thus, St is a subsemigroup of S.

Assume also that ax G St for some x £ S. Then there exist k,m ^ 1 such that
(tkax, tm) e p. Now (ti+kax, ti+m) G p and also (ti+kax, V+kx) G p. This implies
that (tj+kx, ii+m) G p. Hence x€ St,as desired. D
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Denote by <p the natural homomorphism 5 —> S/p. Let U = {a G 5 | (az, 1) G p
for some « £ S } . Assume that U =4 0. If («z, 1) £/>, then (aza, a) G p, so that the
left cancellativity of p implies that (za, 1) € p. Therefore U = ^-1(.ff), the inverse
image in S of the group H of units of S/p. In particular, 17 is a filter of S. Since
(az, 1) G p implies that azasS n xS ^ 0 for every x G S, it follows that 5 = U if and
only if 5 is left reversive.

The advantage of dealing with the rings -K"[S«], in place of K[S], is that each
JT[S«] admits a very simple gradation. This will not be used explicitly, but it recovers
the general flavour of our approach.

PROPOSITION. Let t e S. Then the image Gt of St under the natural ho-
momorphism <j>: S —* S/p is a cyclic group, a cyclic semigroup or a cyclic monoid
generated by <f>(i). Consequently, the ring R = K[St] has a natural Gt-gradation given
by Rg = ^(Kg) for g&Gt. Moreover, if t <£ U, then the set It = {a e S \ (a, tn) e p
for some n ^ 1} is an ideal of St, <f>(It) is an infinite cyclic semigroup and K[It] has
an induced <f>(It)-gradation.

PROOF: If <f>(s) e Gt, then there exist r,n ^ 1 such that (fa, tn) G p. Therefore,
either (s,ifc) G p for some k > 0 or (tks, l) G p for some k > 1. If for some a G S the
latter holds, <j>(t) lies in the group H of units of S/p, so that Gt = <f>{St) is the cyclic
subgroup of H generated by <j>(t). Otherwise, Gt is the cyclic semigroup (or the cyclic
monoid, if Si ^ 0) generated by <f>(t). Clearly, this gives the desired G«-gradation on
the ring R = K[St]. The remaining assertions follow easily. D

We refer to [3, Chapter 4], for a variety of results on rings graded by groups. In
particular, for those concerning the homogenity of the Jacobson radical and the prime
radical.

Every non-zero c G K[S] can be uniquely written in the form c = ci + ... + cn,

where each supp (c,-) lies in a different p-class of S. The elements c\, ..., cn are called
the p-components of c. We say that c is p-separated if supp (c,-)5n supp (CJ)S = 0 for
i =fi j . For convenience, the zero of K[S] will also be called p-separated.

LEMMA 2 . Let V be the set of p-separated elements of K[S] and let W =

VDJ(K[S\U]). Then

(1) V is a subsemigroup of the multiplicative semigroup of K[S], in particular

VS, SVCV;

(2) if b G W, then the p-components of b generate a finite nilpotent semi-

group, in particular W is a nil semigroup;

(3) for every o G K[S] there exists a G 5 such that as G V.

PROOF: For a,b G V, a,b ^ O.let o = ai + ...+<Xr, b = &i+ ...+&„ be the decom-

positions of a, b into p-components. Choose U, 8j G S1 such that (t,-, supp(aj)) G p
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and (sy, supp(6y)) G p. Suppose that USJC = tksmd for some c,d £ S and some
i, j , k, m . Since a € V, it follows that t = k because otherwise US C\ tkS = 0. Hence
SJC = amd. Similarly, j = m because b € V, so that (1) follows.

Assume further that 6 € W. Let c £ K[S\U] be a right quasi inverse of 6, that is,
b + c = be. Let Ci, . . . , cm be the p-components of c. By induction on fc we show that
each non-zero e = bit bi3 . . . 6,-t, ij G {1, . . . , n } , lies in the set C = {—c\, . . . , — c m } .
By (1) we know that each non-zero b{Cj lies in a different p-class of 5 . If 6̂  §? C,
then (supp(6i), supp(6pc,)) G p for some p, 9. Then t = p since 6 G V. Therefore
(supp(c,), 1) G p, which contradicts the fact that cq G K[S\U]. Hence 6j G C. Assume
now that k > 1. Since, by the induction hypothesis, —6,-, . . . 6,-4 is a />-component of
c, — e must be a />-component of be. As before, from the left cancellativity of p it
follows that (supp(e), supp(6)) ^ p because supp(6) D U = 0 and b G V. Hence, the
equality b + c = be implies that e G C, as claimed. Now, the semigroup B generated
by bi, ..., bn is finite. Moreover, each e G B is nilpotent .because ep = e* ^ 0 for
p > 9 would again contradict the fact that supp(e) D U = 0. Therefore B is nilpotent,
so that 6 is a nilpotent element. This proves that (2) holds.

(3) was established in [5]. D

LEMMA 3 . Let t e S\U. Assume that a + b = ab for some a,b G K[St}.
Then b G K[A] for the subsemigroup A generated in S by supp(a) . Consequently,
J(K[P]) n K[T] C J{K[T}) for any subsemigroups T, P of St.

PROOF: Assume that a ^ 0. Substituting b = ab — a we come to

b = ab - a = a2b - a2 - a = ... = anb - a" - a""1 - . . . - a

for every n ^ 1. Suppose that there exists 8 G supp(6) \ A. Then a G supp(a"6)
for every n ^ 1, hence there exist tn G supp(6) and Bn<ii G supp(a), j = 1, . . . , n ,
such that s = Sn^ . ..sn,»ntn- Therefore, there are infinitely many equal elements of
the form an>,-j .. .•8n,,-ntn. Since t £ U and p is left cancellative, there exists N ^ 1
such that each sn,ii is p-related to some <p, 1 ^ r ^ iV. It follows that (tp, i^) g ^
for some p < q. This contradicts the fact that i (£ U. Therefore supp(i) C A. The
assertion follows. D

We show that, if ./(iffS]) ^ 0 for a non-left reversive semigroup 5 , then the
semigroup ring K[T] of a left reversive subsemigroup T of S is not semiprimitive and
contains many nilpotents.

THEOREM. Let S be a cancellative semigroup that is not left reversive. Assume
that 0 / c £ J(K[S]). Then there exists a G 5 sucii that

(i) S^sS1 CW\{0}.
(ii) If Ci is a p-component of cs and t G supp(cis), then c\ G J(K[St\) and

S1ciS1 consists of nilpotents.
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(iii) There exists a left reversive subsemigroup T of S and an element u G S
such that the naturai K-linear projection f of csu onto K[T] is a non-
zero element of J(K[T]) for which T1 fT1 consists of nilpotents.

PROOF: Since 5" is not left reversive, S ^ U. By Lemma 2 there exists z G S

such that cz GV. Then czq G W for any q G 5 \ U. Hence, (i) follows with a = zq.

Let ci, ..., cm be the p-components of ca. Note that for w G St we have wSCitS ^
0. Hence

(*) yx £ St for every x G S1 and every y G supp (CJ), j ^ 1

Let TT: K[S] -» K[St] be the natural Jf-linear projection. Let a G #[£«]. Since
caa G J(X[5]), there exists d G A"[S] such that csa + d = csad. Then (*) shows
that 7r(csa) = 7r(cia) = c^a and Tr(csad) = 7r(cia<i). Since St is a left group-like
subsemigroup of 5 , from [4, Lemma 4.14], it follows that ir(ciad) = ciair(d). This
shows that c\a is quasi invertible in iiT[5t], so that Ci G J(K[St]). For every I , J / 6 S1,
xciy is a p-component of xcsy. Hence, the remaining assertion of (ii) follows from
Lemma 2.

Let n ^ l be the minimal integer satisfying the following condition:

There exists a subsemigroup Q of St and an element tt G 5 such that
can = f + /o , where / G J(K[Q]), f0 G K[S], supp(/0)Q n supp(/)Q = 0,
|supp(/) | = n and Q1fQ1 consists of nilpotents.

In view of (ii), n is well-defined. Let T C Q be the semigroup generated by
supp( / ) . Lemma 3 implies that / G J(if[T]). Suppose that T is not left reversive.
From [5, Lemma 2], it follows that supp(/) does not lie in a single px-class of T.

Proceeding as at the beginning of the proof, we can find an element w G T such that fw

is ^--separated, so that fw = f\ + ... + fz, z ^ 2, with supp(/j)TDsupp(fj)T = 0 for
i j ^ j and each supp(/<) lying in a different px-class of T. Moveover, f\ G J(iif[Tr])
for v G supp(/i) and T1 fiT1 consists of nilpotents. The choice of / implies that
|supp(/i) | = |supp(/) | , so that z = 1, a contradiction. Hence T is a left reversive
semigroup. This completes the proof of the theorem. D

An induction, as that in the proof of (iii) above, can also be carried out with respect
to the congruence p', that is right-left dual to p, see [5]. Applying both procedures
alternately a number of times, one derives the following consequence.

COROLLARY 1 . If J(K[S]) ^ 0 for a cancel/ative semigroup S, then there exists

a (left and right) reversive subsemigroup P of S such that J(K[P]) ^ 0.

If K is not algebraic over its prime subfield KQ and J(K[S]) ^ 0, then -Ko[S]
has a non-zero nil ideal, see [6, Chapter 7]. Our techniques allow us to find a reversive
subsemigroup P of 5 such that Ko [P] has a non-zero nil ideal.
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The above theorem often reduces the semiprimitivity problem for algebras K[S] to
the case where S is reversive, so 5 has a group of fractions G. When studying if[S],
one can then apply a variety of group ring techniques and results. For example, it is
known that K[G] is a domain for a wide class of groups G, and it is conjectured that
this is always the case if G is a torsion-free group, see [7, Chapter 9].

Recall that a semigroup 5 is a u.p. (unique product) semigroup if for any nonempty
finite subsets A, B of S with |.4| + \B\ > 2, there exists an element s G AB with a
unique presentation in the form s = ab, where a £ A, b £ B, see [4, Chapter 10]. In
this case K[S] is a domain and in particular S is cancellative. Similarly, S is called a
t.u.p. (two unique product) semigroup if there are at least two elements with unique
presentation in each AB. Then -K^S1] has no nontrivial units, so that J(K[S]) = 0.
Note that there exist u.p. semigroups that do not have the t.u.p. property, [4, Chapter
10].

COROLLARY 2 . Let S be a u.p. semigroup. Then J(K[S}) - 0.

PROOF: The theorem allows us to assume that S is left reversive. It is known
that every u.p. semigroup that is left reversive must be a t.u.p. semigroup, [8], see [4,
Theorem 10.6]. As noted above, this implies that J{K[S]) = 0. D

Let A be a domain that is nontrivially graded (that is, A ^ Ai) by a cancellative
semigroup S. Assume that J{A) ^ 0. If S is not left reversive, then, as in the proof
of assertion (ii) of the theorem, one shows that J(R) ^ 0 for a subring R of A that is
graded by an infinite cyclic semigroup. It is known that R contains nontrivial nilpotents,
[2], see [3, Theorem 32.5], a contradiction. Hence S is left reversive. Therefore, if 5 is
a u.p. semigroup, then it is a t.u.p. semigroup. This again contradicts [2]. Hence, the
assertion of Corollary 2 can be extended to any domain A that is nontrivially graded
by a u.p. semigroup S.
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