ALGEBRAS OF CANCELLATIVE SEMIGROUPS

JAN OKNINSKI

The Jacobson radical J(K[S]) of the semigroup ring K[S] of a cancellative semigroup S over a field K is studied. We show that, if $J(K[S]) \neq 0$, then either S is a reversive semigroup or K[S] has many nilpotents and $J(K[P]) \neq 0$ for a reversive subsemigroup P of S. This is used to prove that J(K[S]) = 0 for every unique product semigroup S.

Let K[S] be the semigroup ring of a cancellative semigroup S over a field K. Our aim is to show that the semiprimitivity problem for K[S] can often be reduced to the case where S has a group of fractions. This allows to prove that J(K[S]) = 0 whenever S is a unique product semigroup, which answers the question asked in [4, Problem 23]. Here, J(K[S]) denotes the Jacobson radical of K[S]. We refer to [1, 3, 4] for the basic facts on semigroups, semigroup rings and graded rings used in this note.

If S is not a monoid, then let S^1 be the monoid obtained by adjoining a unity element to S. Otherwise, let $S^1 = S$. Recall that S is left reversive if it satisfies the right Ore condition: $sS \cap tS \neq \emptyset$ for every $s, t \in S$. This is equivalent to the fact that S has a group of classical right fractions, see [1]. The left reversive congruence ρ_S on S^1 is defined for $s, t \in S^1$ by the rule $(s, t) \in \rho$ if $sxS \cap txS \neq \emptyset$ for every $x \in S$, [5]. The restriction of ρ_S to S will also be denoted by ρ_S , or by ρ if unambiguous. It is known that ρ is left cancellative. A subset Z of S is said to be left group-like (or left unitary) if $s \in Z$ whenever $z \in Z$, $s \in S$ and $zs \in Z$.

Our approach is based on the following observation, which allows us to cover S with a collection of its nice subsemigroups.

LEMMA 1. For every $t \in S^1$ the set $S_t = \{s \in S \mid (t^r s, t^n) \in \rho \text{ for some } r, n \ge 1\}$ is a left group-like subsemigroup of S.

PROOF: Let $s, u \in S_t$. Then $(t^r u, t^n) \in \rho$ and $(t^i s, t^j) \in \rho$ for some $r, n, i, j \ge 1$. The latter implies that $(t^{i+r}su, t^{j+r}u) \in \rho$. But $(t^{j+r}u, t^{j+n}) \in \rho$. Hence $(t^{i+r}su, t^{j+n}) \in \rho$, and so $su \in S_t$. Thus, S_t is a subsemigroup of S.

Assume also that $sx \in S_t$ for some $x \in S$. Then there exist $k, m \ge 1$ such that $(t^k sx, t^m) \in \rho$. Now $(t^{i+k}sx, t^{i+m}) \in \rho$ and also $(t^{i+k}sx, t^{j+k}x) \in \rho$. This implies that $(t^{j+k}x, t^{i+m}) \in \rho$. Hence $x \in S_t$, as desired.

Received 19 April 1993

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

J. Okninski

Denote by ϕ the natural homomorphism $S \to S/\rho$. Let $U = \{s \in S \mid (sz, 1) \in \rho$ for some $z \in S\}$. Assume that $U \neq \emptyset$. If $(sz, 1) \in \rho$, then $(szs, s) \in \rho$, so that the left cancellativity of ρ implies that $(zs, 1) \in \rho$. Therefore $U = \phi^{-1}(H)$, the inverse image in S of the group H of units of S/ρ . In particular, U is a filter of S. Since $(sz, 1) \in \rho$ implies that $szxS \cap xS \neq \emptyset$ for every $x \in S$, it follows that S = U if and only if S is left reversive.

The advantage of dealing with the rings $K[S_t]$, in place of K[S], is that each $K[S_t]$ admits a very simple gradation. This will not be used explicitly, but it recovers the general flavour of our approach.

PROPOSITION. Let $t \in S$. Then the image G_t of S_t under the natural homomorphism $\phi: S \to S/\rho$ is a cyclic group, a cyclic semigroup or a cyclic monoid generated by $\phi(t)$. Consequently, the ring $R = K[S_t]$ has a natural G_t -gradation given by $R_g = \phi^{-1}(Kg)$ for $g \in G_t$. Moreover, if $t \notin U$, then the set $I_t = \{s \in S \mid (s, t^n) \in \rho$ for some $n \ge 1\}$ is an ideal of S_t , $\phi(I_t)$ is an infinite cyclic semigroup and $K[I_t]$ has an induced $\phi(I_t)$ -gradation.

PROOF: If $\phi(s) \in G_t$, then there exist $r, n \ge 1$ such that $(t^r s, t^n) \in \rho$. Therefore, either $(s, t^k) \in \rho$ for some $k \ge 0$ or $(t^k s, 1) \in \rho$ for some $k \ge 1$. If for some $s \in S$ the latter holds, $\phi(t)$ lies in the group H of units of S/ρ , so that $G_t = \phi(S_t)$ is the cyclic subgroup of H generated by $\phi(t)$. Otherwise, G_t is the cyclic semigroup (or the cyclic monoid, if $S_1 \ne \emptyset$) generated by $\phi(t)$. Clearly, this gives the desired G_t -gradation on the ring $R = K[S_t]$. The remaining assertions follow easily.

We refer to [3, Chapter 4], for a variety of results on rings graded by groups. In particular, for those concerning the homogenity of the Jacobson radical and the prime radical.

Every non-zero $c \in K[S]$ can be uniquely written in the form $c = c_1 + \ldots + c_n$, where each supp (c_i) lies in a different ρ -class of S. The elements c_1, \ldots, c_n are called the ρ -components of c. We say that c is ρ -separated if supp $(c_i)S \cap \text{supp}(c_j)S = \emptyset$ for $i \neq j$. For convenience, the zero of K[S] will also be called ρ -separated.

LEMMA 2. Let V be the set of ρ -separated elements of K[S] and let $W = V \cap J(K[S \setminus U])$. Then

- (1) V is a subsemigroup of the multiplicative semigroup of K[S], in particular $VS, SV \subseteq V$;
- (2) if $b \in W$, then the ρ -components of b generate a finite nilpotent semigroup, in particular W is a nil semigroup;
- (3) for every $a \in K[S]$ there exists $s \in S$ such that $as \in V$.

PROOF: For $a, b \in V$, $a, b \neq 0$, let $a = a_1 + \ldots + a_r$, $b = b_1 + \ldots + b_n$ be the decompositions of a, b into ρ -components. Choose $t_i, s_j \in S^1$ such that $(t_i, \operatorname{supp}(a_i)) \in \rho$

and $(s_j, \operatorname{supp}(b_j)) \in \rho$. Suppose that $t_i s_j c = t_k s_m d$ for some $c, d \in S$ and some i, j, k, m. Since $a \in V$, it follows that i = k because otherwise $t_i S \cap t_k S = \emptyset$. Hence $s_j c = s_m d$. Similarly, j = m because $b \in V$, so that (1) follows.

Assume further that $b \in W$. Let $c \in K[S \setminus U]$ be a right quasi inverse of b, that is, b+c = bc. Let c_1, \ldots, c_m be the ρ -components of c. By induction on k we show that each non-zero $e = b_{i_1} b_{i_2} \ldots b_{i_k}$, $i_j \in \{1, \ldots, n\}$, lies in the set $C = \{-c_1, \ldots, -c_m\}$. By (1) we know that each non-zero $b_i c_j$ lies in a different ρ -class of S. If $b_i \notin C$, then $(\supp(b_i), \supp(b_p c_q)) \in \rho$ for some p, q. Then i = p since $b \in V$. Therefore $(\supp(c_q), 1) \in \rho$, which contradicts the fact that $c_q \in K[S \setminus U]$. Hence $b_i \in C$. Assume now that k > 1. Since, by the induction hypothesis, $-b_{i_2} \ldots b_{i_k}$ is a ρ -component of c, -e must be a ρ -component of bc. As before, from the left cancellativity of ρ it follows that $(\supp(e), \supp(b)) \notin \rho$ because $\supp(b) \cap U = \emptyset$ and $b \in V$. Hence, the equality b + c = bc implies that $e \in C$, as claimed. Now, the semigroup B generated by b_1, \ldots, b_n is finite. Moreover, each $e \in B$ is nilpotent because $e^p = e^q \neq 0$ for p > q would again contradict the fact that $supp(e) \cap U = \emptyset$. Therefore B is nilpotent, so that b is a nilpotent element. This proves that (2) holds.

(3) was established in [5].

LEMMA 3. Let $t \in S \setminus U$. Assume that a + b = ab for some $a, b \in K[S_t]$. Then $b \in K[A]$ for the subsemigroup A generated in S by supp(a). Consequently, $J(K[P]) \cap K[T] \subseteq J(K[T])$ for any subsemigroups T, P of S_t .

PROOF: Assume that $a \neq 0$. Substituting b = ab - a we come to

$$b = ab - a = a^{2}b - a^{2} - a = \ldots = a^{n}b - a^{n} - a^{n-1} - \ldots - a$$

for every $n \ge 1$. Suppose that there exists $s \in \operatorname{supp}(b) \setminus A$. Then $s \in \operatorname{supp}(a^n b)$ for every $n \ge 1$, hence there exist $t_n \in \operatorname{supp}(b)$ and $s_{n,i_j} \in \operatorname{supp}(a)$, $j = 1, \ldots, n$, such that $s = s_{n,i_1} \ldots s_{n,i_n} t_n$. Therefore, there are infinitely many equal elements of the form $s_{n,i_1} \ldots s_{n,i_n} t_n$. Since $t \notin U$ and ρ is left cancellative, there exists $N \ge 1$ such that each s_{n,i_j} is ρ -related to some t^r , $1 \le r \le N$. It follows that $(t^p, t^Q) \in \rho$ for some p < q. This contradicts the fact that $t \notin U$. Therefore $\operatorname{supp}(b) \subseteq A$. The assertion follows.

We show that, if $J(K[S]) \neq 0$ for a non-left reversive semigroup S, then the semigroup ring K[T] of a left reversive subsemigroup T of S is not semiprimitive and contains many nilpotents.

THEOREM. Let S be a cancellative semigroup that is not left reversive. Assume that $0 \neq c \in J(K[S])$. Then there exists $s \in S$ such that

- (i) $S^1 cs S^1 \subseteq W \setminus \{0\}$.
- (ii) If c_1 is a ρ -component of cs and $t \in \text{supp}(c_1s)$, then $c_1 \in J(K[S_t])$ and $S^1c_1S^1$ consists of nilpotents.

J. Okninski

(iii) There exists a left reversive subsemigroup T of S and an element $u \in S$ such that the natural K-linear projection f of csu onto K[T] is a non-zero element of J(K[T]) for which T^1fT^1 consists of nilpotents.

PROOF: Since S is not left reversive, $S \neq U$. By Lemma 2 there exists $z \in S$ such that $cz \in V$. Then $czq \in W$ for any $q \in S \setminus U$. Hence, (i) follows with s = zq.

Let c_1, \ldots, c_m be the ρ -components of cs. Note that for $w \in S_t$ we have $wS \cap tS \neq \emptyset$. Hence

(*) $yx \notin S_t$ for every $x \in S^1$ and every $y \in \text{supp}(c_j), j \neq 1$

Let $\pi: K[S] \to K[S_t]$ be the natural K-linear projection. Let $a \in K[S_t]$. Since $csa \in J(K[S])$, there exists $d \in K[S]$ such that csa + d = csad. Then (*) shows that $\pi(csa) = \pi(c_1a) = c_1a$ and $\pi(csad) = \pi(c_1ad)$. Since S_t is a left group-like subsemigroup of S, from [4, Lemma 4.14], it follows that $\pi(c_1ad) = c_1a\pi(d)$. This shows that c_1a is quasi invertible in $K[S_t]$, so that $c_1 \in J(K[S_t])$. For every $x, y \in S^1$, xc_1y is a ρ -component of xcsy. Hence, the remaining assertion of (ii) follows from Lemma 2.

Let $n \ge 1$ be the minimal integer satisfying the following condition:

There exists a subsemigroup Q of S_t and an element $u \in S$ such that $csu = f + f_0$, where $f \in J(K[Q])$, $f_0 \in K[S]$, $supp(f_0)Q \cap supp(f)Q = \emptyset$, |supp(f)| = n and Q^1fQ^1 consists of nilpotents.

In view of (ii), n is well-defined. Let $T \subseteq Q$ be the semigroup generated by supp(f). Lemma 3 implies that $f \in J(K[T])$. Suppose that T is not left reversive. From [5, Lemma 2], it follows that supp(f) does not lie in a single ρ_T -class of T. Proceeding as at the beginning of the proof, we can find an element $w \in T$ such that fwis ρ_T -separated, so that $fw = f_1 + \ldots + f_z$, $z \ge 2$, with $\operatorname{supp}(f_i)T \cap \operatorname{supp}(f_j)T = \emptyset$ for $i \ne j$ and each $\operatorname{supp}(f_i)$ lying in a different ρ_T -class of T. Moveover, $f_1 \in J(K[T_v])$ for $v \in \operatorname{supp}(f_1)$ and $T^1f_1T^1$ consists of nilpotents. The choice of f implies that $|\operatorname{supp}(f_1)| = |\operatorname{supp}(f)|$, so that z = 1, a contradiction. Hence T is a left reversive semigroup. This completes the proof of the theorem.

An induction, as that in the proof of (iii) above, can also be carried out with respect to the congruence ρ' , that is right-left dual to ρ , see [5]. Applying both procedures alternately a number of times, one derives the following consequence.

COROLLARY 1. If $J(K[S]) \neq 0$ for a cancellative semigroup S, then there exists a (left and right) reversive subsemigroup P of S such that $J(K[P]) \neq 0$.

If K is not algebraic over its prime subfield K_0 and $J(K[S]) \neq 0$, then $K_0[S]$ has a non-zero nil ideal, see [6, Chapter 7]. Our techniques allow us to find a reversive subsemigroup P of S such that $K_0[P]$ has a non-zero nil ideal.

The above theorem often reduces the semiprimitivity problem for algebras K[S] to the case where S is reversive, so S has a group of fractions G. When studying K[S], one can then apply a variety of group ring techniques and results. For example, it is known that K[G] is a domain for a wide class of groups G, and it is conjectured that this is always the case if G is a torsion-free group, see [7, Chapter 9].

Recall that a semigroup S is a u.p. (unique product) semigroup if for any nonempty finite subsets A, B of S with |A| + |B| > 2, there exists an element $s \in AB$ with a unique presentation in the form s = ab, where $a \in A$, $b \in B$, see [4, Chapter 10]. In this case K[S] is a domain and in particular S is cancellative. Similarly, S is called a t.u.p. (two unique product) semigroup if there are at least two elements with unique presentation in each AB. Then $K[S^1]$ has no nontrivial units, so that J(K[S]) = 0. Note that there exist u.p. semigroups that do not have the t.u.p. property, [4, Chapter 10].

COROLLARY 2. Let S be a u.p. semigroup. Then J(K[S]) = 0.

PROOF: The theorem allows us to assume that S is left reversive. It is known that every u.p. semigroup that is left reversive must be a t.u.p. semigroup, [8], see [4, Theorem 10.6]. As noted above, this implies that J(K[S]) = 0.

Let A be a domain that is nontrivially graded (that is, $A \neq A_1$) by a cancellative semigroup S. Assume that $J(A) \neq 0$. If S is not left reversive, then, as in the proof of assertion (ii) of the theorem, one shows that $J(R) \neq 0$ for a subring R of A that is graded by an infinite cyclic semigroup. It is known that R contains nontrivial nilpotents, [2], see [3, Theorem 32.5], a contradiction. Hence S is left reversive. Therefore, if S is a u.p. semigroup, then it is a t.u.p. semigroup. This again contradicts [2]. Hence, the assertion of Corollary 2 can be extended to any domain A that is nontrivially graded by a u.p. semigroup S.

References

- [1] A.H. Clifford and G.B. Preston, *Algebraic theory of semigroups*, 1 (American Mathematical Society, Providence, RI, 1961).
- [2] E. Jespers, J. Krempa and E. Puczylowski, 'On radicals of graded rings', Comm. Algebra 10(17) (1982), 1849-1854.
- [3] G. Karpilovsky, The Jacobson radical of classical rings, Pitman Monographs and Surveys in Pure and Applied Mathematics (Longman, 1991).
- J. Okninski, Semigroup algebras, Monographs and Textbooks in Pure and Applied Mathematics 138 (Marcel Dekker, 1991).
- J. Okninski, 'Prime and semiprime semigroup rings of cancellative semigroups', Glasgow Math. J. 35 (1993), 1-12.
- [6] D.S. Passman, The algebraic structure of group rings (Wiley, New York, 1977).

J. Okninski

- [7] D.S. Passman, *Infinite crossed products*, Pure and Applied Mathematics 135 (Academic Press, New York, 1989).
- [8] A. Strojnowski, 'A note on u.p. groups', Comm. Algebra 8 (1980), 231-234.

Institute of Mathematics Warsaw University Banacha 2 02-791 Warsaw Poland