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GROUP-DEPARTURE LOSS SYSTEM
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Abstract

In this work we investigate under what circumstances the equilibrium
distribution of the numbers of groups of various sizes in a certain M/ G / k
group-arrival group-departure loss system can be obtained in a closed
product form.

1. Introduction

The following service system is considered. Groups of customers arrive at a service station
in accordance with a Poisson process of rate A. The sizes of successive arriving groups are
independent identically distributed random variables and independent of the arrival times.
Let (gj) j = 1, 2, ... be the group size probability distribution and qj =gj + gj+l + ... (j =
1, 2, ...) be the corresponding tail probabilities.

The service is rendered by a number k of identical servers, each capable of serving one
customer at a time, and the system operates as follows. Whenever a group of size j
(j = 1, 2, ...) finds on its arrival n (n = 0, 1, ... , k) servers busy, then a number min (j, k -
n) of its members, chosen at random, occupy an equal number of idle servers and start being
served. The remaining customers if any, are rejected by the system (are blocked) and do not
return later. Hence no queue is allowed to form and the blocked customers are considered as
lost to the system.

We assume that the accepted customers of each group have equal service times with
probability 1 and therefore depart together from the system. Moreover this common service
time may depend upon their number (effective group size), but not upon the service times of
other accepted customers. Hence let Bj(x) be the service time distribution function for groups
of effective size j (j = 1, 2, ... , k) and b, be the corresponding mean value which is supposed
to be finite.

The service system described above will be referred to as an M / G / k group-arrival
group-departure loss system; when gl = 1, i.e. when customers arrive singly, it will be called
an M/ G /k loss system. This system, apart from its theoretical interest, is also of practical
value since it can represent real-life service systems in which customers may arrive in groups,
such as first-aid stations, hotels, cafeterias, etc ..

The M/ G /k loss system as well as several variants of it have been extensively studied; see
for example Franken et al. (1981). For this system it is known that the equilibrium (limiting)
probability distribution (Pn) n = 0, 1" ... , k of the number of busy servers is insensitive to
the form of the service time distribution function B(x), depending only on its mean value b
through the traffic intensity p = Ab. Specifically this is a Poisson distribution truncated at k
with parameter p, i.e.

(1) (n = 0, 1, ... , k)

which is the Erlang B formula. Systems having this insensitivity property are discussed for
example, by Kelly (1979), Schassberger (1986) and Whittle (1986).
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The alternative case of the MIGIk group-arrival group-departure loss system, where the
whole group is blocked whenever its size is greater than the number of idle servers, has been
studied by Fakinos (1982). Among other results it has been shown that the equilibrium
distribution p(nt, n2, ... , nk) in, E f\Jo j = 1, 2, ... , k) of the numbers of groups of various
sizes in the system is given by

k (g.p.)nj
(2) p(nt, n2, ... , nk) = C~(nt, n2+ ... + knk) TI _1-~- (nj E f\Jo;j = 1, 2, ... , k)

j=t nj •

where C is the appropriate normalizing constant, ~(n) is a function assuming the values 1 and
o if n ~ k or n > k respectively and Pj = Abj (j = 1, 2, ... ,k). Formula (2), which is a
generalization of the Erlang B formula, shows that the equilibrium distribution
p(nt, n2, ... , nk) has the above intrinsic product form for any group-size distribution. In the
present work we investigate the circumstances under which a similar. product-form equi-
librium distribution is obtained for the previously described alternative model.

2. The results

The equilibrium distribution p (n t, n2, ... , nk) of the numbers of groups of various
effective sizes in the system is not affected if we modify the arrival process so that the group
size cannot be greater than k, and is k with probability gk + gk+t + .... Therefore for given
(gj) j = 1, 2, .. " we can assume without loss of generality that the group size distribution is
(gJ) j = 1, 2, ... , k where

(3) g; =gj (j= 1, 2,"', k -1); g~=qk'

But then consider a network of k infinite-server queues where the jth queue accepts
exclusively groups of size j (j = 1, 2, ... , k). Since the arrival process is a compound Poisson
process and customers who belong to the same group have equal service times it follows that
the jth queue in isolation behaves as an M IGloo single arrival queue with arrival rate Ag; and
mean service time b., and moreover its state is independent of the states of the other queues.
Hence denoting by n(nt, n2, ... , nk) the equilibrium distribution of the numbers of groups
of various sizes in the network and letting Pj = Abj (j = 1, 2, ... , k) we have that

k ,(g;pj)nj

(4) n(nh n2, "', nk) = TI exp (-gjPj)-- in, E f\Jo;j = 1, 2, "', k).
j=t nj!

Now the MIGIk group-arrival group-departure loss system can be viewed as such a
network of queues but with state-dependent arrival rates Aj(nt, n2, ... , nk) for groups of size
j, where

(j = 1, 2, ... , k)
(5)

{

Ag; n*+j<k

Aj(nt, n2, ... , nk) = Ag; if n * + j = k

o n*+j>k

and n* <n, + 2n2 + ... + kni, Of course q; = qj(j = 1,2, "', k -1); q~=g~.
The above network of queues with constant arrival rates Ag; (j = 1, 2, ... ,k) is

quasi-reversible. Therefore based on Kelly (1979), § 3.5, if we can define a function
1JJ(nt, n2' ... , nk) such that

(6)

then

(7)
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where H(nt , n2, ... , nk) is given by (4) and B is the appropriate normalizing constant making
the above probabilities sum to unity.

Because of (5) and (6), 1JJ(.) must necessarily be of the form

{

I n*<k

(8) 1/J(nt> nz, · · · , nk) = oa(n t , n2, ... ,nk) if n * = k

n*>k

where the function a(.), defined only for n i, n2, ... , n; E No:n * = k, must satisfy the
relations

(9) (j = 1, 2, ... , k: nj > 0).

Let d' be the greatest common divisor of all j such that g; > O. When d' > 1 and k = sd' for
some sEN then, considering each d customers of the same group as a single customer and
each d specific servers as a single server, the system is reduced to one with s servers and
group-size distribution gj= g;d l (j = 1, 2, ... , s) for which a= 1. On the other hand, when
d' > 1 and k = sd' + t for some sEN and t = 1, 2, ... , d' - 1 then it is possible to have n * = k
with n, > O. But then no function a(.) satisfies (9) since g; = 0 and q; = 1. Hence it remains to
consider the case d' = 1. Since q~ = 1> 0 we have from (9) that certainly g~ > O. Also,
ignoring the trivial case gt = 1, we have that 1= max {j :g; > O} > 1. But then it is possible to
have n * = k with n'-i > 0 for any i = 1, 2, ... , 1- 1 and since q;-i > 0 from (9) it again follows
that necessarily g;-i> O. Therefore if (9) is to hold for some function a(.), there must
necessarily exist an 1 (I = 1,2, ... , k): g; > 0 (j = 1, 2, ... , I), g; = 0 (j = 1+ 1, ... , k), and
then we obtain the equivalent form

(10) (j = 1, 2, ... , I: nj > 0).

From (10) it follows that the only possibility for a(.) is

in, E No;j = 1, 2, ... , I: n* = k)(11) {
I n, >0

a(nt, n2, ... , n., 0,···,0) = a if n,'=O

which can happen if and only if the ratio q;+t/g; (j = 1, 2, ... , 1- 1) is constant equal to ~,

say, or equivalently

(12) , ( 1 )( ~ )j-t
gj = 1 + ~ 1 + ~ ( ~ )'-t

(j = 1, 2, ... , 1- 1); g; = 1 + ~

in which case a = 1 +~. We claim now that 1= k must necessarily hold. In fact if 1 < 1< k,
there always exists at least one j < 1such that n * + j = k with n, > o. But then

(13)

Aq; = Aj ( tu, ... , n., ... , n, 0, ... , 0)

1JJ(n t , ••• , nj + 1, ... , nt, 0, ... , 0) '1 ,

= Ag·
1JJ(n t , ••• , nj, , n., 0, , 0) J

= a(n 1" ... , nj + 1, , nl, 0, , O)Ag;

and because of the form of (11) for n, > 0, it follows that q; = g; which is impossible. Thus
when d' = 1 (and (g~ =1= 1» a function 1JJ(n t , n2), ... , nk) of the form (6) can be defined if and
only if

(14) g; = (1- r),J-t (j = 1,2, ... , k -1);g~ = r:' (O<r<l)
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and then

(15)

1 n*<k or n; = 1

1
n* =k, nk =01/J(nt,nz, ... , nk) = --

l-r

0 n*>k.
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In this case relation (7) holds and taking into account (14) we obtain the formula

~k-l ~k. k p'!i
(16) pin«, nz, ... , nk) = C1/J(n t, nz, ... , nk)(1 - r) i=1 nir i=2(1-1)ni n~

j=l nj •

in, E t\JO;j = 1, 2, ... , k)

where C = p(O, 0, ... , 0) is chosen so that the sum of the above probabilities is unity.
Summarizing, we have the following interesting result. The equilibrium distribution

p(nt, nz;' .. , nk) is insensitive to the form of the service time distributions and has a product
form if and only if the group size distribution (gj) j = 1, 2, . .. is such that the modified
distribution (gj) j = 1, 2, ... , k defined by (3) is either a censored geometric distribution of
the form (14) or a lattice distribution whose positive probabilities gj = gjd' (j = 1, 2, ... , s)
have the form (14) with k replaced by s, and k =sd'.

Formula (16) can be used in telephone networks. Specifically, consider a network of k
telephone lines where calls arrive in accordance with a Poisson process of rate A while their
durations are independent and identically distributed random variables. As is well known,
whenever a call is connected, there always exists a possibility of 'double coverage', that is
with a very small but positive probability r each such call forces one more idle line to become
engaged and to remain at that state up to the end of the call. By making the obvious
distinction between 'single', 'double', etc. calls it is clear that the telephone network can be
represented (at least to a first approximation) as an M / G /k group-arrival, group-departure
loss system of the above form where of course Pj = P (j = 1, 2, ... , k).
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