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Abstract

We discuss the problem of constructing elements of multiplicative high order in finite fields of large
degree over their prime field. We obtain such elements by evaluating rational functions on elliptic curves,
at points whose order is small with respect to their degree. We discuss several special cases, including an
old construction of Wiedemann, giving the first nontrivial estimate for the order of the elements in this
construction.

2000 Mathematics subject classification: primary 14G15; secondary 11G20, 11T06.

Keywords and phrases: finite fields, elliptic curves, multiplicative group.

1. Introduction

The multiplicative group of a finite field is cyclic. However, in general, there is no
simple formula, or even a deterministic polynomial time algorithm, producing a gene-
rator for this group. The next best thing is to construct elements of large order in finite
fields and this paper addresses this. Our main result can also be viewed as a weak form
of a conjecture of Poonen which is discussed in [4].

We prove a theorem which gives information on the orders of the coordinates of
points on a curve in E ×Gm , where E is an elliptic curve defined over a finite field
and Gm is the multiplicative group. This is analogous to the main theorem of [4]which
concerns curves in Gm ×Gm and some of our arguments extend those of that paper.

Throughout this paper, Fq is a field of q elements where q is a power of the prime p.
Our main result is as follows.

THEOREM 1.1. Let X be an absolutely irreducible curve in E ×Gm , where E is an
elliptic curve, with both X and E defined over Fq . Assume that the projection of X to
both factors is nonconstant. Given ε > 0, there exists δ > 0 and d0 ∈ Z such that, if
(P, b) ∈ X satisfies

(i) d := [Fq(P) : Fq ]> d0,
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(ii) the group generated by P is invariant under the Fq -Frobenius,
(iii) the order of P, say r , satisfies r < d3/2−ε ,

then b has multiplicative order of at least exp(δ(log d)2).

We also obtain a much better lower bound (namely exp(dδ)) for the multiplicative
order of b when X is contained in the graph of a function E→ P1. (See Theorem 4.1.)
This latter result is more relevant for applications that construct elements of high order
in finite fields.

Note that our results apply only to certain finite fields, namely those generated (as
a field) by a point on E of small order. In [4], we get the slightly better restriction
r < d2−ε due to the fact that multiplication by n has degree n on Gm and degree n2

on E . On the positive side, the flexibility of choosing E expands the scope of appli-
cability of the present results beyond those of [4]. We discuss some situations where
the hypotheses of the theorem are fulfilled in Section 4. A result of Gao [3], using a
different construction, produces elements of order at least exp(δ(log d)2/log log d) in
Fqd for many (conjecturally all) values of d .

2. Preliminaries

We will use the following lemma from [4].

LEMMA 2.1. Fix integers m, a ≥ 2 and real ε > 0. If r ≥ 2, (r, ma)= 1 is an integer
and d is the order of a mod r , then, given N < d, there is a coset 0 of 〈a〉 ⊂
(Z/r)∗ with

#{n | 1≤ n ≤ N , (n, m)= 1, n mod r ∈ 0} � Nd1−ε/r − r ε .

The following construction is going to be very similar to that in [4] but here it will
be useful to take a more geometric approach. We begin by embedding Gm in P1 and
replacing X by its closure in E × P1; all curves considered below will be projective.
We retain the choice of a coordinate y in P1, corresponding to the natural coordinate
in Gm .

We have the projection X→ E and we denote its degree by D. Also, for any
positive integer n, we have the map [n] : E→ E given by multiplication by n. We
consider the curve Xn obtained by taking the fiber product of these two maps (for any
given n). So Xn is the locus of points (P, y) such that (n P, y) ∈ X . If we regard the
function y on Xn as an algebraic function of P , we can view y as an element of a fixed
algebraic closure of Fq(E) and we denote this element by yn .

If (n, Dp)= 1 then the map Xn→ X is separable of degree n2 and Xn is absolutely
irreducible. For those values of n, the divisor of zeros of yn is supported at the points
of Xn above the points R on E with n R = Q, where Q runs through the points on E
below the zeros of y1 on X .

LEMMA 2.2. The algebraic functions yn, (n, Dp)= 1, are multiplicatively indepen-
dent.
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PROOF. It is enough to show that, if L is a function field containing the yn , for
n ≤ N , (n, Dp)= 1, then the divisors of the yn in L are Z-linearly independent. We
prove this by induction on N . Let k be the largest order (in the group law of E) among
the points of E below the zeros of y1 on X . Among the points of E below the zeros of
yN there is a point of order k N which cannot be below a zero of yn , for n < N . 2

For a function field L/Fq and an element z of L , denote by degL z the degree of the
divisor of zeros of z in L , which is also [L : Fq(z)] if z in nonconstant. We have that
degKn

yn � n2, where Kn = Fq(Xn).

3. Proof of the main theorem

Let F denote the Fq -Frobenius map on all varieties over Fq appearing in what fol-
lows. With the notation as in the statement of the theorem, let F(P)= a P , for a ∈ Z,
(a, r)= 1 and N = [d1/2−ε

], and let 0 = γ 〈a〉 be the coset given by Lemma 2.1.
Choose a point C ∈ E of order r such that P = γC . If n ≤ N and (n, q)= 1, where
n mod r ∈ 0, then n ≡ γ a j mod r for some j . Let J be the set of all such j . Thus, for
j ∈ J ,

F j (P, b)= (F j (P), bq j
)= (a j P, bq j

)

and a j P = n j C , where n j ≤ N , (n j , q)= 1 and n j mod r ∈ 0 give rise to j . It

follows that there is a point of Xn j above C ∈ E where yn j takes the value bq j
. Let T =

[η log d], where η > 0 will be chosen later. If I ⊂ J , let bI =
∏

j∈I bq j
.

We now claim that the bI are distinct for distinct I ⊂ J , where |I | ≤ T . If
bI = bI ′ for two distinct such subsets I and I ′, then the algebraic function z =
(
∏

j∈I yn j /
∏

j∈I ′ yn j )− 1 vanishes at a place of the field L , the compositum of the
Kn j , for j ∈ I ∪ I ′ above C ∈ E ,

degL z ≤
∑

j∈I∪I ′
degL yn j =

∑
j∈I∪I ′

[L : Kn j ] degKn j
yn j � T D2TN 2,

which is smaller than d = [Fq(C) : Fq ] for a suitably small choice of η and all d
sufficiently large; this is not possible unless z = 0 and therefore the yn j , for j ∈ I ∪ I ′

are multiplicatively dependent. This contradicts Lemma 2.2. It follows that there are
at least

(
|J |
T

)
distinct powers of b. Now Lemma 2.1 (with ε/3 instead of ε) gives that

|J | � d3/2−ε/3/r − r ε/3� d2ε/3
− (d3/2−ε)ε/3� d2ε/3,

hence
(
|J |
T

)
≥ (|J |/T − 1)T � exp(δ(log d)2), for some suitably small δ > 0, proving

the theorem.

4. Rational maps

In this section we discuss the special case where our curve X is an open subset of
the graph of y : E→ P1. In this case, we can obtain much better bounds. Indeed,
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following the proof of the theorem, we have that yn = y ◦ [n] so Kn = Fq(E) and
we get the much smaller estimate degL z� T DN 2. We can therefore choose a much
larger value of T , say T = [dη], for some small η > 0 and the proof of the theorem
yields that b has multiplicative order at least exp(dδ) with the same notation and
assumptions. More precisely, we have the following theorem.

THEOREM 4.1. Let E be an elliptic curve and y a nonconstant function on E, with
both y and E defined over Fq . Given ε > 0, there exist δ > 0 and d0 ∈ Z such that,
if P ∈ E satisfies

(i) d := [Fq(P) : Fq ]> d0,
(ii) the group generated by P is invariant under the Fq -Frobenius,
(iii) the order of P, say r , satisfies r < d3/2−ε ,

then y(P) has multiplicative order at least exp(dδ).

We now explore a couple of special cases of Theorem 4.1. We begin by taking E to
be a supersingular elliptic curve such that F acts by multiplication by a on E , where
a =±

√
q , for q a square. Under these assumptions, the condition that the group

generated by P is invariant under F is automatic and the only condition to be checked
is r < d3/2−ε . Note that E(Fqd )∼= (Z/(

√
qd
± 1))2 and that d is the order of a mod r .

The condition on r and d is essentially the condition that q has large order mod r . This
case is very similar to that of Gm treated in [4].

Now, consider the case when E is an ordinary elliptic curve and r = pk , where p
is the characteristic of Fq . Since E[pk

] is cyclic, again the condition that the group
generated by P is invariant under F is automatic and the only condition to be checked
is r < d3/2−ε . Note that d = spk−k0 for some fixed k0, s and all k large. So the
inequality r < d3/2−ε is satisfied for large k and the conclusion of the theorem holds.

In [5], Wiedemann introduced the elements of F̄2, defined inductively, as a0 = 1 and
an a root of x2

+ an−1x + 1, for n > 0. He showed that F22n = F2(an) and conjectured

that an has order 22n−1
+ 1 for all n. Note that, as an has F22n /F

22n−1 -norm 1, its order
cannot be larger. Let E/F2 be the elliptic curve y2

+ xy = x3
+ 1. We will now

show how to obtain Wiedemann’s elements from the construction of the preceding
paragraph. We will show that an is the x-coordinate of a point of order 2n of E . It then
follows that an has order at least exp(2δn), for some δ > 0. Note that multiplication
by 2 on E factors as FV , where V is the Verschiebung and a simple calculation
shows that the x-coordinate of V (x, y) is (x2

+ 1)/x . If Pn are defined inductively
by P0 = (1, 0) and V (Pn+1)= Pn , then the x-coordinate of Pn is easily seen to satisfy
the same equation as an , so we can take an = x(Pn).

Wiedemann’s construction is an example of an iterative construction of finite fields.
Other examples can be found in [2] and the references therein and also in [1], where the
multiplicative order of elements thus obtained is estimated. When considering points
of order sn on an elliptic curve for fixed s and varying n, other examples of iterative
constructions can be found to which we can apply the theorems of this paper. We thus
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obtain many examples of iterative constructions of finite fields together with estimates
for their multiplicative order which are much better than those previously obtained.

5. Generalizations

It is possible to remove the condition that 〈P〉 is F-invariant from the statement of
our theorems at the expense of a much weaker bound. This requires an analogue of
Lemma 2.1 with Z[F] instead of Z. It is also possible to state a similar theorem with
the roles of E and Gm reversed or with Gm replaced by another elliptic curve, and
a proof along the lines of this paper will provide estimates. The technique seems to
be able to prove results about points on a curve inside A × B where A, B are semi-
abelian varieties. The use of degrees prevents the argument from being extended from
a curve to an arbitrary subvariety of A × B. However, Poonen’s conjecture (stated
in [4]) would imply that the main hypothesis of such a theorem (namely, that the order
of one of the coordinates is small) could not be satisfied unless dim A = dim B = 1.
Therefore, we do not pursue such a generalization so as to avoid proving a potentially
vacuous theorem.
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