CORRESPONDENCE

Readers of the note 'Circular Scating Arrangements' (J.I.A. 108, 405) may be interested to note that the problem can be solved by an inductive method.

The method involves seating n couples, adding an $(n+1)$ th couple to the right of the first man, and then changing the $(n+1)$ th wife with another wife.

For fixed men, if P_{n+1} represents the number of positions with no matches for $(n+1)$ couples, these can be produced from P_{n} type positions, Q_{n} type positions (one specified man's wife on a specified side, no other matches) if the $(n+1)$ th couple split the pair cither by separation or exchange, or from R_{n} type positions (one specified man's wife on a specified side, and exactly one other match in any position with the wife on either side) if the $(n+1)$ th couple split one pair by separation and the other by exchange.

Consideration of the number of ways that will produce a P_{n+1} type position leads to the formula:

$$
\begin{equation*}
P_{n+1}=(n-2) P_{n}+(3 n-4) Q_{n}+R_{n} \tag{1}
\end{equation*}
$$

Consideration of the number of ways that a Q_{n+1} or R_{n+1} type position will arise before the $(n+1)$ th wife changes, leads to the formulae:

$$
\begin{equation*}
Q_{n+1}=P_{n}+Q_{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n+1}=R_{n}+(2 n-1) Q_{n} \tag{3}
\end{equation*}
$$

By eliminating Q 's and R 's the following formula is then produced:

$$
\begin{align*}
P_{n}=(n-3) & P_{n-1}+\left\{(3 n-7) P_{n-2}\right. \\
& \left.+(5 n-12) P_{n-3}+(7 n-19) P_{n-4}+\ldots+\left(n^{2}-n-19\right) P_{4}+\left(n^{2}-n-12\right) P_{3}\right\}+1 . \tag{4}
\end{align*}
$$

Since $P_{1}=P_{2}=0$ and $P_{3}=1$ by inspection we have

$$
\begin{aligned}
& P_{4}=P_{3}+1=2 \\
& P_{5}=2 P_{4}+8 P_{3}+1=13 \\
& P_{6}=3 P_{5}+11 P_{4}+18 P_{3}+1=80 \\
& \text { etc. }
\end{aligned}
$$

which reproduces the values in columin (3) of Table 1 of the note.
For $n \geqslant 6$, formula (4) can be transformed to:

$$
P_{n}=n P_{n-1}+2 P_{n-2}-(n-4) P_{n-3}-P_{n-4}
$$

I would be happy to provide a more detailed version of this solution to anyone who may be interested.
C. E. Fellows

