A QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

R. A. ADAMS

1. Introduction. Let Ω be a bounded open set in Euclidean n-space, E_{n}. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an n-tuple of non-negative integers;

$$
|\alpha|=\alpha_{1}+\ldots+\alpha_{n}
$$

and denote by Q_{m} the set $\left\{\alpha|0 \leqslant|\alpha| \leqslant m\}\right.$. Denote by $x=\left(x_{1}, \ldots, x_{n}\right)$ a typical point in E_{n} and put

$$
D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}, \quad D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}} \quad\left(i^{2}=-1\right) .
$$

In this paper we establish, under certain circumstances, the existence of weak and classical solutions of the quasi-linear Dirichlet problem

$$
\begin{align*}
A u(x) & =\lambda f[u](x), \quad x \in \Omega, \\
D^{\alpha} u(x) & =0, \quad \alpha \in Q_{m-1}, \quad x \in \partial \Omega . \tag{1}
\end{align*}
$$

Here A is a linear elliptic partial differential operator of order $2 m$ given in the generalized divergence form

$$
A u(x)=\sum_{\alpha, \beta \in Q_{m}} D^{\alpha}\left[a_{\alpha \beta}(x) D^{\beta} u(x)\right]
$$

where the coefficients $a_{\alpha \beta}(x)$ are complex-valued functions on Ω. Also, $f[u](x)$ is a complex-valued function depending on $x, u(x)$, and all the derivatives of $u(x)$ of order not exceeding $m-1$. We write

$$
f[u](x)=f\left(x, u(x), D^{1} u(x), \ldots, D^{m-1} u(x)\right)
$$

where D^{k} represents the vector of all derivatives of order k.
We shall restrict f in such a way that our problem is not a generalization of the linear case $A u(x)=\lambda u(x)$. Among other things our work generalizes results of Duff (7) for the equation $\Delta u(x)=-f(x, u(x)), f \geqslant \delta>0$. In particular, it yields suitably normalized eigenfunctions for equations of the form

$$
\Delta^{m} u(x)=f\left(x, u(x), \ldots, D^{m-1} u(x)\right)
$$

for a wide class of functions satisfying, for fixed $\delta>0$, either $f \geqslant \delta$ or $f \leqslant-\delta$. The conditions on our problem are given in $\S 3$ below. The principal results are contained in Theorem 3 of $\S 5$ and Theorem 4 of $\S 6$.
2. Sobolev spaces. Let $C_{0}{ }^{\infty}(\Omega)$ denote the class of infinitely often continuously differentiable functions with compact support in Ω.

Let $W^{m, p}(\Omega)$ denote, for $1<p<\infty$, the collection of functions in $L^{p}(\Omega)$ whose derivatives (in the weak sense-see (2, p. 3, Definition 1.5)) of order not exceeding m all belong to $L^{p}(\Omega)$. This is a separable, reflexive Banach space with respect to the norm

$$
\left|\mid u \|_{m, p}=\left\{\sum_{\alpha \in Q_{m}}\left\|D^{\alpha} u\right\|_{0, p}^{p}\right\}^{1 / p}\right.
$$

where $\|u\|_{0, p}$ is the $L^{p}(\Omega)$ norm. $W^{m, 2}(\Omega)$ is a Hilbert space with respect to the inner product

$$
[u, v]_{m}=\sum_{\alpha \in Q_{m}}\left[D^{\alpha} u, D^{\alpha} v\right]
$$

where $[u, v]$ is the $L^{2}(\Omega)$ inner product. Let $H^{m, p}(\Omega)$ be the closed linear subspace of $W^{m, p}(\Omega)$ obtained by taking the closure of the linear manifold $C_{0}^{\infty}(\Omega)$ in the norm $\|\cdot\|_{m, p}$. The Hilbert space $H^{m, 2}(\Omega)$ is the setting of much of our work.
The principal results concerning the Sobolev spaces $W^{m, p}(\Omega)$ and $H^{m, p}(\Omega)$ and their embedding theorems (the Sobolev and Kondrasev theorems) which we shall use may be found in (2;4;8).
3. Conditions on the problem. Throughout this paper we assume that the following conditions are satisfied:
(A) The functions $a_{\alpha \beta}(x)$ are measurable and uniformly bounded on Ω.
(B) There exists a constant $c>0$ such that the Dirichlet form

$$
\begin{equation*}
a(u, v)=\sum_{\alpha, \beta \in Q_{m}} \int_{\Omega} a_{\alpha \beta}(x) D^{\beta} u(x) \overline{D^{\alpha} v(x)} d x \tag{2}
\end{equation*}
$$

satisfies $|a(u, u)| \geqslant c\|u\|_{m, 2}^{2}$ for all $u(x) \in C_{0}{ }^{\infty}(\Omega)$.
(C) If t is the complex vector $\left(t_{\alpha}\right)\left(\alpha \in Q_{m-1}\right)$, then $f(x, t)$ is measurable in x for x in Ω and fixed t and is continuous in t. (Note that $f[u](x)=f(x, t)$ where $\left.t_{\alpha}=t_{\alpha}(x)=D^{\alpha} u(x).\right)$
(D) The growth conditions:

$$
|f(x, t)| \leqslant K+\sum_{k=0}^{m-1} \sum_{\alpha \in Q_{k}} C_{k}\left(\left|t_{\alpha}\right|\right)
$$

where K is a constant and where, if $n<2 m-2 k, C_{k}(r)$ is a non-decreasing function of r for $0 \leqslant r<\infty$. If $n \geqslant 2 m-2 k$, then $C_{k}(r)=B_{k} r^{\sigma k}$ where B_{k} is a constant and

$$
\begin{equation*}
1 \leqslant \sigma_{k}<\frac{n+2 m}{n-2 m+2 k} \quad \text { if } n>2 m \tag{i}
\end{equation*}
$$

(ii) $\quad 1 \leqslant \sigma_{k}<\frac{2 n}{n-2 m+2 k} \quad$ if $2 m \geqslant n>2 m-2 k$,
(iii) $1 \leqslant \sigma_{k}<\infty \quad$ if $n=2 m-2 k$.

By a weak solution of the problem (1) we mean an element $u(x) \in H^{m, 2}(\Omega)$ satisfying

$$
\begin{equation*}
a(u, v)=\int_{\Omega} f[u](x) \overline{v(x)} d x \tag{3}
\end{equation*}
$$

for all $v(x) \in H^{m, 2}(\Omega)$. The weak solution is non-trivial provided $\|u\|_{m, 2}>0$. A classical solution is one that is sufficiently differentiable to satisfy the differential equation and boundary conditions in a pointwise sense.
4. The operator equation. We now replace equation (3) above by an operator equation in $H^{m, 2}(\Omega)$.

Theorem 1. Suppose that the conditions (A)-(D) of §3 are satisfied. Then there exists a bounded linear operator L mapping $H^{m, 2}(\Omega)$ onto itself and possessing a bounded inverse L^{-1}, and also a completely continuous operator C mapping $H^{m, 2}(\Omega)$ into itself such that for all $u(x), v(x) \in H^{m, 2}(\Omega)$

$$
\begin{gather*}
a(u, v)=[L u, v]_{m}, \tag{4}\\
\int_{\Omega} f[u](x) \overline{v(x)} d x=[C(u), v]_{m} .
\end{gather*}
$$

Any weak solution of (1) is a solution of

$$
\begin{equation*}
u=\lambda L^{-1} C(u) \tag{6}
\end{equation*}
$$

and conversely. Finally, there exists a non-decreasing function $g(r)$ for $0 \leqslant r<\infty$ such that $\|C(u)\|_{m, 2} \leqslant g\left(\|u\|_{m, 2}\right)$ for all $u \in H^{m, 2}(\Omega)$.

Proof. The existence of L satisfying (4) is an immediate consequence of condition (A) and the Riesz representation theorem. The invertibility of L on $H^{m, 2}(\Omega)$ is a consequence of condition (B), the fact that $C_{0}{ }^{\infty}(\Omega)$ is dense in $H^{m, 2}(\Omega)$, and the Lax-Milgram representation theorem (2, p. 99).

The left side of (5) is a conjugate linear functional of v on $H^{m, 2}(\Omega)$. That it is bounded follows from condition (D) and Sobolev's embedding theorem. For example, suppose $n>2 m$. Then $H^{m, 2}(\Omega)$ is embedded continuously in $L^{r}(\Omega)$ where $r=2 n(n-2 m)^{-1}$. If $r^{-1}+s^{-1}=1$, then

$$
\sigma_{k} s<2 n(n-2 m+2 k)^{-1}
$$

and so $H^{m-k, 2}(\Omega)$ is embedded continuously in $L^{p}(\Omega)$ where $p=\sigma_{k}$ s. Thus if $|\alpha|=k$,

$$
\begin{aligned}
\int_{\Omega}\left|D^{\alpha} u(x)\right|^{\sigma_{k}}|v(x)| d x & \leqslant\left\|D^{\alpha} u\right\|_{0, s s_{k} k}^{\sigma_{k}} \mid\|v\|_{0, r} \\
& \leqslant \text { const. }\left\|D^{\alpha} u\right\|_{m-k, 2}^{\sigma_{k}}\|v\|_{m, 2} \\
& \leqslant \text { const. }\|u\|_{m, 2}^{\sigma_{k}}\|v\|_{m, 2} .
\end{aligned}
$$

Condition (D) now gives

$$
\begin{equation*}
\left|\int_{\Omega} f[u](x) \overline{v(x)} d x\right| \leqslant \text { const. }\left\{1+\sum_{k=0}^{m-1} \sum_{\alpha \in Q_{k}}\|u\|_{m, 2}^{\sigma_{k}}\right\}\|v\|_{m, 2} . \tag{7}
\end{equation*}
$$

The other cases follow similarly. The existence of C satisfying (5) follows by the Riesz representation theorem. The function $g\left(\|u\|_{m, 2}\right)$ is given by the factor multiplying $\|v\|_{m, 2}$ on the right side of (7) (for the case $n>2 m$).

In proving the complete continuity of C we again consider only the case $n>2 m$, the other cases being similar though more tedious. (A detailed proof for all cases may be found in (1).) Since $\sigma_{k}<(n+2 m)(n-2 m+2 k)^{-1}$, there exist constants $\epsilon_{k}>0$ such that $\sigma_{k}\left(1+\epsilon_{k}\right) \leqslant(n+2 m)(n-2 m+2 k)^{-1}$. Define $q_{k}=2 n(n-2 m+2 k)^{-1}\left(1+\epsilon_{k}\right)^{-1}$ choosing ϵ_{k} smaller if necessary so that $q_{k} \geqslant 1$. By the Kondrasev theorem (also called Rellich's lemma) the embedding map

$$
J_{k}: H^{m-k, 2}(\Omega) \rightarrow L^{q_{k}}(\Omega)
$$

is completely continuous. Thus, so is the product mapping

$$
\begin{gathered}
J: \prod_{k=0}^{m-1} \prod_{\alpha \in Q_{k}} H^{m-k, 2}(\Omega) \rightarrow \prod_{k=0}^{m-1} \prod_{\alpha \in Q_{k}} L^{q_{k}}(\Omega), \\
J\left(\ldots, u_{j}, \ldots\right)=\left(\ldots, J_{k} u_{j}, \ldots\right), u_{j} \in H^{m-k, 2}(\Omega) .
\end{gathered}
$$

Here the product spaces are normed by the Pythagorean formula. We define the operator

$$
B: \prod_{k=0}^{m-1} \prod_{\alpha \in Q_{k}} L^{q_{k}}(\Omega) \rightarrow L^{p}(\Omega)
$$

where $p=2 n(n+2 m)^{-1}$ by the formula

$$
B(t(x))=f(x, t(x))
$$

If we put $p_{k}=q_{k} p^{-1}$, we have $p_{k} \geqslant \sigma_{k}$ and so by condition (D)

$$
|B(t(x))| \leqslant K+\sum_{k=0}^{m-1} \sum_{\alpha \in \varphi_{k}} B_{k}\left|t_{\alpha}(x)\right|^{p_{k}}
$$

By an extension of a theorem of M. M. Vainberg (10, p. 253) which can be proved using the method of (10) (the proof can be found in (1)) it follows that B is a continuous mapping. Hence the mapping

$$
B J: \prod_{k=0}^{m-1} \prod_{\alpha \in Q_{k}} H^{m-k, 2}(\Omega) \rightarrow L^{p}(\Omega)
$$

is completely continuous. Now is $u_{n} \rightarrow u$ weakly in $H^{m, 2}(\Omega)$, it is easily verified that $D^{\alpha} u_{n} \rightarrow D^{\alpha} u$ weakly in $H^{m-k, 2}(\Omega)$. By Hölder's inequality and Sobolev's theorem, we obtain, using (5),

$$
\begin{aligned}
\left\|C\left(u_{n}\right)-C(u)\right\|_{m, 2} & =\sup _{\|v\|_{m}, 2=1}\left|\left[C\left(u_{n}\right)-C(u), v\right]_{m}\right| \\
& \leqslant \text { const. }\left\|f\left[u_{n}\right]-f[u]\right\|_{0, p} \\
& \leqslant \text { const. }\left\|B J\left(\left(D^{\alpha} u_{n}\right)_{\alpha \in Q_{m-1}}\right)-B J\left(\left(D^{\alpha} u\right)_{\alpha \in Q_{m-1}}\right)\right\|_{0, p}
\end{aligned}
$$

which tends to 0 as n tends to infinity. This completes the proof, the rest of the theorem being obvious.
5. Existence theory. Using various well-known fixed-point theorems, we demonstrate the existence of a solution of equation (6). In order to be sure that the solution is non-trivial we assume that $C(0) \neq 0$ in $H^{m, 2}(\Omega)$, or equivalently, $\|f(x, 0)\|_{0,2} \neq 0$.
Theorem 2 (Schauder, Schaefer, Birkhoff-Kellogg). Let B_{r} be the ball of radius r centred at the origin in the separable Hilbert space H, and let S_{r} be its surface. Let T be a completely continuous operator in H. Then
(a) if T maps B_{r} into B_{r}, it has a fixed point in B_{r};
(b) if T maps H into H and $\lambda_{0}>0$, either there exists $u \in H$ such that $u=\lambda_{0} T(u)$ or for any $r>0$ there exists $u \in S_{r}$ and λ with $0<\lambda<\lambda_{0}$ such that $u=\lambda T(u)$;
(c) if T maps S_{r} into S_{r}, it has a fixed point on S_{r}.

The proofs of these results may be found in Cronin (6).
Theorem 3. Suppose the conditions (A)-(D) of §3 are satisfied. Let B_{r} be the ball of radius r centred at the origin in $H^{m, 2}(\Omega)$, and let S_{r} be its surface. Then we have the following:
(a) If $\|C(0)\|_{m, 2}>0$, then for any $r>0$ there exists $\lambda_{0}>0$ such that if $0<\lambda \leqslant \lambda_{0}$ then there exists a non-trivial solution of (6) in B_{r}.
(b) Given $\lambda_{0}>0$, either there exists $u \in H^{m, 2}(\Omega)$ such that $u=\lambda_{0} L^{-1} C(u)$ or for any $r>0$ there exists a solution of (5) on S_{r} for some $\lambda<\lambda_{0}$.
(c) If for some $r>0, C$ satisfies

$$
\begin{equation*}
\inf _{u \in S_{r}}\|C(u)\|_{m, 2}=\theta>0 \tag{2}
\end{equation*}
$$

then there exists a solution of (6) on S_{r} for some λ satisfying

$$
\frac{R}{\left\|L^{-1}\right\| g(R)} \leqslant \lambda \leqslant \frac{R\|L\|}{\theta} .
$$

Proof. Part (a) follows from Theorem 2(a) if we put

$$
T(u)=\lambda L^{-1} C(u), \quad \lambda_{0}=\frac{R}{\left\|L^{-1}\right\| g(R)} .
$$

Part (b) is an immediate consequence of Theorem 2(b).
Part (c) follows from Theorem 2 (c) if we put

$$
T(u)=R \frac{L^{-1} C(u)}{\left\|L^{-1} C(u)\right\|_{m, 2}}
$$

for since $\left\|L^{-1} C(u)\right\|_{m, 2} \geqslant \theta(\|L\|)^{-1}$ for $u \in S_{r}$, it follows that $L^{-1} C\left(S_{r}\right)$ is bounded away from the origin. But then the projection P from the origin of $H^{m, 2}(\Omega)$ onto S_{r} is continuous on $L^{-1} C\left(S_{r}\right)$ and so $T=P L^{-1} C$ is completely continuous.

Remark. Condition (8) may be put in the equivalent form

$$
\inf _{u \in S_{r}} \sup _{v \in S_{1}}\left|\int_{\Omega} f[u](x) \overline{v(x)} d x\right|=\theta>0
$$

The existence of a $\theta>0$ satisfying (8) is equivalent to the condition $\|C(u)\|_{m, 2}>0$ for all $u \in B_{\tau}$ because each element of B_{τ} is the weak limit of a sequence on S_{r} and $\|C(u)\|_{m, 2}$, being a weakly continuous functional, takes on its infimum on the weakly compact set B_{r}.
6. Regularity theory. We denote by $C^{m}(\Omega)$ (by $C^{m}(\bar{\Omega})$), the class of functions which together with all their derivatives of order not exceeding m are continuous in Ω (are uniformly continuous on the closure $\bar{\Omega}$ of Ω). $C^{m, r}(\Omega)$ is the class of functions in $C^{m}(\bar{\Omega})$ which together with all their derivatives of order not exceeding m satisfy a Hölder condition of exponent r in Ω.

We place the following regularity conditions on our problem:
(E) A is uniformly elliptic and if $n=2$ it satisfies the "roots condition" (3, p. 57). Also, $a_{\alpha \beta}(x) \in C^{2 m}(\bar{\Omega})$.
(F) Ω is of class $C^{2 m}$ in E_{n} (cf. definition in (2, p. 128)).
(G) $f(x, t)$ satisfies a local Lipschitz condition in each component of t, and also a Hölder condition of exponent $r(0<r<1)$ in x.

Lemma. Suppose that conditions (A)-(G) are satisfied and let $u(x)$ be a weak solution of problem (1). Then $u(x) \in W^{2 m, p}(\Omega)$ for any $p<\infty$.

Proof. Again we consider only the case $n>2 m$. The other cases are similar but more complicated and are treated in detail in (1). Since $u(x) \in H^{m, 2}(\Omega)$, it follows from Sobolev's embedding theorem that

$$
D^{\alpha} u(x) \in L^{r_{1 k}}(\Omega), \quad 0 \leqslant|\alpha|=k \leqslant m-1,
$$

where $r_{1 k}=2 n(n-2 m+2 k)^{-1}$. Defining ϵ_{k} as in the proof of Theorem 1 , we put $\epsilon=\min \epsilon_{k}>0$. It follows from condition (D) that

$$
\left|D^{\alpha} u(x)\right|^{\sigma_{k}} \in L^{p_{1 k}}(\Omega)
$$

where $p_{1 k}=r_{1 k}\left(\sigma_{k}\right)^{-1} \geqslant 2 n(1+\epsilon)(n+2 m)^{-1} \equiv p_{1}>1$. Hence, if we put $f(x)=f[u](x)$,

$$
f(x) \in L^{p_{1}}(\Omega)
$$

It follows by a theorem of Agmon (3, p. 88, Theorem 8.2), the conditions of which are fulfilled under our stated conditions, that

$$
u(x) \in W^{2 m, p_{1}}(\Omega)
$$

From this point, we may repeat the above argument and obtain

$$
D^{r} u(x) \in L^{r_{2 k}}(\Omega), \quad 0 \leqslant|\alpha|=k \leqslant m-1,
$$

where, if $n \leqslant(2 m-k) p_{1}, r_{2 k}$ is any finite number greater than unity, or, if $n>(2 m-k) p_{1}$,

$$
r_{2 k}=\frac{n p_{1}}{n-(2 m-k) p_{1}} \leqslant \frac{2 n}{n-2 m+2 k}(1+\epsilon)
$$

It follows that

$$
\left|D^{\alpha} u\right|^{\sigma_{k}} \in L^{p_{2 k}}(\Omega)
$$

where $p_{2 k}=r_{2 k}\left(\sigma_{k}\right)^{-1} \geqslant 2 n(1+\epsilon)^{2}(n+2 m)^{-1}=(1+\epsilon) p_{1} \equiv p_{2}$. Again by the theorem of Agmon referred to above we have

$$
u(x) \in W^{2 m, p_{2}}(\Omega)
$$

This "boot-strapping" procedure can be continued to produce

$$
u(x) \in W^{2 m, p_{s}}(\Omega)
$$

for a sequence of values $p_{s}=(1+\epsilon)^{s-1} p_{1}$ tending to infinity. This completes the proof.

Corollary. $u(x) \in C^{2 m}(\Omega) \cap C^{m-1}(\Omega)$.
Proof. For p large enough ($p>n(m-r)^{-1}$), any function in $W^{2 m, p}(\Omega)$ belongs, after possible redefinition on a subset of Ω of measure zero, to $C^{m, r}(\Omega)$, by Sobolev's embedding theorem. In particular, $u(x) \in C^{m-1}(\bar{\Omega})$. Since, for $0 \leqslant|\alpha| \leqslant m-1, D^{\alpha} u(x)$ is uniformly bounded on Ω, and since $f(x, t)$ satisfies condition (G), it follows that $f(x)=f[u](x)$ belongs to $C^{0, r}(\Omega)$. By a theorem of Browder (5, Theorem 1 (iii)), the conditions of which are satisfied under our stated conditions, it follows that $u(x) \in C^{2 m, r}\left(\Omega^{\prime}\right)$ for any compact subdomain $\Omega^{\prime} \subset \Omega$. In particular, $u(x) \in C^{2 m}(\Omega)$.

Theorem 4. Under conditions (A)-(G) any weak solution $u(x)$ of (1) is a classical solution.

Proof. Since $u(x) \in C^{m-1}(\bar{\Omega}) \cap H^{m, 2}(\Omega)$, it follows for $\alpha \in Q_{m-1}$ that $D^{\alpha} u(x) \in C^{0}(\bar{\Omega}) \cap H^{1,2}(\Omega)$, and so be a lemma of Nirenberg (9, §2, Lemma 8) $D^{\alpha} u(x)=0$ in a pointwise sense on the boundary of Ω. Since $u(x)$ is a weak solution of (1), we obtain from (3), by integration by parts in (2), that

$$
\int_{\Omega}[A u(x)-\lambda f[u](x)] \overline{v(x)} d x=0
$$

for all functions $v(x) \in C_{0}{ }^{\infty}(\Omega)$. Since the term in the square brackets is continuous, it vanishes identically in Ω. Thus $u(x)$ is a classical solution of (1).

References

1. R. A. Adams, A quasi-linear elliptic boundary value problem, Ph.D. Thesis, Univ. of Toronto, 1966.
2. S. Agmon, Lectures on elliptic boundary value problems (New York, 1965).
3. The L^{p}-approach to the Dirichlet Problem, Ann. Scuola Norm. Sup. Pisa, 13 (1959). 405-448.
4. F. E. Browder, On the spectral theory of elliptic differential operators I, Math. Ann., 142 (1961), 22-130.
5. - Regularity of solutions of elliptic equations, Comm. Pure Appl. Math., 9 (1956), 351-361.
6. J. Cronin, Fixed points and topological degree in nonlinear analysis, A.M.S. Math. Survey No. 11 (1964).
7. G. F. D. Duff, Modified boundary problems for a quasi-linear elliptic equation, Can. J. Math., 8 (1956), 203-219.
8. J. L. Lions, Problèmes aux limites dans les équations aux derivées partielles, Lecture Notes (Univ. of Montreal Press, 1962).
9. L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math , 8 (1955), 649-672.
10. M. M. Vainberg, On the continuity of some operators fo a special form. Dokl. Akad. Nauk, 73 (1950), 253-255.

The University of Toronto

