Canad. Math. Bull. Vol. 58 (4), 2015 pp. 704–712 http://dx.doi.org/10.4153/CMB-2015-055-9 © Canadian Mathematical Society 2015



# On the Continued Fraction Expansion of Fixed Period in Finite Fields

Hela Benamar, Amara Chandoul, and M. Mkaouar

Abstract. The Chowla conjecture states that if t is any given positive integer, there are infinitely many prime positive integers N such that  $Per(\sqrt{N}) = t$ , where  $Per(\sqrt{N})$  is the period length of the continued fraction expansion for  $\sqrt{N}$ . C. Friesen proved that, for any  $k \in \mathbb{N}$ , there are infinitely many square-free integers N, where the continued fraction expansion of  $\sqrt{N}$  has a fixed period. In this paper, we describe all polynomials  $Q \in \mathbb{F}_q[X]$  for which the continued fraction expansion of  $\sqrt{Q}$  has a fixed period. We also give a lower bound of the number of monic, non-squares polynomials Q such that deg Q = 2d and  $Per\sqrt{Q} = t$ .

## 1 Introduction

Let  $\mathbb{F}_q$  be the finite field of odd characteristic with q elements, and denote by  $\mathbb{F}_q((X^{-1}))$  the field of formal Laurent series in  $X^{-1}$  over  $\mathbb{F}_q$  given by

$$\mathbb{F}_q((X^{-1})) = \left\{ \sum_{i \ge n} w_i X^{-i}, w_i \in \mathbb{F}_q, n \in \mathbb{Z} \right\}.$$

We have the inclusions  $\mathbb{F}_q[X] \subset \mathbb{F}_q(X) \subset \mathbb{F}_q((X^{-1}))$ . Elements in  $\mathbb{F}_q(X)$  are called *rational*, and those which lie in  $\mathbb{F}_q((X^{-1}))$  but not in  $\mathbb{F}_q(X)$  are called *irrational*. We define a norm on  $\mathbb{F}_q((X^{-1}))$  as follows: If  $w \in \mathbb{F}_q((X^{-1}))$  is non-zero, then we can write  $w = \sum_{i \ge n} w_i X^{-i}$ , where  $w_n \ne 0$ . In this case we define  $|w| = q^{-n}$ . If w = 0 we define |w| = 0. Observe that if w = P/Q is rational Laurent series with  $P, Q \in \mathbb{F}_q[X]$  then  $|w| = q^{\deg P - \deg Q}$ . We denote by  $\overline{\mathbb{F}_q((X^{-1}))}$  an algebraic closure of  $\mathbb{F}_q((X^{-1}))$ . We note that the absolute value has a unique extension to  $\overline{\mathbb{F}_q((X^{-1}))}$ . To denote this extended absolute value, we also use the symbol  $|\cdot|$ . The notation  $[\cdot]$  will be used to denote both the polynomial part of an element of  $\mathbb{F}_q((X^{-1}))$  as well as the integer part of a real number.

For more information about formal power series, see [2,10].

It is easy to verify that a continued fraction theory exists for the field  $\mathbb{F}_q((X^{-1}))$ (see [1, 5]), in particular, any irrational Laurent series  $w \in \mathbb{F}_q((X^{-1}))$  has a unique infinite continued fraction expansion

(1.1) 
$$w = A_0 + \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{2}}}$$

Received by the editors January 29, 2014.

Published electronically August 27, 2015.

AMS subject classification: 11A55, 13J05.

Keywords: continued fractions, polynomials, formal power series.

On the Continued Fraction Expansion of Fixed Period in Finite Fields

where  $A_j \in \mathbb{F}_q[X]$ , with deg  $A_j \ge 1$  for  $j \ge 1$ . As a shorthand for (1.1), we write

$$w = [A_0; A_1, A_2, \dots],$$

and, as usual, we refer to  $\frac{H_n}{K_n} = [A_0; A_1, A_2, \dots, A_n]$   $(n \ge 0)$  as the *n*-th convergent to *w* and call the polynomials  $A_j$   $(j \ge 0)$  the partial quotients of *w*. We also have  $H_0 = A_0$ ,  $H_1 = A_0A_1 + 1$ ,  $K_0 = 1$ ,  $K_1 = A_1$ , and in general

(1.2)  $H_n = A_n H_{n-1} + H_{n-2}$  and  $K_n = A_n K_{n-1} + K_{n-2}$   $(n \ge 2)$ .

Readers interested in an overview of basic results concerning continued fractions over  $\mathbb{F}_q((X^{-1}))$  are referred to [1, 8, 9, 11].

# 2 Main Results

The purpose of this paper is to describe all polynomials  $Q \in \mathbb{F}_q[X]$  for which the continued fraction expansion of  $\sqrt{Q}$  has a fixed period. Then our main result is stated as follows.

**Theorem 2.1** The equation  $\sqrt{Q} = \left[ \left[ \sqrt{Q} \right]; A_1, \dots, A_{t-1}, 2\left[ \sqrt{Q} \right] \right]$  has, for any symmetric (t-1)-tuple  $(A_1, \dots, A_{t-1})$  (i.e.,  $(A_1, \dots, A_{t-1}) = (A_{t-1}, \dots, A_1)$ ) of positive degree polynomials, infinitely many non-squares solutions Q.

We get the following corollary immediately.

**Corollary 2.2** For any positive integer t there exist infinitely many non-squares polynomials Q with  $\sqrt{Q}$  having a continued fraction expansion of period t.

In the real case, Friesen [4] shows that given any symmetric (t-1)-tuple of positive integers,  $(a_1, \ldots, a_{t-1})$ , if  $Q_{-1} = 0$ ,  $Q_0 = 1$  and  $Q_n = a_n Q_{n-1} + Q_{n-2}$ , for  $n = 1, 2, \ldots, t-1$ , then the equation  $\sqrt{N} = \left[ \sqrt{N} \right]; a_1, \ldots, a_{t-1}, 2 \left[ \sqrt{N} \right] \right]$  has infinitely many square-free solutions N whenever either  $Q_{t-2}$  or  $(Q_{t-2}^2 - (-1)^t)/Q_{t-1}$  is even. If both quantities are odd, then there are no solutions N even if the square-free condition is dropped.

We will be concerned with computing the number of non-squares polynomials such that deg Q = 2d and  $Per\sqrt{Q} = t$ . Let

 $\theta(d, t) = \# \{ Q \in \mathbb{F}_q[X] : Q \text{ monic, deg } Q = 2d \text{ and } \operatorname{Per}(\sqrt{Q}) = t \};$ 

then we have the following theorem.

Theorem 2.3 (i) Let 
$$t \ge 3$$
 and  $d \ge t - 2$ . Then  
 $\theta(d, t) \ge \begin{cases} (q-1)^p q^d \sum_{n=p}^{\lfloor d/2 \rfloor} {n-1 \choose p-1} q^{-n} & \text{if } t = 2p+1, \\ (q-1)^p q^d \sum_{k=1}^{d-2p-2} \sum_{n=p-1}^{\lfloor (d-k)/2 \rfloor} {n-1 \choose p-2} q^{-n} & \text{if } t = 2p. \end{cases}$ 

(ii)  $\theta(d,1) = q^d \text{ and } \theta(d,2) = (dq - d - 1)q^d, \text{ for } d \ge 1.$ 

The remainder of the paper is organised in the following way. Section 3 will be devoted to explaining basic algebraic properties in the field of formal Laurent series,

some definitions, theorems and lemmas are given in this section. Some elementary properties of periodic continued fractions are also given. In Section 4, Theorems 2.1 and 2.3 are established.

## **3 Formal Power Series**

#### 3.1 Algebraic Properties

**Theorem 3.1** For  $n \ge 2$  with gcd(n, q) = 1, let Q be a monic polynomial  $\in \mathbb{F}_q[X]$  that is not an n-th power and deg  $Q \equiv 0 \pmod{n}$ . If

$$P(Y) = Y^n - Q,$$

then *P* has unique root  $f \in \mathbb{F}_q((X^{-1}))$  such that [f] = T, where  $Q = T^n - S$ , and  $T(\text{monic}), S \in \mathbb{F}_q[X]$  such that  $0 \leq \deg S < (n-1) \deg T$ .

The proof of Theorem 3.1 uses following lemmas.

Lemma 3.2 (See [7]) Let  $P(Y) = A_d Y^d + \dots + A_0$ , with  $A_i \in \mathbb{F}_q[X]$  and  $|A_{d-1}| > \max_{i \neq d-1} |A_i|$ . Then P has only one root  $w \in \mathbb{F}_q((X^{-1}))$  satisfying |w| > 1. Moreover,  $[w] = -\left[\frac{A_{d-1}}{A_d}\right]$ , and all conjugates of w in  $\overline{\mathbb{F}_q((X^{-1}))}$  have an absolute value strictly smaller than 1.

*Lemma 3.3* Let  $Q \in \mathbb{F}_q[X]$ ,  $n \ge 2$ , such that gcd(n, q) = 1 and  $deg Q \equiv 0 \pmod{n}$ . Then the polynomial Q is uniquely expressible as  $\alpha T^n - S$ , where T(monic),  $S \in \mathbb{F}_q[X]$  such that deg S < (n-1) deg T and  $\alpha \in \mathbb{F}_q \setminus \{0\}$ .

**Proof** We may assume without loss of generality that Q is a monic polynomial such that deg Q = dn,

$$Q = \sum_{i=0}^{dn} \alpha_i X^i \quad \text{and} \quad T = \sum_{i=0}^{d} \beta_i X^i, \quad \beta_d = 1$$

We must, in order to have  $\deg(Q - T^n) < (n - 1) \deg T$ , require that for all  $k \in \{(n-1)d, \ldots, nd\}$ ,

(3.1) 
$$\alpha_k = \sum_{\substack{i_1 + \dots + i_n = k \\ 0 \le i_j \le d}} \beta_{i_1} \cdots \beta_{i_n}.$$

We establish the lemma by resolving the system (3.1). Assuming that all  $\beta_i$  are known for  $s < i \le d$ , then from (3.1),

$$\alpha_{(n-1)d+s} = \sum_{\substack{i_1+\cdots+i_n=(n-1)d+s\\0\le i_j\le d}} \beta_{i_1}\cdots\beta_{i_n} = n\beta_s + \sum_{\substack{i_1+\cdots+i_n=(n-1)d+s\\0\le i_j\le d, i_j\ne s}} \beta_{i_1}\cdots\beta_{i_n},$$

hence

$$\beta_{s} = \frac{1}{n} \alpha_{(n-1)d+s} - \frac{1}{n} \sum_{\substack{i_{1}+\dots+i_{n}=(n-1)d+s\\0 \le i_{1} \le d, i_{1} \ne s}} \beta_{i_{1}} \cdots \beta_{i_{n}}.$$

This completes the proof of the lemma.

**Corollary 3.4** Let Q be a monic polynomial  $\in \mathbb{F}_q[X]$ ,  $n \ge 2$  such that gcd(n, q) = 1and  $\deg Q \equiv 0 \pmod{n}$ . Then Q is not n-th power if and only if  $Q = T^n - S$ , where T(monic),  $S \in \mathbb{F}_q[X] \setminus \{0\}$  such that  $\deg S < (n-1) \deg T$ .

Now, we are prepared to give the proof of Theorem 3.1.

**Proof** Put  $Y = T + \frac{1}{Z}$ ; then

$$P(Y) = 0$$

(3.3) 
$$SZ^{n} + nT^{n-1}Z^{n-1} + \dots + \binom{n}{n-k}T^{k}Z^{k} + \dots + 1 = 0$$

From Lemma 3.2, the equation (3.3) has a unique root  $g \in \mathbb{F}_q((X^{-1}))$  such that  $[g] = -n[\frac{T^{n-1}}{S}]$ ; consequently,  $f = T + \frac{1}{g}$  is the unique root in  $\mathbb{F}_q((X^{-1}))$  of (3.2) with [f] = T.

We shall use the notation  $\sqrt[n]{Q}$  to designate the unique root in  $\mathbb{F}_q((X^{-1}))$  of equation (3.2) with  $\left[\sqrt[n]{Q}\right] = T$ , where  $Q = T^n - S$ ,  $0 \le \deg S < (n-1) \deg T$ .

**Corollary 3.5** Let Q be a monic and non-square polynomial in  $\mathbb{F}_q[X]$  with even degree. Then there exist a monic polynomial T and  $S \in \mathbb{F}_q[X] \setminus \{0\}$  such that

 $Q = T^2 - S$  with deg  $S < \deg T$ 

as well as algebraic equations

$$\sqrt{Q} = T + \frac{1}{g_Q} \quad and \quad Sg_Q^2 + 2Tg_Q + 1 = 0,$$

where  $g_Q$  is a quadratic formal power series such that  $|g_Q| > 1$ .

#### 3.2 Periodic Continued Fractions

We say that a regular continued fraction is periodic or ultimately periodic if it consists of an initial block of length n followed by a repeating block of length m; *i.e.*, if it is of the form

$$[A_0; A_1, \ldots, A_n, \overline{A_{n+1}, \ldots, A_{n+m}}]$$

where  $[A_0; A_1, ..., A_n, \overline{A_{n+1}}, ..., A_{n+m}]$  means that  $A_{n+1+km} = A_{n+1}, ..., A_{n+(k+1)m} = A_{n+m}$ , for every  $k \ge 1$ . Moreover, no block of length shorter than *m* has this property, and the initial block does not end with a copy of the repeating block.

If the initial block has length 0, we say that the continued fraction is purely periodic.

707

We recall also the definition of quadratic irrational Laurent series. A Laurent series *w* is called *quadratic irrational* if it is a root of a polynomial  $AY^2 + BY + C$  with *A*, *B*, *C*  $\in \mathbb{F}_q[X]$ ,  $A \neq 0$ , and  $B^2 - 4AC$  is not a perfect square.

There is a classical result (the analogue of Lagrange' Theorem).

**Proposition 3.6** Let w be an algebraic element over  $\mathbb{F}_q(X)$ . Then  $\alpha$  is quadratic if and only if the continued fraction expansion of w is ultimately periodic.

One can prove this result by following the proof in the real case as in [8]. Note the following characterization of purely periodic power series, which is the analogue of Galois' Theorem.

**Proposition 3.7** (See [7]) A quadratic formal power series w of non zero integral part is purely periodic if and only if w satisfies an equation

$$Aw^2 + Bw + C = 0,$$

with  $A, B, C \in \mathbb{F}_q[X] \setminus \{0\}, \deg B > \max(\deg A, \deg C)$ . Furthermore, if  $w = [\overline{A_1, A_2, \dots, A_t}]$ , then the algebraic conjugate of w is

$$-\left(w+\frac{B}{A}\right)=\left[0;\overline{-A_t,-A_{t-1},\ldots,-A_1}\right].$$

Before giving the proof of Theorem 2.1, we establish a few basic facts about the continued fraction expansion of  $\sqrt{Q}$ .

**Lemma 3.8** Let Q be a monic and non-square polynomial in  $\mathbb{F}_q[X]$  with even degree; then the period of the continued fraction expansion of  $\sqrt{Q}$  starts with the second term. Furthermore, if the period consists of the t terms  $A_0, \ldots, A_{t-1}$ , then  $A_{t-1} = 2[\sqrt{Q}]$ , and the sequence  $A_0, \ldots, A_{t-2}$  is symmetric.

**Proof** By Corollary 3.5, we have  $Q = T^2 - S$  with T and  $S \in \mathbb{F}_q[X] \setminus \{0\}$  and deg  $S < \deg T$ , as well as

(3.4) 
$$\sqrt{Q} = T + \frac{1}{g_Q}$$
 and  $Sg_Q^2 + 2Tg_Q + 1 = 0$ ,  $|g_Q| > 1$ .

Let  $w = 2T + \frac{1}{g_Q}$ . Then  $w^2 - 2Tw - S = 0$ , so by Proposition 3.7, continued fraction expansions of  $g_Q$  and w are purely periodic, and furthermore, if  $g_Q = [\overline{A_0, A_1, \dots, A_{t-1}}]$ , then

(3.5) 
$$\sqrt{Q} = [T; \overline{A_0, A_1, \dots, A_{t-1}}]$$
 and  $w = [\overline{2T, A_0, A_1, \dots, A_{t-2}}].$ 

Consequently,

(3.6) 
$$A_{t-1} = 2T = 2\left[\sqrt{Q}\right].$$

On the other hand, from (3.4) and by trivial computation, we obtain that

(3.7) 
$$w = 2T + \frac{1}{g_Q} = \frac{1}{g_Q + \frac{2T}{S}},$$

so by Proposition 3.7 and (3.6),

$$g_Q + \frac{2T}{S} = \left[0; \overline{2T, A_{t-2}, \dots, A_0}\right],$$

and hence

(3.8) 
$$\left(g_Q + \frac{2T}{S}\right)^{-1} = \left[\overline{2T, A_{t-2}, \dots, A_0}\right].$$

From (3.5), (3.7), and (3.8), we have

$$\begin{bmatrix} 2T, A_0, A_1, \dots, A_{t-2} \end{bmatrix} = \begin{bmatrix} 2T, A_{t-2}, A_{t-3}, \dots, A_0 \end{bmatrix},$$

so by identifying coefficients, we obtain that  $A_0 = A_{t-2}, \ldots, A_k = A_{t-k-2}$ .

*Lemma* 3.9 Set  $g_Q = [\overline{A_0, A_1, \dots, A_{t-1}}]$ ,  $t \ge 3$  and let  $\frac{H_i}{K_i}$  be the *i*-th convergent of  $g_Q$ . Then  $H_{t-3} = K_{t-2}$  and  $K_{t-1} = -SH_{t-2}$ .

**Proof** First, we have that

$$\frac{H_{t-2}}{H_{t-3}} = [A_{t-2}; A_{t-3}, \dots, A_0].$$

Since

$$\frac{H_{t-2}}{K_{t-2}} = [A_0; A_1, \dots, A_{t-2}]$$

and  $A_0, A_1, \ldots, A_{t-2}$  is symmetric, we have

On the other hand, from the identity

$$g_Q = \frac{H_{t-1}g_Q + H_{t-2}}{K_{t-1}g_Q + K_{t-2}}$$

we get

(3.9) 
$$K_{t-1}g_Q^2 + (K_{t-2} - H_{t-1})g_Q - H_{t-2} = 0.$$

From (3.4) and (3.9), we deduce that  $K_{t-1} = -SH_{t-2}$ .

#### 4 **Proofs of the Main Results**

**Proof of Theorem 2.1** In the sequel, we assume that  $t \ge 3$ . By Lemma 3.9 and (1.2), we have

(4.1) 
$$2TK_{t-2} + K_{t-3} = K_{t-1} = -SH_{t-2},$$

Equations (4.1) and (4.2) give us a necessary and sufficient condition for  $Q = T^2 - S$  to be a polynomial solution of the equation

(4.3) 
$$\sqrt{Q} = \left[ \left[ \sqrt{Q} \right]; \overline{A_0; \dots, A_{t-2}, 2\left[ \sqrt{Q} \right]} \right]$$

In fact, we have the identity

(4.4) 
$$H_{t-3}K_{t-2} - H_{t-2}K_{t-3} = (-1)^{t}$$

and the equation (4.1) yields

$$(4.5) 2TK_{t-2} + SH_{t-2} = -K_{t-3}.$$

H. Benamar, A. Chandoul, and M. Mkaouar

*Example 4.1* (i) In  $\mathbb{F}_3$ , let t = 3 and let  $(A_0 = X, A_1 = X)$  the symmetric pair. It is clear that

$$K_{t-3} = K_0 = 1$$
,  $K_{t-2} = K_1 = X$ ,  $H_{t-3} = H_0 = X$ ,  
 $H_{t-2} = H_1 = X^2 + 1$ ,  $2T = (X^2 + 1)P + X$ ,  $S = -(XP + 1)$ .

Then the only polynomial solutions of (4.3) are  $(X^2 + 1)^2 P^2 + 2X^3 P + X^2 + 1$ , where *P* is any polynomial in  $\mathbb{F}_q[X]$ , and

$$\sqrt{(X^2+1)^2P^2+2X^3P+X^2+1} = \left[2(X^2+1)P+2X; \overline{X, X, (X^2+1)P+X}\right].$$

(ii) In  $\mathbb{F}_3$ , let t = 4 and let  $(A_0 = X, A_1 = X + 1, A_2 = X)$  be the symmetric triple. It is clear that

$$K_{t-3} = K_1 = X + 1, \quad K_{t-2} = K_2 = X^2 + X + 1,$$
$$H_{t-3} = H_1 = X^2 + X + 1, \quad H_{t-2} = H_2 = X^3 + X^2 + 2X,$$
$$2T = (X^3 + X^2 - X)P - X^3 + X^2 + X - 1, \quad S = -(X^2 + X + 1)P + X^2 - X + 1.$$

Then the only polynomial solutions of (4.3) are  $(X^3 + X^2 - X)^2 P^2 + (X^6 + X^3 + 1)P + X^6 + X^5 + 2X^4 + X^3 + X^2 - X$ , where *P* is any polynomial in  $\mathbb{F}_q[X]$ , and

$$\left( (X^3 + X^2 - X)^2 P^2 + (X^6 + X^3 + 1)P + X^6 + X^5 + 2X^4 + X^3 + X^2 - X)^{\frac{1}{2}} = \left[ 2(X^3 + X^2 - X)P + X^3 + 2X^2 + 2X + 1; \\ \overline{X, X + 1, X, (X^3 + X^2 - X)P - X^3 + X^2 + X - 1} \right].$$

*Remark 4.2* For the special cases t = 1 and t = 2, we have the following cases.

<u>Case t = 1</u>. All polynomial solutions of (4.3) are of the form  $Q = T^2 + 1$ , where *T* is a monic polynomial in  $\mathbb{F}_q[X] \setminus \mathbb{F}_q$  and  $\sqrt{Q} = [T; \overline{2T}]$ .

<u>Case t = 2</u>. All polynomial solutions of (4.3) are of the form  $Q = T^2 + H$ , where *T* is a monic polynomial in  $\mathbb{F}_q[X] \setminus \mathbb{F}_q$ , *H* is a divisor of *T* with  $H \neq 1$ , deg *H* < deg *T* and  $\sqrt{Q} = [T; \overline{2T/H}, 2T]$ .

**Proof of Theorem 2.3** Let  $t \ge 3$ ,  $d \ge t - 2$ ,  $(A_0, A_1, A_2, \dots, A_{t-2})$  be any symmetric (t-1)-tuple of positive degree polynomials, let  $r = [A_0; A_1, A_2, \dots, A_{t-2}]$ , and let  $\frac{H_i}{K_i}$  be the *i*-th convergent of *r*. It is clear by (1.2) that

(4.6) 
$$\deg H_i = \sum_{k=0}^i \deg A_k.$$

Our goal is to give a lower bound for  $\theta(d, t)$  to the number of monic polynomials Q of degree 2d such that  $Per(\sqrt{Q}) = t$ ; in other words,  $\theta(d, t)$  is the number of monic polynomials T with degree d satisfying (4.5). Note that if

$$\Phi_0(d,t) = \# \left\{ T(\text{monic}) \in \mathbb{F}_q[X], \text{ satisfying (4.5) and } \deg H_{t-2} = \sum_{k=0}^{t-2} \deg A_k \le d \right\}$$

$$\Phi(d,t) = \# \left\{ T \in \mathbb{F}_q[X], \text{ satisfying (4.5) and } \deg H_{t-2} = \sum_{k=0}^{t-2} \deg A_k \le d \right\}$$

then  $\theta(d, t) \ge \Phi_0(d, t)$  and  $\Phi_0(d, t) = \frac{1}{q-1}\Phi(d, t)$ .

Next, we will concentrate on the estimation of  $\Phi(d, t)$ . By the division algorithm, there are  $\alpha$ ,  $R \in \mathbb{F}_q[X]$  such that

(4.7) 
$$(-1)^t K_{t-3} H_{t-3} = \alpha H_{t-2} + R \text{ and } \deg R < \deg H_{t-2}.$$

Choosing  $\beta \in \mathbb{F}_q[X]$  such that deg  $\beta = d - \deg H_{t-2}$  and  $2T = \beta H_{t-2} - R$ , then from (4.7), we have

(4.8) 
$$2T = (\alpha + \beta)H_{t-2} - (-1)^t H_{t-3}K_{t-3}.$$

Now let

and

(4.9) 
$$S = -(\alpha + \beta)K_{t-2} + (-1)^t K_{t-3}^2$$

It is clear that deg(2T) = d. By combining (4.8), (4.9), and (4.4), we obtain (4.5); then deg S < deg T.

Now, if deg  $H_{t-2} \leq d$  = deg 2*T*, then by (4.6), we derive that deg  $A_k < d$  = deg 2*T* for all k = 0, ..., t - 2; therefore, the period  $\overline{A_0, ..., A_{t-2}, 2T}$  contains no repeating period of length l ( $l \neq t$ ) such that l|t. Consequently,  $\Phi(d, t)$  is the number of t-tuple ( $A_0, ..., A_{t-2}, \beta$ ), where ( $A_0, ..., A_{t-2}$ ) is a symmetric (t-1)-tuple of positive degree polynomials,  $\beta \in \mathbb{F}_q[X]$  with  $\sum_{k=0}^{t-2} \deg A_k \leq d$  and deg  $\beta = d - \sum_{k=0}^{t-2} \deg A_k$ .

Now, we discuss the value of  $\Phi(d, t)$  with respect to the parity of *t*.

Case t = 2p + 1. The total number of ways of breaking *n* into an ordered sum of *p* positive integers is given by the binomial coefficient  $\binom{n-1}{p-1}$ , and there are exactly  $(q-1)q^{\delta}$  polynomials of degree  $\delta$ . It follows that there are  $\binom{n-1}{p-1}(q-1)^{p+1}q^{d-n}$  (p+1)-tuple  $(A_0, \ldots, A_{p-1}, \beta)$  such that

$$2n = \sum_{k=0}^{t-2} \deg A_k = 2 \sum_{k=0}^{p-1} \deg A_k \text{ and } \deg \beta = d - \sum_{k=0}^{t-2} \deg A_k = d - 2n.$$

Then by summing over all possible values of *n* ( $p \le n \le d/2$ ), we have

$$\Phi(d,t) = (q-1)^{p+1} q^d \sum_{n=p}^{\lfloor d/2 \rfloor} {n-1 \choose p-1} q^{-n}.$$

Case t = 2p. Then there are  $\binom{n-1}{p-2}(q-1)^{p+1}q^{d-n}(p+1)$ -tuples  $(A_0, \ldots, A_{p-1}, \beta)$  such that

$$k = \deg A_{p-1},$$
  

$$2n + k = \sum_{k=0}^{t-2} \deg A_k = 2 \sum_{k=0}^{p-2} \deg A_k + \deg A_{p-1},$$
  

$$\deg \beta = d - \sum_{k=0}^{t-2} \deg A_k = d - (2n+k).$$

Then by summing over all possible values of *n* and *k*  $(1 \le k \le d - 2(p + 1))$  and  $p - 1 \le n \le (d - k)/2$ , we have

$$\Phi(d,t) = (q-1)^{p+1} q^d \sum_{k=1}^{d-2p-2} \sum_{n=p-1}^{\lfloor (d-k)/2 \rfloor} {n-1 \choose p-2} q^{-n}.$$

From Remark 4.2,  $\theta(d, 1) = q^d$  and

$$\begin{aligned} \theta(d,2) &= \sum_{\substack{T \text{ monic},H \\ H\neq 1,H|T }} \sum_{\substack{\deg T=d \\ \deg H < d}} 1 = \sum_{\substack{T \text{ monic},H \\ H|T }} \sum_{\substack{\deg T=d \\ \deg H < d}} 1 - \sum_{\substack{T \text{ monic} \\ \deg T=d}} 1 \\ &= \frac{1}{q-1} \sum_{\substack{T,H \\ H|T }} \sum_{\substack{\deg T=d \\ \deg H < d}} 1 - q^d = \frac{1}{q-1} \sum_{\substack{H,K \\ \deg H K=d}} \sum_{\substack{\deg H K=d \\ \deg H < d}} 1 - q^d \\ &= \frac{1}{q-1} \sum_{\substack{h=0 \\ h=0}} \sum_{\substack{\deg H = h \\ \deg H = h}} (q-1)q^{d-h} - q^d = (dq-d-1)q^d. \end{aligned}$$

# 

#### References

- L. E. Baum and M. M. Sweet, Continued fraction of algebraic power series in characteristic 2 Ann. of Math. 103(1976), 593–610. http://dx.doi.org/10.2307/1970953
- [2] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Deleosse, and J. P. Schreiber, *Pisot and Salem numbers*. Birkhäuser Verlag, Basel, 1992.
- [3] P. Chowla and S. Chowla, Problems on periodic simple continued fraction. Proc. Nat. Acad. Sci. U.S.A 69(1972), 3745. http://dx.doi.org/10.1073/pnas.69.12.3745
- [4] C. Friesen, On continued fraction of given period. Proc. Amer. Math. Soc. 103(1988), 9–14. http://dx.doi.org/10.1090/S0002-9939-1988-0938635-4
- [5] B. Li and J. Wu, Beta-expansion and continued fraction expansion over formal laurent series. Finite Fields Appl. 14(2008), no. 3, 635–647.
- [6] K. Mahler, On a theorem of Liouville in fields of positive characteristic. Canad. J. Math. 1(1949), 397–400.
- [7] M. Mkaouar, Sur les fractions continues des séries formelles quadratiques sur F<sub>q</sub>[X]. Acta Arith. 97(2001), 241–251. http://dx.doi.org/10.4064/aa97-3-4
- [8] W. M. Schmidt, On continued fractions and Diophantine approximation in power series fields. Acta Arith. 95(2000), 139–166.
- [9] D. S Thakur, Diophantine approximation exponents and continued fractions for algebraic power series. J. Number Theory 79(1999), no. 2, 284–291. http://dx.doi.org/10.1006/jnth.1999.2413
- [10] \_\_\_\_\_, Transcendence of gamma values for  $F_q[T]$ . Ann. of Math. 144(1996), 181–188. http://dx.doi.org/10.2307/2118588
- [11] \_\_\_\_\_, Exponential and continued fractions. J. Number Theory 59(1996), 248–261.

Faculté des Sciences de Sfax, BP 1171, Sfax 3000, Tunisie

e-mail: hela.benamar@issatgb.rnu.tn mohamed.mkaouar@fss.rnu.tn

163, avenue de Luminy-case, 907-13288, Marseille Cedex 9, France e-mail: chandoul@iml.univ-mrs.fr