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On the Continued Fraction Expansion of
Fixed Period in Finite Fields

Hela Benamar, Amara Chandoul, andM. Mkaouar

Abstract. _e Chowla conjecture states that if t is any given positive integer, there are inûnitely
many prime positive integers N such that Per(

√

N) = t, where Per(
√

N) is the period length of the
continued fraction expansion for

√

N . C.Friesenproved that, for any k ∈ N, there are inûnitelymany
square-free integers N , where the continued fraction expansion of

√

N has a ûxed period. In this
paper, we describe all polynomials Q ∈ Fq[X] for which the continued fraction expansion of

√

Q
has a ûxed period. We also give a lower bound of the number of monic, non-squares polynomials
Q such that degQ = 2d and Per

√

Q = t.

1 Introduction

Let Fq be the ûnite ûeld of odd characteristic with q elements, and denote by
Fq((X−1)) the ûeld of formal Laurent series in X−1 over Fq given by

Fq((X−1)) = {∑
i≥n

w iX−i , w i ∈ Fq , n ∈ Z} .

We have the inclusions Fq[X] ⊂ Fq(X) ⊂ Fq((X−1)). Elements in Fq(X) are called
rational, and those which lie in Fq((X−1)) but not in Fq(X) are called irrational. We
deûne a norm on Fq((X−1)) as follows: If w ∈ Fq((X−1)) is non-zero, then we can
write w = ∑i≥n w iX−i , where wn ≠ 0. In this case we deûne ∣w∣ = q−n . If w = 0 we
deûne ∣w∣ = 0. Observe that if w = P/Q is rational Laurent series with P, Q ∈ Fq[X]

then ∣w∣ = qdeg P−deg Q . We denote by Fq((X−1)) an algebraic closure of Fq((X−1)).
We note that the absolute value has a unique extension to Fq((X−1)). To denote this
extended absolute value, we also use the symbol ∣ ⋅ ∣._e notation [ ⋅ ] will be used to
denote both the polynomial part of an element of Fq((X−1)) as well as the integer
part of a real number.
For more information about formal power series, see [2, 10].
It is easy to verify that a continued fraction theory exists for the ûeld Fq((X−1))

(see [1, 5]), in particular, any irrational Laurent series w ∈ Fq((X−1)) has a unique
inûnite continued fraction expansion

(1.1) w = A0 +
1

A1 +
1

A2+ 1
⋱

,
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where A j ∈ Fq[X], with degA j ≥ 1 for j ≥ 1. As a shorthand for (1.1), we write

w = [A0;A1 ,A2 , . . . ],

and, as usual, we refer to Hn
Kn

= [A0;A1 ,A2 , . . . ,An] (n ≥ 0) as the n-th convergent
to w and call the polynomials A j ( j ≥ 0) the partial quotients of w. We also have
H0 = A0, H1 = A0A1 + 1, K0 = 1, K1 = A1, and in general

(1.2) Hn = AnHn−1 +Hn−2 and Kn = AnKn−1 + Kn−2 (n ≥ 2).

Readers interested in an overview of basic results concerning continued fractions over
Fq((X−1)) are referred to [1, 8,9, 11].

2 Main Results

_e purpose of this paper is to describe all polynomials Q ∈ Fq[X] for which the
continued fraction expansion of

√
Q has a ûxed period. _en ourmain result is stated

as follows.

_eorem 2.1 _e equation
√

Q = [ [
√

Q];A1 , . . . ,At−1 , 2[
√

Q] ] has, for any sym-
metric (t − 1)−tuple (A1 , . . . ,At−1) (i.e., (A1 , . . . ,At−1) = (At−1 , . . . ,A1)) of positive
degree polynomials, inûnitely many non-squares solutions Q.

We get the following corollary immediately.

Corollary 2.2 For any positive integer t there exist inûnitelymany non-squares poly-
nomials Q with

√
Q having a continued fraction expansion of period t.

In the real case, Friesen [4] shows that given any symmetric (t − 1)-tuple of pos-
itive integers, (a1 , . . . , at−1), if Q−1 = 0, Q0 = 1 and Qn = anQn−1 + Qn−2, for
n = 1, 2, . . . , t − 1, then the equation

√
N = [ [

√
N]; a1 , . . . , at−1 , 2[

√
N] ] has in-

ûnitelymany square-free solutions N whenever either Qt−2 or (Q2
t−2 −(−1)t)/Qt−1 is

even. If both quantities are odd, then there are no solutions N even if the square-free
condition is dropped.

We will be concerned with computing the number of non-squares polynomials
such that degQ = 2d and Per

√
Q = t. Let

θ(d , t) = ♯{Q ∈ Fq[X] ∶ Q monic, degQ = 2d and Per(
√

Q) = t} ;

then we have the following theorem.

_eorem 2.3 (i) Let t ≥ 3 and d ≥ t − 2. _en

θ(d , t) ≥
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(q − 1)pqd ∑[d/2]
n=p (

n−1
p−1)q

−n if t = 2p + 1,

(q − 1)pqd ∑d−2p−2k=1 ∑
[(d−k)/2]
n=p−1 (

n−1
p−2)q

−n if t = 2p.

(ii) θ(d , 1) = qd and θ(d , 2) = (dq − d − 1)qd , for d ≥ 1.

_e remainder of the paper is organised in the following way. Section 3 will be
devoted to explaining basic algebraic properties in the ûeld of formal Laurent series,
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some deûnitions, theorems and lemmas are given in this section. Some elementary
properties of periodic continued fractions are also given. In Section 4, _eorems 2.1
and 2.3 are established.

3 Formal Power Series

3.1 Algebraic Properties

_eorem 3.1 For n ≥ 2 with gcd(n, q) = 1, let Q be a monic polynomial ∈ Fq[X]

that is not an n-th power and degQ ≡ 0 (mod n). If

P(Y) = Y n
− Q ,

then P has unique root f ∈ Fq((X−1)) such that [ f ] = T , where Q = Tn − S, and
T(monic), S ∈ Fq[X] such that 0 ≤ deg S < (n − 1)degT .

_e proof of_eorem 3.1 uses following lemmas.

Lemma 3.2 (See [7]) Let P(Y) = AdY d + ⋅ ⋅ ⋅ + A0, with A i ∈ Fq[X] and ∣Ad−1∣ >
maxi≠d−1 ∣A i ∣. _en P has only one root w ∈ Fq((X−1)) satisfying ∣w∣ > 1. Moreover,
[w] = −[

Ad−1
Ad

], and all conjugates of w in Fq((X−1)) have an absolute value strictly
smaller than 1.

Lemma 3.3 Let Q ∈ Fq[X], n ≥ 2, such that gcd(n, q) = 1 and degQ ≡ 0 (mod n).
_en the polynomial Q is uniquely expressible as αTn −S, where T(monic), S ∈ Fq[X]

such that deg S < (n − 1)degT and α ∈ Fq ∖ {0}.

Proof Wemay assumewithout loss of generality that Q is amonic polynomial such
that degQ = dn,

Q =
dn

∑
i=0
α iX i and T =

d

∑
i=0
β iX i , βd = 1

We must, in order to have deg(Q − Tn) < (n − 1)degT , require that for all k ∈

{(n − 1)d , . . . , nd},

(3.1) αk = ∑
i1+⋅⋅⋅+in=k
0≤i j≤d

β i1 ⋅ ⋅ ⋅ β in .

We establish the lemma by resolving the system (3.1). Assuming that all β i are known
for s < i ≤ d, then from (3.1),

α(n−1)d+s = ∑
i1+⋅⋅⋅+in=(n−1)d+s

0≤i j≤d

β i1 ⋅ ⋅ ⋅ β in = nβs + ∑
i1+⋅⋅⋅+in=(n−1)d+s

0≤i j≤d , i j≠s

β i1 ⋅ ⋅ ⋅ β in ,
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hence

βs =
1
n
α(n−1)d+s −

1
n ∑

i1+⋅⋅⋅+in=(n−1)d+s
0≤i j≤d , i j≠s

β i1 ⋅ ⋅ ⋅ β in .

_is completes the proof of the lemma.

Corollary 3.4 Let Q be a monic polynomial ∈ Fq[X], n ≥ 2 such that gcd(n, q) = 1
and degQ ≡ 0 (mod n). _en Q is not n-th power if and only if Q = Tn − S, where
T(monic), S ∈ Fq[X] ∖ {0} such that deg S < (n − 1)degT .

Now, we are prepared to give the proof of_eorem 3.1.

Proof Put Y = T + 1
Z ; then

P(Y) = 0(3.2)

⇕

SZn
+ nTn−1Zn−1

+ ⋅ ⋅ ⋅ + (
n

n − k
)T kZk

+ ⋅ ⋅ ⋅ + 1 = 0(3.3)

From Lemma 3.2, the equation (3.3) has a unique root g ∈ Fq((X−1)) such that [g] =
−n[ Tn−1

S ]; consequently, f = T + 1
g is the unique root in Fq((X−1)) of (3.2) with

[ f ] = T .

We shall use the notation n
√

Q to designate the unique root in Fq((X−1)) of equa-
tion (3.2) with [ n

√
Q] = T , where Q = Tn − S, 0 ≤ deg S < (n − 1)degT .

Corollary 3.5 Let Q be a monic and non-square polynomial in Fq[X] with even
degree. _en there exist amonic polynomial T and S ∈ Fq[X] ∖ {0} such that

Q = T2
− S with deg S < degT

as well as algebraic equations
√

Q = T +
1
gQ

and Sg2
Q + 2T gQ + 1 = 0,

where gQ is a quadratic formal power series such that ∣gQ ∣ > 1.

3.2 Periodic Continued Fractions

We say that a regular continued fraction is periodic or ultimately periodic if it consists
of an initial block of length n followed by a repeating block of length m; i.e., if it is of
the form

[A0;A1 , . . . ,An ,An+1 , . . . ,An+m ],
where [A0;A1 , . . . ,An ,An+1 , . . . ,An+m ] means that An+1+km = An+1 , . . . ,An+(k+1)m
= An+m , for every k ≥ 1. Moreover, no block of length shorter than m has this prop-
erty, and the initial block does not end with a copy of the repeating block.

If the initial block has length 0, we say that the continued fraction is purely peri-
odic.
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We recall also the deûnition of quadratic irrational Laurent series. A Laurent series
w is called quadratic irrational if it is a root of a polynomialAY 2+BY+C withA, B,C ∈

Fq[X], A ≠ 0, and B2 − 4AC is not a perfect square.
_ere is a classical result (the analogue of Lagrange’ _eorem).

Proposition 3.6 Let w be an algebraic element over Fq(X). _en α is quadratic if
and only if the continued fraction expansion of w is ultimately periodic.

One can prove this result by following the proof in the real case as in [8]. Note the
following characterization of purely periodic power series, which is the analogue of
Galois’ _eorem.

Proposition 3.7 (See [7]) A quadratic formal power seriesw of non zero integral part
is purely periodic if and only if w satisûes an equation

Aw2
+ Bw + C = 0,

with A, B,C ∈ Fq[X] ∖ {0}, degB > max(degA, degC).
Furthermore, if w = [A1 ,A2 , . . . ,At ], then the algebraic conjugate of w is

−(w +
B
A
) = [0;−At ,−At−1 , . . . ,−A1 ].

Before giving the proof of _eorem 2.1, we establish a few basic facts about the
continued fraction expansion of

√
Q.

Lemma 3.8 Let Q be amonic and non-square polynomial inFq[X]with even degree;
then the period of the continued fraction expansion of

√
Q starts with the second term.

Furthermore, if the period consists of the t terms A0 , . . . ,At−1, then At−1 = 2[
√

Q], and
the sequence A0 , . . . ,At−2 is symmetric.

Proof By Corollary 3.5, we have Q = T2 − S with T and S ∈ Fq[X] ∖ {0} and
deg S < degT , as well as

(3.4)
√

Q = T +
1
gQ

and Sg2
Q + 2T gQ + 1 = 0, ∣gQ ∣ > 1.

Letw = 2T+ 1
gQ

. _enw2−2Tw−S = 0, so by Proposition 3.7, continued fraction ex-
pansionsof gQ andw arepurelyperiodic, and furthermore, if gQ = [A0 ,A1 , . . . ,At−1 ],
then

(3.5)
√

Q = [T ;A0 ,A1 , . . . ,At−1 ] and w = [2T ,A0 ,A1 , . . . ,At−2 ].

Consequently,

(3.6) At−1 = 2T = 2[
√

Q] .

On the other hand, from (3.4) and by trivial computation, we obtain that

(3.7) w = 2T +
1
gQ

=
1

gQ +
2T
S

,
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so by Proposition 3.7 and (3.6),

gQ +
2T
S

= [0; 2T ,At−2 , . . . ,A0 ] ,

and hence

(3.8) ( gQ +
2T
S

)
−1
= [2T ,At−2 , . . . ,A0 ] .

From (3.5), (3.7), and (3.8), we have

[2T ,A0 ,A1 , . . . ,At−2 ] = [2T ,At−2 ,At−3 , . . . ,A0 ] ,

so by identifying coeõcients, we obtain that A0 = At−2 , . . . ,Ak = At−k−2 .

Lemma 3.9 Set gQ = [A0 ,A1 , . . . ,At−1 ], t ≥ 3 and let H i
K i
be the i-th convergent of

gQ . _en Ht−3 = Kt−2 and Kt−1 = −SHt−2.

Proof First, we have that
Ht−2
Ht−3

= [At−2;At−3 , . . . ,A0].

Since
Ht−2
Kt−2

= [A0;A1 , . . . ,At−2]

and A0 ,A1 , . . . ,At−2 is symmetric, we have
On the other hand, from the identity

gQ =
Ht−1gQ +Ht−2
Kt−1gQ + Kt−2

we get

(3.9) Kt−1g2
Q + (Kt−2 −Ht−1)gQ −Ht−2 = 0.

From (3.4) and (3.9), we deduce that Kt−1 = −SHt−2.

4 Proofs of the Main Results

Proof of_eorem 2.1 In the sequel, we assume that t ≥ 3. By Lemma 3.9 and (1.2),
we have

2TKt−2 + Kt−3 = Kt−1 = −SHt−2 ,(4.1)
Kt−2 = Ht−3 .(4.2)

Equations (4.1) and (4.2) give us a necessary and suõcient condition for Q = T2 − S
to be a polynomial solution of the equation

(4.3)
√

Q = [[
√

Q] ;A0; . . . ,At−2 , 2[
√

Q ]] .

In fact, we have the identity

(4.4) Ht−3Kt−2 −Ht−2Kt−3 = (−1)t ,

and the equation (4.1) yields

(4.5) 2TKt−2 + SHt−2 = −Kt−3 .

https://doi.org/10.4153/CMB-2015-055-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-055-9


710 H. Benamar, A. Chandoul, andM. Mkaouar

Example 4.1 (i) In F3, let t = 3 and let (A0 = X ,A1 = X) the symmetric pair. It
is clear that

Kt−3 = K0 = 1, Kt−2 = K1 = X , Ht−3 = H0 = X ,
Ht−2 = H1 = X2

+ 1, 2T = (X2
+ 1)P + X , S = −(XP + 1).

_en the only polynomial solutions of (4.3) are (X2 + 1)2P2 + 2X3P + X2 + 1, where
P is any polynomial in Fq[X], and

√
(X2 + 1)2P2 + 2X3P + X2 + 1 = [2(X2

+ 1)P + 2X;X , X , (X2 + 1)P + X ] .

(ii) In F3, let t = 4 and let (A0 = X ,A1 = X + 1,A2 = X) be the symmetric triple.
It is clear that

Kt−3 = K1 = X + 1, Kt−2 = K2 = X2
+ X + 1,

Ht−3 = H1 = X2
+ X + 1, Ht−2 = H2 = X3

+ X2
+ 2X ,

2T = (X3
+ X2

− X)P − X3
+ X2

+ X − 1, S = −(X2
+ X + 1)P + X2

− X + 1.

_en the only polynomial solutions of (4.3) are (X3 +X2 −X)2P2 + (X6 +X3 + 1)P +
X6 + X5 + 2X4 + X3 + X2 − X, where P is any polynomial in Fq[X], and

((X3
+ X2

− X)
2P2

+ (X6
+ X3

+ 1)P + X6
+ X5

+ 2X4
+ X3

+ X2
− X)

1
2 =

[2(X3
+ X2

− X)P + X3
+ 2X2

+ 2X + 1;

X , X + 1, X , (X3 + X2 − X)P − X3 + X2 + X − 1 ] .

Remark 4.2 For the special cases t = 1 and t = 2, we have the following cases.

Case t = 1. All polynomial solutions of (4.3) are of the form Q = T2 + 1, where T is a
monic polynomial in Fq[X] ∖ Fq and

√
Q = [T ; 2T ].

Case t = 2. All polynomial solutions of (4.3) are of the form Q = T2 +H, where T is a
monic polynomial in Fq[X] ∖ Fq , H is a divisor of T with H ≠ 1, degH < degT and
√

Q = [T ; 2T/H, 2T ].

Proof of_eorem 2.3 Let t ≥ 3, d ≥ t − 2, (A0 ,A1 ,A2 , . . . ,At−2) be any symmetric
(t− 1)−tuple of positive degree polynomials, let r = [A0;A1 ,A2 , . . . ,At−2], and let H i

K i
be the i-th convergent of r. It is clear by (1.2) that

(4.6) degH i =
i

∑
k=0

degAk .

Our goal is to give a lower bound for θ(d , t) to the number ofmonic polynomials Q
of degree 2d such that Per(

√
Q) = t; in other words, θ(d , t) is the number ofmonic

polynomials T with degree d satisfying (4.5). Note that if

Φ0(d , t) = ♯{T(monic) ∈ Fq[X], satisfying (4.5) and degHt−2 =
t−2
∑
k=0

degAk ≤ d}
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and

Φ(d , t) = ♯{T ∈ Fq[X], satisfying (4.5) and degHt−2 =
t−2
∑
k=0

degAk ≤ d} ,

then θ(d , t) ≥ Φ0(d , t) and Φ0(d , t) = 1
q−1Φ(d , t).

Next, we will concentrate on the estimation of Φ(d , t). By the division algorithm,
there are α, R ∈ Fq[X] such that

(4.7) (−1)tKt−3Ht−3 = αHt−2 + R and degR < degHt−2 .

Choosing β ∈ Fq[X] such that deg β = d − degHt−2 and 2T = βHt−2 − R, then from
(4.7), we have

(4.8) 2T = (α + β)Ht−2 − (−1)tHt−3Kt−3 .

Now let

(4.9) S = −(α + β)Kt−2 + (−1)tK2
t−3 .

It is clear that deg(2T) = d. By combining (4.8), (4.9), and (4.4),we obtain (4.5); then
deg S < degT .

Now, if degHt−2 ≤ d = deg 2T , then by (4.6), we derive that degAk < d = deg 2T
for all k = 0, . . . , t − 2; therefore, the period A0 , . . . ,At−2 , 2T contains no repeating
period of length l (l ≠ t) such that l ∣t. Consequently,Φ(d , t) is thenumber of t−tuple
(A0 , ⋅ ⋅ ⋅ ,At−2 , β),where (A0 , . . . ,At−2) is a symmetric (t−1)-tuple of positive degree
polynomials, β ∈ Fq[X] with∑t−2

k=0 degAk ≤ d and deg β = d −∑t−2
k=0 degAk .

Now, we discuss the value of Φ(d , t) with respect to the parity of t.

Case t = 2p + 1. _e total number ofways of breaking n into an ordered sumof p pos-
itive integers is given by the binomial coeõcient (n−1

p−1), and there are exactly (q − 1)qδ
polynomials of degree δ. It follows that there are (

n−1
p−1)(q − 1)p+1qd−n (p + 1)-tuple

(A0 , . . . ,Ap−1 , β) such that

2n =
t−2
∑
k=0

degAk = 2
p−1
∑
k=0

degAk and deg β = d −
t−2
∑
k=0

degAk = d − 2n.

_en by summing over all possible values of n (p ≤ n ≤ d/2), we have

Φ(d , t) = (q − 1)p+1qd
[d/2]
∑
n=p

(
n − 1
p − 1

)q−n .

Case t = 2p. _en there are (n−1
p−2)(q− 1)p+1qd−n (p+ 1)-tuples (A0 , . . . ,Ap−1 , β) such

that

k = degAp−1 ,

2n + k =
t−2
∑
k=0

degAk = 2
p−2
∑
k=0

degAk + degAp−1 ,

deg β = d −
t−2
∑
k=0

degAk = d − (2n + k).
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_en by summing over all possible values of n and k (1 ≤ k ≤ d − 2(p + 1) and
p − 1 ≤ n ≤ (d − k)/2), we have

Φ(d , t) = (q − 1)p+1qd
d−2p−2
∑
k=1

[(d−k)/2]
∑

n=p−1
(
n − 1
p − 2

)q−n .

From Remark 4.2, θ(d , 1) = qd and
θ(d , 2) = ∑

T monic,H
H≠1,H∣T

∑
deg T=d
deg H<d

1 = ∑
T monic,H

H∣T

∑
deg T=d
deg H<d

1 − ∑
T monic
deg T=d

1

=
1

q − 1
∑
T ,H
H∣T

∑
deg T=d
deg H<d

1 − qd = 1
q − 1

∑
H ,K

∑
deg HK=d
deg H<d

1 − qd

=
1

q − 1

d−1
∑
h=0

∑
deg H=h

(q − 1)qd−h − qd = (dq − d − 1)qd .
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