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ACYCLIC MODELS 

MICHAEL BARR 

ABSTRACT. Acyclic models is a powerful technique in algebraic topology and ho-
mological algebra in which facts about homology theories are verified by first verifying 
them on "models" (on which the homology theory is trivial) and then showing that 
there are enough models to present arbitrary objects. One version of the theorem allows 
one to conclude that two chain complex functors are naturally homotopic and another 
that two such functors are object-wise homologous. Neither is entirely satisfactory. 
The purpose of this paper is to provide a uniform account of these two, fixing what is 
unsatisfactory and also finding intermediate forms of the theorem. 

1. Introduction. Categorical versions of acyclic models have a long history [Eilen-
berg, MacLane, 1953], [Appelgate, 1965]. Two somewhat similar versions were proved 
in [Barr, Beck, 1965] and [Andre, 1967]. Here are statements of those two theorems. 
These are not the original versions, but have been put into a form to emphasize their 
similarities as well as their differences. 

Suppose X is a category, G: X —* X a functor and c: G —* Id a natural transformation 
to the identity functor. Then for any abelian category ft and functor F: X —* ft there is a 
functor we call FG* that goes from X to the category of chain complexes over ft whose 
n-th term is FGn+l and whose n-th boundary operator is £"=0(—lyFG'eG""'. This chain 
complex is augmented over F via Fe.FG —• F. If K = {Kn \\ n > 0}, together with 
a boundary operator d is a chain complex functor from X to ft, then KG* is a double 
complex functor. We say that K is e-presentable if for all n > 0, the augmented chain 
complex KnG

m —> Kn —» 0 is contractible and that K is weakly e-presentable if for each 
n > 0, KnG* —> Kn—>0is acyclic. If L —• Z,_i —> 0 is a chain complex functor, we say 
that L is G-contractible if the chain complex functor LG —•> L-\G —• 0 is contractible 
and G-acyclic if LG —• L-\ G —» 0 is acyclic. Then the Barr, Beck theorem states: 

THEOREM 1.1. Let K—>K-\ —* 0 and Z, —• L-\ —+ 0 be augmented chain complex 
functors such that K is e-presentable and L —> L_i —• 0 is G-contractible. Then any 
natural transformation/- \: K- \ —-> L_ i extends to a natural chain transformation f: K —* 
L and any two extensions off-\ are naturally homotopic. 

Andre's theorem is: 

THEOREM 1.2. LetK —> K-\ —• 0 andL —• L-\ —> 0 be augmented chain complex 
functors such that both K and L are weakly e-presentable and both K^> K-\ —» 0 and 

In the preparation of this paper, I have been assisted by a grant from the NSERC of Canada and the 
FCARdu Quebec. 

Received by the editors August 3, 1994; revised December 17, 1994. 
AMS subject classification: 18G35, 55U15, 55N40. 
© Canadian Mathematical Society, 1996. 

258 

https://doi.org/10.4153/CJM-1996-013-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-013-x


ACYCLIC MODELS 259 

Z —> Z_i —* 0 are G-acyclic. IfK-\ ^ L-\, then for each object X of X and any n > 0, 
Hn{KX)*Hn{LX). 

Theorem 1.1 is usually used to show that when K —> K-\ —*• 0 and L —* L-\ —» 0 
satisfy both conditions and K-\ - L-\, then K and L are naturally chain homotopic. 
This conclusion is quite strong when it holds; unfortunately, there are many situations in 
which it fails. As long ago as 1944, Eilenberg proved that (his new definition of) singular 
chain groups gave homology and cohomology groups on simplicial complexes that were 
isomorphic to those given by the oriented simplicial theory. More precisely, let (?mg, C°n 

and C°rd denote the singular, oriented simplicial and unoriented (called ordered) chain 
group functors, resp. There are evidently natural transformations 

which Eilenberg showed to give homotopy equivalences when applied to any simplicial 
complex. Let us call a natural transformation between chain complex functors a quasi-
homotopy equivalence if it is a homotopy equivalence on each object. A quasi-natural 
equivalence induces a natural equivalence of homology (and dually, of cohomology) 
groups. Applied to the simplicial complexes, this results in a homology equivalence, even 
a natural equivalence, between oriented simplicial homology and singular homology, 
without exhibiting, as Eilenberg remarks, a map between them in either direction that 
induces the isomorphism. See [Eilenberg, 1944], especially the discussion on pp. 246-
247. (In fact, it is possible to find a natural transformation C°n —> C*mg that induces the 
isomorphism.) 

Thus in practice, we often resort to the weaker Theorem 1.2. This is certainly easier to 
use, but its conclusions are too weak for what is wanted. It has three main flaws. First, the 
conclusion is isomorphism, not natural isomorphism. Second, it is valid only for deriving 
isomorphisms. The third flaw is that the isomorphism is not induced by anything, even 
when you begin with a map K—*L that induces the given isomorphism in degree 0. 

In this paper we describe a new version of acyclic models that gives Theorems 1.1 
and 1.2 as special cases, but the version of the latter it gives repairs the three difficulties 
just mentioned. Moreover, another instance of the same theorem gives the same kind of 
quasi-homotopy that Eilenberg observed in 1944. The basic idea is to parametrize the 
theorem in terms of a special class of "trivial" chain complex functors. This class could 
be the contractible complexes, the acyclic ones or somewhere in between, such as the 
quasi-contractible complexes (that is, those that are quasi-homotopic to the 0 complex). 
The main theorem is stated and proved in terms of this class. 

As an application of the theorem proved here, we show that on a manifold of class (J 
the inclusion of the chain group based on chains of class (J into those of class C9, for 
any q < p induces a quasi-homotopy equivalence. In particular, this is true when/? = oo 
and q = 0 so that the homology based on C°° chains is equivalent to the ordinary singular 
homology. 

I would like to thank Rob Milson for many discussions that led to this paper. It was 
he who pointed out the difficulties in extracting naturality from an isomorphism derived 

https://doi.org/10.4153/CJM-1996-013-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-013-x


260 MICHAEL BARR 

from a double complex, which was the main motivation behind the results. As well, it 
was he who observed the difficulty in getting even an unnatural transformation between 
homology theories in the case that the maps in the acyclic models theorem were not 
themselves natural. Finally, he was helpful in pinning down the details of the homology 
of manifolds. 

1.1. Notation. We usually use "id" to denote an identity map (and "Id" for the identity 
functor), but sometimes call it 1, especially during extended computations. Similarly, 
we usually denote the composite of g a n d / b y / o g, but sometimes omit the o when it 
cannot cause confusion. 

We denote by A a fixed abelian category and by X another category. (8 and C denote 
the categories of graded objects and chain complexes, resp., in the functor category 
Fun(JC, Jl). The complexes will all be chain complexes and bounded below, usually 
by 0, unless otherwise noted. Similarly, the double complexes will have uniform lower 
bounds in both directions. Again that is usually 0, unless something else is specified. 

1.2. Double complexes. A double complex C = Cmm is understood to have two boundary 
operators, say d: Cmn —•» Cmn-\ and d: Cmn —» Cm-\ n satisfying d o d = — d o d. The 
total complex, Tot(Q, is defined as the complex that has in degree n the direct sum 
H"=^° Qin-i where «o is the lower bound. The boundary operator has the matrix 

id d 0 0 ••• 0 0 \ 
0 d d 0 • • 0 0 

o o o o ••• a o 
\ 0 0 0 0 • • d d/ 

whose square is readily shown to be 0. 
Denote by U: C —» $ the forgetful functor. An exact sequence 0—>L^> C —> K—+0 

of objects and arrows of C will be called {/-split if 0 —> UL —> UC —> UK —* 0 is 
split in (B. Here and throughout most of this paper, the boundary operator in all chain 
complexes will be denoted d, relying on context to disambiguate the use. 

If K = {Kn || n > no} is a chain complex we let SK be the chain complex defined by 
(SK)n = K„-\ with boundary operator — d. SK is called the suspension ofK. Suspension 
is an automorphism on the category of simplicial complexes. 

2. Acyclic classes. 

2.1. Acyclic classes. A class T of objects of C will be called an acyclic class provided: 
AC-1. The 0 complex is in T. 
AC-2. The complex C belongs to T if and only if SC does. 
AC-3. If the complexes K and L are homotopic and K £T, then L G T. 
AC-4. Every complex in T is acyclic. 
AC-5. If C is a double complex, all of whose rows are in T, then the total complex of C 

belongs to T. 
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2.2. Mapping cones. Suppose that/: K —> L is a map in C We define a complex C-Cf 

by letting C„ = Ln 0^„_i with boundary operator 0 _ , J. Then C is a chain complex 

and we have an exact sequence 

0-+L^C-^SK->0 

It is almost as easy to see that the connecting homomorphism Hn{SK) = H„-\(K) —> 
Hn-\(L) is Hn-\(f). C is called the mapping cone off. 

We note that the exact sequence 0—* L—* C —•££—> 0 is {/-split. This turns out to 
characterize mapping cone sequences. 

PROPOSITION 2.3. A U-split exact sequence 

0-^L->C-^K->0 

is isomorphic to the mapping cone of a unique map S~lK —> L. 

See [Barr, to appear], Proposition 6.2, for a proof. 

THEOREM 2.4. A map of complexes is a homology equivalence if and only if its 
mapping cone is acyclic and it is a homotopy equivalence if and only if its mapping cone 
is contractible. 

PROOF. For homology, both directions are immediate consequences of the exactness 
of the homology triangle and the fact that an object in a homology triangle is 0 if and 
only if the map opposite is an isomorphism. 

Next we look at homotopy. If/: K —> L is a homotopy equivalence, then there is 
a map g:K —• L and maps s:K —> K and t:L —> L such that 1 — fg = td + dt and 
1 — gf = sd + ds. If Z is any object of J?, and F: X —* 2L is any fimctor, then there 
is a functor we denote Hom(Z, F): X —> J? defined by Hom(Z, F)(Z) = Hom(Z, FX). 
Similarly, we let F = ({F„}, d) be any chain complex functor to get a chain complex 
functor Hom(Z, F) whose «-th term is Hom(Z, Fn) and boundary operator is hom(Z, d). 
We can carry out this construction successively with F = K, F = L and F = C, the 
mapping cone. The sequence of chain complex functors into the category of abelian 
groups 

(*) 0 - • Hom(Z, L) -> Hom(Z, Q -> Hom(Z, iT) -> 0 

can easily be seen to be the mapping cone sequence of Hom(Z,/) and the latter map 
is a homotopy equivalence using Hom(Z,g), Hom(Z,s) and Hom(Z, t). A homotopy 
equivalence is certainly a homology isomorphism, so that the exactness of the homology 
triangle of (*) implies that the complex Hom(Z, C) is exact. We apply this to Zn = 
kerd: Cn —* C„_i, the object of cycles of degree n, with i„: Zn —* Cn the inclusion map. 
Since din = 0, /„ is a cycle in the complex Hom(Z„, Q. Since that complex is exact, /„ is 
also a boundary, so that there is a map zn:Zn^> Cn+\ such that dzn = in. Now the image 
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of d: Cn —+ C„_i is included in (actually equal to) Z„_i so that, by abuse of notation, 
we can form the composite zn-\d and one sees immediately that dzn-\d = d so that 
d{\ — znd) = 0. We can then compose 1 — zn-\d with zn and dzn{\ — zn-\d) = 1 — zn-\d. 
Let sn = zn{\ — zn-\d). We calculate 

sn-\d + dsn=zn-\(\ -zn-.2d)d + dzn(\ - zn-\d) = zn-\d + (\ -zn-Xd)= 1 

which shows that the sn are a contracting homotopy in C. For the converse, suppose 

that C is contractible. Let the contracting homotopy u have matrix . Then the 

matrix of du + ud is calculated to be 

fdt+fg + td dr-fs + tf-rd\ 
I -dg + gd ds + gf + sd J 

If we set this equal to the identity, we conclude that dt +fg + td= 1, — dg + gd = 0 and 

ds+gf + sd = 1 from which we see that g is a chain map and homotopy inverse to / . • 

/ s 
PROPOSITION 2.5. I/0-+L — • C — • ^ - > 0 w a £/-.?/?/# ex^cf sequence of chain 

complexes, then K is homotopic to the mapping cone Cf andL is homotopic to SCg. 

PROOF. Except for an unavoidable arbitrariness whether to suspend one or desuspend 
the other term in a mapping cone, the two parts are dual; we need prove only one. Let 
u:UC-> ULmdv.UK^ UC be such that uf = l ,gv= l,/w + vg= 1 andi/v = 0.The 

last equation actually follows from the first three. I claim that , : K —-> Cf is a 

chain map. In fact 

fd f)( v ) =(dv-fudv\=(dv-(l-vg)dv)=( vgdv \ 
[0 -dj{-udv) { dudv J { ufdudv J [udfudv] 

= f vdgv \_( vd \ 
\ ud( 1 — vg)dv J \ —udvgdv J 

= { vd ) = ( vd \ = { v ) d 

\—udvdgv) y—tidvd) y—udv) 

It is clear that (g 0 ) ( _ ^ v ) = 1. The other composite is 

( - 3 * o)W e h a v e 

fd / w o o w o o\fd f) = (fu o v f o <n 
1̂ 0 -d) \u Oj [u 07 ^0 -d) {-du 0) [ud uf) 

} fu 0 ] J l-vg 0\ 
\ —du + ud uf) yud— ufdu 1J 

= ( i-vg o w i - v g <n 
\ud— udfu 1J ^ udvg 1J 

= (l 0] _( vg 0] 
[0 \) {-udvg 0) 
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3. Properties of acyclic classes. 

PROPOSITION 3.1. I/O -^L—*C—>K—>0isa U-split exact sequence of objects of 
C and if any two belong to T, then so does the third. 

PROOF. Suppose that L and K, and hence S~lK belong to r . We know that C is the 
mapping cone of a map/: S~lK—*L. We can think of this as a double complex as in the 
following diagram. In this diagram, we use d for the boundary operator in K so that —d 
is the boundary operator in SK and the squares commute as shown. 

-</ -d -d -d -d 
• • • • A„+l > A „ • • • • • A i > A o 

• • • — > L n — > L n - \ — * • • • — > LQ — • 0 
d d d d 

If we replace the — d in the upper row by d, the squares will anticommute and the resultant 
diagram can be considered as a double complex in which all rows belong to I\ From 
AC-5 the total complex also belongs to T, but that is just the mapping cone off which 
is isomorphic to C and hence belongs to T. 

Now suppose that L and C belong to T. We have just seen that the mapping cone of 
L —> C is in T. It then follows from Proposition 2.5 and AC-3 that K €T. Dually, if C 
and K are in T, so is L. m 

3.1. Arrows determined by an acyclic class. Given an acyclic class T, let S denote 
the class of arrows/ whose mapping cone is in T. It follows from AC-3 and 4 and the 
preceding proposition that this class lies between the class of homotopy equivalences 
and that of homology equivalences. 

PROPOSITION 3.3. l i s closed under composition. 

PROOF. Suppose that/:K —> L and g:L —> M are each in £. Then Cf and Cg are 

in T. Let h:STlCg —> Cf have matrix f ~ J. The «-th term of S~lCg is Mn+i 0 Ln 

while that of Cf is Ln © Kn-\ so this makes sense. Thus there is an exact sequence 
0 —> Cf —• CA —* Cg —* 0 and it follows from Proposition 3.1 that CA G T. The n-th 
term of Q is Ln 0 ATw_i 0 Mw 0 Zw_i and the matrix of the boundary operator is 

(d / o ~l\ 0 -d 0 0 
0 0 d g 

\o 0 0 -dl 
Let C_ id be the mapping cone of the negative of the identity of I . Thus (C_ {&)„ = L„0Z„_i 

and the boundary operator is I ft , J. The mapping cone ofgfhas Mw 0AT„_ i in degree 

« and boundary operator ^ , J. I claim there is an exact sequence 
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In fact, let /' and/ be the maps given by the matrixes 

. n o o o\ 
' J (O -f 0 l) 

I = 

Matrix multiplication shows that these are chain maps. The sequences are (/-split exact; 

for example, n 1 n n 1 splits / and it follows from Theorem 3.1 that Cgf E T and 

hencegfE l . • 

THEOREM 3.4. Suppose C = C.. = {Cmn \\ m > 0, n > 0} is a double complex that 
is augmented over the single complex C_u and such that for each n>0, the complex 

belongs to T. Then the induced map Tot(C) —> C_u is in Z. 

PROOF. The mapping cone of the induced map is just the double complex including 
the augmentation term. From AC-5 it follows that that total double complex is in T since 
each row is. Thus the induced map is in S. • 

4. Examples. We will be interested in three main examples of acyclic classes, 
although many others are possible by varying the contractibility conditions depending 
on what the contraction is supposed to preserve. 

4.1. Acyclic complexes. Let T consist of the acyclic complexes, in which case £ consists 
of homology isomorphisms. AC-1,2,3, and 4 are obvious. AC-5 is readily proved using 
spectral sequences, but it is also easy to give a direct proof. If C is a double complex, 
each of whose rows is acyclic, let RP(C) and ̂ (C) denote the/7-th row and the truncation 
above the/?-th row, resp. Then there is an exact sequence of double complexes 

0 - > FP-l{C) - > FP(Q - > RP(Q - > 0 

that splits as a sequence of bigraded objects. It follows that the sequence of associated 
single complexes has the same property. Moreover, F®(C) = R°(C) and then by induction 
each / ^ ( Q belongs to T. The n-th homology depends only on the fragment C„+\ —» 
Cn —> C„-\9 which is constant after Fl+l(C) so that the inclusion Fn+l(Q —> C induces 
an isomorphism on «-th homology. Since i^+ 1(Q is acyclic, its n-th homology is trivial 
and therefore Hn(C) = 0. Since this is true for all n, it follows that C is acyclic. 

4.2. Contractible complexes. Let T consist of the contractible complexes. AC-1, 2 and 
4 are obvious. To see AC-3, suppose that/: K —• L and g:L —> K are chain maps and 
s:K —> K and t:L —> L are maps such that 1 = ds + sd and 1 —fg = dt + td. (So we 
are making an assumption weaker than that K is homotopic to L; more like that L is a 
homotopy retract of K.) Then I claim that t +fsg is a contracting homotopy in L. In fact, 

d(t+fsg) + (t+fsg)d = dt + td+f(ds + sd)g= 1 -fg+fg= 1 
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To prove AC-5, suppose that we are given a double complex Kmn, defined for m > 0 
and n > — 1, but that Kmn = 0 for n = —1. This makes no real difference, but it 
avoids there being a special case at the lowest dimension. We use the terminology and 
notation from 1.4. Thus one boundary operator is d:Kmn —> Kmn-\ and the other is 
d: Kmn —> Km-\ n with dd = —d d. Suppose further that for each m and «, there is a map 
s: Kmn —• Kmn+\ that satisfies ds + sd = 1. The total complex has, in degree n, the direct 
sum Ln = E"=0 Ktn-i and is 0 when n = — 1 and the boundary operator D: L„ —* L„-\ has 
the matrix given in 1.4. For the rest of this proof, we will not use S for suspension, but 
for a contracting homotopy in the double complex, which we now define in degree n as 
a map S: Ln —> Ln+\ with the matrix 

/S —Sds Sdsds 
0 S —sds 

0 
\0 

(-lfs(dsf x 

(-ly-ydsy-1 

/ 

Direct matrix multiplication shows that £D + DS is upper triangular and has sd + ds= 1 
in each diagonal entry (including the last, since in that case the sd = 0 so that ds = 1). 
In carrying that out, it is helpful to block D into an upper triangular matrix and a single 
column and S into an upper triangular matrix and a single row of zeroes. In order to see 
that SD + DS = 1, we must show that the above diagonal entries vanish. First we claim 
that for / > 0, ds(dsy = (ds)1 + (sdfds. In fact, for i = 1, 

dsds = (1 —sd)ds = ds — sdds = ds + sdds 

Assuming that the conclusion is true for / — 1, 

ds(dSy = ((dSy-1 + (sdy-lds)ds = (dSy+(sdy~l(\ - sd)ds 
= (ds)1 + (sdy~lds - (sdy-lsdds = (ds)1 + (sdy~lsdds 

= (dsy+(sdyds 

Now suppose we choose indices / <j. The 1,7-th entry of SD is 

(0 i-\y-'-ls(dsy-'-1 (-iys(dsy-
d 
d 
0 

= (-iy-'-1 sidsy-^d + (-ly-'sQsf-'d=(-iy-'_1 ((*ay-' - (^y-w) 
= (-ly-'-1 ((ad)H - (5ay'-'(i - ds)) = (-iy-'-1 (sdy-'ds 

https://doi.org/10.4153/CJM-1996-013-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-013-x


266 MICHAEL BARR 

and the i,j-th entry of DS is 

/ (-iys(dSy \ 

(o 0 d d 0 ) (-ly-isidsy-* 
(-ly-'-1 sissy'-*-1 

\ I 
= i-iy-'dsidsy-'+(-ly-^dsidsy-t-1 

= (-ly-* (dsidsy-'-idsy-1) 
= (-iyw((^yw+(ssy-'ds - (dsy-j) 
= i-iy-'isdy-'ds 

so that the terms cancel and SD + DS = 1. 

4.3. Quasi-contractible complexes. Until now the fact that C was a functor category did 
not play much of a role. The third example depends on that fact. Say that a chain complex 
is quasi-contractible if for each object X of X, the complex CXis contractible. Each of 
the previous results on contractible complexes carries over to these quasi-contractible 
ones, except that in each case the conclusion is object by object. Recall that a m a p / 
of chain complexes is a quasi-homotopy equivalence if at each object X, fX is a is a 
homotopy equivalence. It is clear that / is a quasi-homotopy equivalence if and only if 
its mapping cone is quasi-contractible. The earlier material on contractible complexes 
implies that the quasi-contractible complexes constitute an acyclic class. 

5. The main theorem. Now let us suppose we are given an acyclic class T on C 
and that £ is the associated class of maps. We denote by E - 1 C the category of fractions 
gotten by inverting all the arrows in S. This category is characterized by the fact that 
there is a functor T: C —> £ _ 1 C such that a G £ implies that T(a) is an isomorphism and 
if S: C —* 2) is any functor such that S(a) is an isomorphism for all or € I , then there is 
a unique S: YrxC-^iD such that SoT = S. From AC-4 and Theorem 2.4 it follows that 
the homology inverts all arrows of I and hence that homology factors through Z_ 1 C as 
described. In particular, any map in S _ 1 C induces a map in homology. 

Suppose that G:X —> X is an endofunctor and that e: G —* Id is a natural transfor
mation. Recall that for any functor F: X —•» J?, the augmented chain complex functor 
FGm —+ F is defined to have the functor FG"+1 in degree n, n > — 1 with boundary 
operator d = Z%0(-l)

iFGieGn-i:FGn+l —• FGn. \fK^ ALi is an augmented chain 
complex functor, then we denote by KG9 the double complex that has KmGn+l in bide-
gree w, n. This is augmented in both directions, once, using e, over the single complex 
K and second, using the augmentation of K, over the complex K-\G*. We say that K 
is e-presentable with respect to T if for each n > 0, the augmented chain complex 
KnG* —> Kn —• 0 belongs to T. We say that K is G-acyclic with respect to F if the 
augmented complex 0 —* KG —> K-\G -^> 0 belongs to T. 
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THEOREM 5.1. Suppose a:K—*K-\ and (3:L—>L-\ are augmented chain complex 
functors. Suppose G is an endofunctor on X ande: G —> Id a natural transformation for 
which K is e-presentable andL —> L-\ —> 0 is G-acyclic, both with respect to T. Then 
given any natural transformation f-\:K-\ —• L-\ there is, in T~lC, a unique arrow 
f:K—*L that extendsf-\. 

PROOF. For all m > 0, the augmented complex KmG* —* Km —» 0 belongs to r and 
hence, by AC-5, the total augmented complex KG* —* K —> 0 belongs to T whence 
by Theorem 2.4 the arrow Ke.KG* —> K is in I. The same reasoning implies that 
(3G*:LG* —> L-\ G* is also in I. We can summarize the situation in the diagram 

K.XG* ?£- KG* -5U K 

L.{G* <— LG* —» L 
j3G* Le 

with Ke and (3G* in I. We now invert X to get the map 

f = Leo(pG*)~l of_xG* oaG* o(Ke)-x:K-*L 

I claim that this map extends/_i in the sense that/_i o a = /? o / and that/ is 
unique with this property. Begin by observing that naturality of a and /3 imply that 
a o Ke= K-\t o aG* and (3 o Le = L-\e o fiG*. Then the first claim follows from the 
diagram 

A:
 ( ^ ' KCT ^ K^G- *£> L-0 S ' LG-

A: —• K-x —> i_i <— i 
« /-i 0 

Now suppose that g:K —+ Lis another arrow in X-1 C for which/-1 o a = /? o g. Then 
/_i G* o aG* = /?G# o gG*, which implies that (/3G*)"1 of_x G* o aG* = gG* and then 

l e o (/3GT1 o/_!G* oaG*=LeogG*=goKe 

from which we conclude that 

g = Le o (/3GV1 of_lG
moaG*o (Ke)~l =f 

COROLLARY 5.2. Suppose that K and L are each e-presentable and G-acyclic on 
models with respect to T. Then any natural isomorphism f-\\K-\ —> L-\ extends to a 
unique isomorphismf: K—^LinYr1 C. Moreover ifg: K—>Lisa natural transformation 
for which /3og0 =/_j o a, then g = / in S_ 1 C. 

https://doi.org/10.4153/CJM-1996-013-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-013-x


268 MICHAEL BARR 

PROOF. If/_i is an isomorphism with inverse g_i, then there is a map/: K—>L that 
extends/ and g:L —> K that extends g_i. Then g of extends g-\ o f_x = id, as does 
the identity so that by the uniqueness of the preceding, we see that in I - 1 C, g of = id. 
Similarly,/ o g = id in the fraction category. This shows that K - L. The second claim 
is obvious. • 

In order to recover the form of the acyclic models theorem from [Barr, Beck, 1966], 
we require: 

THEOREM 5.3. Suppose G:X —> X is a functor and e: G —> Id is a natural transfor
mation. Then for any functor C.X —* 2L, CG* —* C—*0is contractible if and only ifCe 
splits. 

PROOF. The necessity of the condition is obvious. If Ce splits, let 8:C —> Ce such 
that Ce o 0 = id. Let s = 9Gn:CGn —• CG"+1. Then for df = GieGn~\ we have 
(fs = CtG1 o 0Gn = id and for i > 0, 

js = CGe o Gn~l o 0Gn = (CG'e o eCf)CTi 

= (9Cf'x o CGi-le)Gn-i = 0Gn~x o CG^eG71'1 = sd~l 

using naturality of 0. Then with d = E"=0(—1)^> 

ds+sd = iti-iyJs+E ^ 
i=0 z*=0 

= id+Ec-iyW-1 + E(-i)W = I 
i=\ i=0 • 

COROLLARY 5.4. Let K —> AT_i —•> 0 tfwd Z, —• L_i —> 0 6e augmented chain 
complex functors such that GKn —> AT„ is ,$/?/# epifor all n > 0 awJZ —> L_i - ^ 0 w 
G-contractible. Then any natural transformation K-\ —> Z_i extends to a natural chain 
transformation / : K—>L and any Wo extensions off are naturally homotopic. m 

6. Calculuses of fractions. We fix an acyclic class T and let I be the corresponding 
class of arrows. 

THEOREM 6.1. In L"1 C every map factors as f o cr"1 wheref G Canda G I . Dually, 
every map factors as r~x o g, wAere g £ C and r E l 7%w is «ctf shown by verifying 
that there are calculuses of right and left fractions, but rather directly, as shown below. 

THEOREM 6.2. Suppose L —• N <— Af are maps of chain complexes with o G £. 

L^iC denote the chain complex whose n-th term is Kn= Z,w 0 M„ 0 A/„+i, w/f/z boundary 
/ d 0 0 \ 

operator given by the matrix D = 0 J 0 I. Z,e/ r = ( l 0 0 ) : ^ —» Z, 
\ - / a -<// 

g = (0 1 0):K -^ M, andh = (0 0 I): UK ^ UN. Then g andr are chain 
maps, T belongs to 2), a«rf /* defines a homotopy between ag andfr. 
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PROOF. The proofs that D is a boundary operator and that g are simple matrix 
computations and are left to the reader. We compute that 

/ d 0 0 \ 
dh + hd = d(0 0 l ) + (0 0 1) 0 d 0 

W o -d) 
= (0 0 d) + (-f a -d) = (-f a 0) 

= (7(0 1 <»- / • ( 1 0 0) = ag-fr 

We still have to show that T € I . But 

is a (/-split exact sequence of chain maps so that it follows from Proposition 2.5 that 
S~lCT is homotopic to C0. Since Ca e T, AC-3 implies that CT € T. • 

PROPOSITION 6.3. Homotopic maps become equal in S~x C. 

PROOF. We apply the previous theorem to L —> L <— L to give the homotopy 
commutative square 

K JU L 

4 l> 
L —> L 

l 

(l\ Moreover, the map h:L -^ K with matrix 1 is a chain map such that p o h = (j> o 

W 
A = id. In Z ! C , p and <£ are invertible, whence h - p ! = </> l so that p = </>. Given 
two chain maps p,q:C —• Z, and a map s:C -+ L such that q— p = sd + ds, the map 

w = I r̂ J : C —• iiT is a chain map for which pou-p and (j> o u = q, so that in I * C, we 

have/? = #. • 

COROLLARY 6.4. isvery map z'/ iI - 1 C has the form f o cr_1 wheref G C awrf a E S. • 

COROLLARY 6.5. E'verv map in Yrx C has the form a~l ofwheref € C and o G S. • 

These facts hold despite the fact that there is no calculus of left—or dually of right— 
fractions in this case. For example, in the proof of Proposition 6.3, the homotopy equiv
alence h equalizes p and </>, but only the 0 map coequalizes them and that is a homotopy 
equivalence if and only if N is contractible. 
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7. Application to homology on manifolds. Consider a manifold M of class (7. 
For q < p, we can form the group Q(M) of singular n simplexes of class O in M. 
Intuitively, we feel that the resultant chain complex should not depend, up to homology, 
on q. We would expect a process analogous to simplicial approximation to allow us to 
smooth a simplex of class C9 to obtain a homologous simplex of class (J. It is not hard 
to give a proof (using a double complex) that the homology of C?(M) is isomorphic 
to that of (J{M), but these proofs do not demonstrate that the isomorphism is induced 
by the inclusion of (J C C1 and they do not address the question of naturality. But 
we can use the theory described here to do both. By choosing p = oo, q = 0 and 
using Stokes' theorem, this also demonstrates that singular cohomology is naturally 
isomorphic to de Rham cohomology on C°° manifolds and the isomorphism is induced 
by the restriction of singular cochains to the C°° cochains. 

We define a special category X to deal with this situation. An object is a 4-tuple 
(X, /, (7, u). X is a topological space; / is a set; U is a function / —> 0(X), the open set 
lattice of X\ and u is a function that chooses, for each small singular simplex a: A —> X, 
that is one whose image is included in some U(i), an element u(o) G / such that the image 
of o is included in U{u(p)). We assume that {£/(/) || i G /} is a simple open cover ofX 
A morphism (f., F): (X, /, 17, u) —> (7, J, F, v) consists of a continuous map/: ̂  —> Y and 
a function F:I —* J subject to two conditions. The first is that for each i G /, there be a 
(necessarily unique) arrow/(/): U(f) —• V(F(ifj such that 

u(i) ^U x 

commutes. We have introduced the notation (/): U(f) —* X for the inclusion arrow. The 
second condition is that for each singular simplex cr, F(u{cr)) = v(f o cr). This latter 
condition is so exigent that one might wonder if there are any non-identity arrows. As 
we will see, there are enough for our purposes. 

It is no problem at all to see that the obvious definition of composition makes X into 
a category. We now define an endofunctor G on X by 

G(X,I, U,u) = (X,I x /, U(l U,u) 

where we denote by X the disjoint union of the sets U{i). This requires some explanation. 
For i G /, let (/, /): U(i) —•> X denote the inclusion of that summand. (The reason for 
this odd notation will become clear quickly.) Let e:X—• X denote the unique map such 
that e o (/,/) = (i). For /, i G /, let (/',/): U(j!) H U{i) —* X denote the composite 

U(i') H (7(/) —-> f/(i) —^ X, the first arrow being inclusion. Then UC\ U denotes the map 

that takes (/', i) G / x / to the inclusion (/', /). 
Before defining w, we introduce a bit more notation. Suppose the singular simplex a 

factors through U(i). Let us denote by a(i): A —+ U(i) the unique singular simplex such 
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that a = (i) o a(i). In that case, let [cr; /] denote the singular simplex (/, /) o a(i) inX. We 
observe that every singular simplex in X has the form [a; i] for a unique a and i. For if 
r: A —• X is a singular simplex, it factors through a unique connected component U(i) 
and then a = e o r is a singular simplex of X whose image is included in U(i) so that 
r = [cr; /]. Now we can define u\a\ i] = (w(<r), /). This makes sense because if a factors 
through 1/(0 and C/(w(a)), it factors through their intersection. 

Next we have to define G on maps. If (/*, F) is a map as above, then we define 
G(f, F) = (f,Fx F), where/: X—> 7 is the unique map such that the square 

t/(0 -H x 

V(F(ij) —> Y 

commutes for each / E /. To see that this is a morphism in X, we first observe that from 
a = (i) o a(0, we ge t / o a = / o (i) o cr(0 = (^(0) ° / ( 0 ° °"(0 which means by 
definition that (/* o cr)(F(0) = / (0 ° °"(0- Then, 

(F x /0(fi[(7; /]) = (F x /0(«(cr), /> = (F(«((T)), F(0) 

while 

V(f o [a; i]) = V(/ o (/, /) O o ( 0 ) = V « F ( 0 , F ( 0 ) o / ( 0 O cr(O) 

= v((F(0,F(0> o if o cr)(F(0)) = v[T o a;F(i)] 

= (v(foa),F(i)) = (F(u(<jj),F(i)) 

Define a map e = (e, £): G —> Id as follows. The map ^ is already defined by 
e o (/, i) = (/) on (X,/, (7, w) and £ : / x / —» / is first projection. We have to show 
that this definition satisfies the requirements for being a map. To this end, for i, /' G /, 
let e((/', /)): U(i) D (7(/7) —»• U(if) be the inclusion. The first thing have to show is that 
e o (/', /) = (?) o e((i', /)). Since the composite of inclusions is an inclusion, 

e o </',i)=eo (i,i) o *((/',/)) = (/) o *«/',/)) 

is the inclusion of U(i) n t/(/x) into X, which is also what (/') o (/', /) is. Second, we must 
show that for all singular simplexes [a; i] of X, E(u[a; /]) = u(e o [a; /]). We have 

E(u[a; /]) = E(U{G), ij = w(a) = u{e o [<j; /]) 

Now let C be the chain complex functor on X that has in degree n the free abelian 
group generated by the small w-simplexes. This depends only on the space and cover, 
not on the index set or the choice function. C_i is defined as the free abelian group 
generated by the connected components. It is a standard theorem of singular homology 
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that the inclusion of C„(X, I, [/, u) into the fall singular chain group of the space X is a 
homotopy equivalence. See, for example, [Dold, 1980], Proposition III.7.3. 

Since the covers are simple, the complex CG —* C-\ G —• 0 is contractible. I claim that 
for each n > 0, there is a natural transformation 0„:Cn-^ GnG such that Cne o 6n = id. 
It will then follow from Theorem 5.3 that C is e-contractible. For a small a: An —» X, 
define 9n(a) = [a; w(a)]. Naturality requires the commutation of 

Cn(X,I,U,u) A > CnGVC,I,U,u) 

Cr,(f,F)[ [c„G(f,F) 

Cn{Y,J,V,v) —+ CnG(Y,J,V,v) 
On 

The clockwise path applied to a G C„(X, /, (/, w) is 

CnG(f, F) o 6n(cr) = Cn(f,F x F)[a; u(a)] =f o [a; w(a)] 

and the other path is 

Ontfoa) = [foa;v(foa)] = \foa;F(u(a))] 

Thus we have to show tha t / o [a;u(a)] = \f o cr;F(w(cr))]. But [/* o CT;F(M(O-))1 is 
characterized by two properties; first that its composite with e i s / o o and second that its 
component is F{i). For the first, we calculate e of o [a; i] =f o e O[CJ\ i] =f o a while it 
follows from the definition of/ that component of/ o [<r; i\ is F(i). 

Thus we conclude: 

THEOREM 7.1. Let K be the chain complex functor that has in degree n the free 
abelian group generated by the small singular n-simplexes, augmented over the free 
abelian group on the connected components. Then K is e-contractible andK —»K- \ —> 0 
is G-contractible with respect to the class of contractions. 

One thing to note is that although the class of contractions is the smallest possible 
class and gives natural homotopy equivalences, they are natural only with respect to the 
arrows in the category and there relatively few arrows. 

Now let p > 0 be an integer and let XP denote the subcategory of X consisting of 
those (X,I, [/, u) for which X is a manifold of class CP and the open cover is simple 
with contracting homotopies of class CP and those maps (f, F) for which/ has class CP. 
It is known that every differentiate manifold has such a cover (See [Lefschetz, 1942] 
Section 46 of Chapter VIII and farther references cited there), so that the results we get 
are true for all class CP manifolds for all/? > 0. 

Now let q < p and define the chain complex functor Kq as the free abelian group 
generated by the small simplexes of class C1. As usual, A/^ is the free abelian group 
generated by the connected components. Exactly the same considerations used in Theo
rem 7.1 show that Kq is e contractible and that Kq —» K?_x —> 0 is G-contractible. This 
is true in particular for/? = q. There is an inclusion KP —> Kq and Kp_x = K^_l so that 
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KP C Kq induces a homotopy equivalence. At first, this is seen to be natural only with 
respect to the arrows in Xp, but in fact the inclusion is natural in the whole category of 
manifolds of class (J. Thus the homotopy equivalence is best viewed as being a quasi-
homotopy equivalence. Finally, each of these chain complex functors is quasi-homotopy 
equivalent to the homology based on all (not just small) simplexes of class C9, resp. CP. 
Thus we conclude: 

THEOREM 7.2. Let q <pbe non-negative integers. Then on the category of manifolds 
of class CP, the inclusion of the KP—> Kq is a quasi-homotopy equivalence. 
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