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On the Solutions of Mathieu's Differential Equation,
and their Asymptotic Expansions.

By Dr JOHN DOUGALL.

(Read 11th May 1928. Received Jfth August 1928.)

The following paper is a continuation of one read before the
Society some years ago, and published in the Proceedings, Vol.
XXXIV. (Part 2), Session 1915-1916. The results of that paper,
more especially those summarised in Art. 14, and those of Arts. 17,
18 will be assumed.

The differential equation is

d2u/da? + (JKV cosh 2a. - s*)u = 0.

Analytical representations were found for two independent solu-
tions of this equation. In the present paper, asymptotic expansions
of these solutions are obtained for the case when the real part
of the variable a, tends to infinity, positive or negative, the
parameters KC and s remaining fixed. The expansions are deduced
by direct transformation of the series already found for the solutions.
In the present state of the theory of asymptotic series, this seems
to be the only possible rigorous method.

The general term of the main solution was written in the form

<f> (n + \v) being a particular value of a function <f> (z) which was
denned for all values of the complex variable z. Most of the
developments now to be given are based on an expansion deduced
for the function <j> (z) in the form of a series of reciprocals of
II functions ; this expansion can be expressed as the product of a
single II function by a series of inverse factorials.

By a slight change of notation, the above differential equation
can be written in a form which reduces at once to Bessel's equation
when a certain parameter is given the special value zero. The
following analysis reduces, therefore, in a special case to a
discussion of the solutions of Bessel's equation and their asymptotic
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expansions. The treatment of the simpler equation thus suggested
is not without interest. I t is akin in some respects to a method
which has been given by Barnes.

1. The differential equation being

^ + ($icVcosh 2<x.-8> = 0, (1)

we have (I. Arts. 14, 18)* a solution

J(v, s , KC, a.) = 2 (-\)n 4>(n + \v) e^n + r > a ( 2 )
n— - oo

and a second solution

G (v, », KC, a.)

= 2 s i^ vv K ( - " i « . KC, a.)-e-""1" J(v, 8, KC,O.)} (3)

Instead of 8, KC, V, it is usually more convenient to use the
constants r, A, k, fi, where

We may write

where v -» 1, as R («)-» + co .
The function <j> satisfies the difference equation

~L^z) (5)

and we have the important relation (I. Arts. 6, 7)

sin (* + r) v sin (z-r)ir- X4/*,(r) + X'Fa(r) - . . . } , ... (6)

where Ft (r) = - ir sin 2rjr/{r (4r* - 1)}, (I. Art. 8)
F, (r) = C,(r) cos 2r;r + Sg (r) sin 2rrr,

where Gq (r) and S, (r) are rational functions of r only;
and F2{r) is given by I. (55), (68), (70).

* References to the 1916 paper will be given in this form.
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The equation for /*( = £e) is (I. Art. 2)

= O (7)

or cos2fi7r = cos2rv-2XiF1(r) + 2XsF2<r)- (8)

a holomorphic function of A4 and of r2.

From (6) and (7)

= (l/7r2A.2) {sin (2 + r) ?rsin (2 - r) ?r - sin (/* + r) ir sin (/1 - r) jr}

= (iy\?)8in(z + ii.)wsin(z-n)ir, (9)

Then, from I. (51), (53),

_ sin (2 + /i) 7T sin (2 - ft) T

n- _'«, B+* sin (2 + r) ir sin (2 - r) ir

sin(2 + r)7r sin (z-r)ir

that is to say, this is the asymptotic form of i\ as 2 goes to - 00
by steps of 1, the imaginary part of 2 remaining constant.

2. It will usually be convenient to work with a function \ (z)
instead of with <f> (z), the definition of the new function being

The difference equation for x («) is, from (5),

*4x(*+i) + x(*-i) = (^-«!)
and, from (4), we have, when R (»)-» + 00,

where we use the relations II (z + a) ~ 2 * II («),

and I I ( M ) I I ( M - £ ) = V^2-2« II(2it) (13)

3. The form of (12) suggests an expansion of x (*) in the form

x (2) = 1/n (22 + \) + B,/U (22 + } +1)

+ ...+£n/n(2z + l + n) + ..., (14)

where the coefficients Bv Ba ... are independent of s.

https://doi.org/10.1017/S0013091500077828 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500077828


29

Assuming the expansion provisionally, we may find a recurren ce
equation for the coefficients from (11), as follows. We have

II(2* + $

so that, by (14),

n(2a + i + l)J

n=0
if we take 2?0 = I.

n=0

if we also take J8_, = 0, 5_2 = 0.
We thus require, by (11),

{(« + £)'-«2} 5 - 2

for n = 0, 1, 2, ... ; with So= 1, 5 ^ = 0, i?_2 = 0.
By taking ra = 0, 1, 2, we find

and so on, so that the coefficients 2?n are all defined, and are
obviously polynomials in s and k.

4. The above process must now be justified by an examination
of the convergence of the series in (14).
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In (15) put
Bn = BnU(n-^ + s) II (»-£-«)/(2» Iln), (16)

so that the definition of A is

2)n = JBn2»nn/{II(«-J + s )n (n - i - s ) } (17)

Then (15) becomes

A-A+.

Also A = A = A = 1 / n ( - J + s) n ( - £ - «) = cos W/TT.
Write (18) in the form

or
Then A =

A =
A =
A = A + C3 A = ( ̂  + C0 + Cl + C2 + C3 + C0 "3) A .

A = A + C4 A = (1 + C0 + Cl + «2 + C3 + C4 + C0 C3+«0 C«+Cl C4) A -

Clearly A is the sum of terms selected from the expansion of
the product

the terms rejected being in fact those in which any two c's occur
with sufhxes differing by less than 3. If we write ba for J en | we
have therefore

I A I <( l+6 0 ) ( l+6 1 ) . . . ( l+6 n _ 3 ) I A I •

But bn is of the order 1/ro4 when n is great, so that the infinite
product (1 +b0) (1 +6,) ... converges; Dn has therefore a finite
upper limit L. Hence, from (18) and similar equations, by
addition,

I A - A + , I <(*„_* + *„-,+ ••• +6n+p_3)X,

which tends to zero as JI->X> , for every positive p.
It follows that A tends to a limit, D, say (for the value of D

cf. Art. 8).
If * is half an odd integer, the above process fails, for the

denominator on the right of (18) then vanishes for certain values
of n. The conclusion still holds, however, as may easily be proved
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by a trifling modification of the process, starting from a sufficiently
large value of n instead of the value 2. We now have from (16),

Bn~D n(n)n-iU(n)n-'-i/-,

or Bn s r 2 - " n {n-\)D (19)

The general term of (14), viz. Bn / II (2z + | + n) has, therefore,
the asymptotic form 2— II (n - 1) D j n2z+* n n, or 2~» n2*-* D, so
that the series converges for every z: the convergence being
similar to that of a hypergeon etric series with fourth element
equal to £. I t will be seen later that in one interesting case the
limit D is zero; since Bn j II (2z + l + n) ~ 2~" n^-i DM the con-
vergence of (14) in this case is at least as strong as in the general
case (cf. Art. 10).

5. With the values of the B's as now found, the processes of
Art. 3 are obviously legitimate. I t still remains to show that the
function on the right of (14), w, say, is the same as the function
x(z) already defined at (10). Now, wl satisfies the difference
equation

¥ w,+1 + w>_i = (4z2 - ss) tvz.

Eliminating (4a2 - s2) between this equation and (11), we find

-k- {x(*)v>^-x(*-l)v>.};

that is, the function on the right is not altered by change of z
into z + 1, nor, therefore, by change of z into z + n, where n is any
integer; by making n tend to + ao, and noting the asymptotic
forms of wt and x (z)> we find that the function is zero. Hence we
may write wt / x (*) = «>z+i / X (z + 1 )• since obviously neither
denominator vanishes for a z with sufficiently large modulus.
Thus

so that w, = x (*)•

6. The asymptotic form of x (%)> when B («)-> - oo , is important.
In terms of x (z). (9) is

= (2/n-) sin (z + fi) ir sin (z - /*) TT (20)
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It follows from (4), (9a), and (12) that, when i2(s) is large and
negative, the second term on the left is small in comparison with
the first, provided neither z + /* nor z - /* is an integer. Hence

x(*)~(2/*-)sin(8 + / i ) « - s i n ( « - / i ) x / x ( - * - l ) (21)

But, from (12), X ( - * " l) ~ / 1 n ( - 2z - f ) ;
hence, from the formula II (M) II ( - u - 1)= - ir j sin uir (22)

x(z) =: (2/TT) sin (Z + IX)T sin (z-/i)ir II( - 2 z - f ) , . . . . (23)
or x ( z ) ^ -(2/cos 2zir) sin(» + ft)ir sin (z - ^ T T / I I (-2* + ^), ... (24)
if R{z)-> - oo .

This result brings into prominence an important feature of the
series (14) for \ (z). That series converges for every z, and, if | z |
is large, each of the early terms of the series is large in comparison
with the succeeding term, whether the real part of z be positive or
negative. But (24) shows that when £(z) is large and negative,
and the imaginary part of z is zero or not large, the first term of
the series (14) does not give a first approximation to x(2)- The
underlying reason for this peculiarity is that, in the case supposed,
the moduli of the terms of (14), though they begin as a decreasing
series, fall to a minimum, and rise again to a maximum, before
they finally tend to zero; and the terms on either side of the
maximum are not negligible in comparison with the early terms.
If, however, we define B (n, z) so that we have, identically,

+ B(n, 2)/II(22 + £ + n), (25)

then B (n, z) = Bn + Bn+,/(2z + \ + n + 1)
+ 5n+2/(2z + £ + n + 1) (2z + I + n + 2) + ...

But, ifi2(2z + £ + n)>0, then | 2z + £ + n + iV | >iV(whereiVisany
positive integer), so that the terms of the series for B(n, z) have
moduli less than those of the convergent series

\Bn\ + | 2 U I / 1 + | 2 U | / 1 . 2 + . . .
The series for B(n, z) therefore converges uniformly for every z

within the region B(2z + J + n) > 0, so that its limit as z->x> within
this region may be found term by term, and is Bn.

If p<n, we may write

B (p, z) = Bp + Bp+11 (2z + $ + n + p)
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and clearly B(p, z) converges to Bp when | z | ->oc if B(n, z)
converges to Bn, i.e. if R (2z + £) > - n, or if R (z) > any assigned
integer.

7. The asymptotic value of x(2) *n (24) is the first term of an
asymptotic series of which some use will be made later. To find
this series, put S for the right side of (20), and write that equation
in the form

Change z here into z + l, z+2, ..., z + n; multiply by k*, k8 ...,
and add.

Thus x

* - « + l ) x ( - 2 - ™ ) } (26)

By using (25) with z changed into - a - 1, - z - 2, ... - z— n on
the right side of (26), after multiplying (26) by x( -*)i we obtain
the value of \ (z) as an expression which is the product of the right
hand member of (24) by a factor which it is easy to see may be
thrown into the form

where /3 (n, z) tends to a finite limit when z -»oo in the region for
which R (z) is less than an assigned number,

Hence, if R(z)<a(any assigned number),

X(z) = (- 2/cos 2zir) sin (z + jw) ir sin (z - p) TT

(27).
The periodic factor here is not changed by changing z into z+l;

and a slight modification of the process of Art. 3 therefore shows
that the coefficients /? are simply the coefficients B; and it can then
be shown in a moment, by using (27) with n changed into n + 1,
that the limit of /3(n, z), when z->oo in the region R{z)<a, is Bn.

The argument fails if z + /x or z - /x is an integer; in this case
(26) gives x (z) I X ( - z) — ̂ T X (s + n ) / X ( ~ z - n)> which is equiva-
lent to the result of I., Art. 5,

-*»)/*(/«) (28)
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Since the factor ( - 2/cos 2ZTT) sin (Z + /Z)TT sin (z -/x) TT in (24)
and (27) is equal to 1 - cos 2fiir/cos 2ZJT, which tends to the value 1
when /(«)->• oo, it appears that in (25) B (n, z) tends to the finite
limit Bn when | z | —>oo , with - n + S> arg x< ir - S, when S is any
small positive number. Briefly, we may say that as | z | -»oo
in any direction except parallel to the negative direction of the
real axis, (14) represents x (s) afymptotically as well as analytically.

8. The value of the limit D which occurs in Art. 4 can now be
determined. In (14) take 2z + \ + n = 0, or z = - \n - \, where n is
a positive integer. Then

X(-hn-l) = £n + JBn+1/l+£n+,ll.2 + (29)

But, from (19), £n = 2~n II (n - 1) D {\ +En),

where En ->• 0, when n -¥ <x>. Thus

If E is the greatest value of | En, \ En+l \ , ..., it follows that
the modulus of

is less than

or | X ( - i n - i ) - 2 « ] I ( n - l ) Z > ( l - ! ) - |
- » n ( n - l ) | D | (1

Hence X ( -\n--\)~ n (n - 1) D,

or 2) = Z< x ( - £ «

But, by (23), when R(z)-» - oo .

x (z) = (2/«-) (sirinr - rinV*) H ( - 2» - f).

so that D = Lt (2/«-)(J-sinVT)n(n-l)/n(n-l)
n=- f QO

or 2) = (l/7r) cos 2/UTT (30)

Then, from (19)

2/a7r 2-" n ( n - 1) (31)
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When k and r are so related that cos 2fiir = 0, or fi = JV + \,
these results are nugatory; the asymptotic form of Bn for this case
is given in Art. 10.

9. We have now to introduce a simple piece of analysis, the
applications of which are by no means confined to the present
subject.

Consider the function St defined by the series

»/n (2z + i + n) + ... ,

1 +1 having the phase 0 at I = 0.

The term in Bn ~ (1/ir) cos 2/XJT 2"n n"2*-? (1 +t)iz+l+n,
so that the series has a circle of convergence of radius 2, round
t = - 1 as centre. The function can, therefore, be expanded in a
series of ascending powers of t, with radius of convergence 1. The
coefficients may be found by Maclaurin's Theorem.

The value of St for t = 0 is x (»)• The pth derivative of St is

the value of which for t = 0 is x (* - Jp)- Hence

(i+<)s*+j/n(23+£) + Js1(i + <)2 '+ i +7n(2S.+£ + i) + ...

= x(s) + «x(*-4) + ( * 7 1 - 2 ) x ( s - l ) + -
+ (<>!) x ( « - i n ) + ... (32)

where \t\ < 1.

By changing t into - 1 , we obtain also

(i - ty>+i i n (2s + j) + z?, (i - «)*+t+i / n (2z + j +1) +. . .

= X(») - < x ( ^ - i ) + (< 2 / l -2) X (^- l ) - (33)

Let B(2z + J)>0, and take the limits of the two sides of (33)
for t = 1. The series of term by term limits on the right converges,
if R (2* + £) > 0. In this case, then

X(*-S)/81 + X(*-f)/6» + (34)
The function of z, which in the region R(z)< - \, is given by either
side of (34) will be denoted by t// (z); it plays a fundamental part
in the analysis which follows.
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By putting t= 1 in (32), we find

2 t{z) = 22z+i/Il (2z + i) + B12
t*+l+1/Il(2z + $ + l) + (35)

It is easy to prove, as in Art. 6, that this series represents 2 \f/ (z)
asymptotically (Art. 7) as well as analytically in the region
E (z) > - \, when | z | -» oo .

10. We can now, for the case when cos 2/«r = 0, find a series for
Bn from which its asymptotic form as n-»oo will be apparent.
In (33), let 2z + £ + n = 0, n being a positive integer.

Then Bn + Bn+1 (1 - t) / 1 + JSn+, (1 - <)2/l • 2 + ...

The limit of the function on the left for t = 1 is Bn. The
function on the right has therefore the same limit; and this limit
can be found term by term, by a well known theorem of Abel's,
provided the series converges for t= 1. Now there is one and only
one case in which both of the series

X(*) + x ( * - l ) / l - 2 + . . .
and x ( * - i ) / l + x ( * - t ) / 3 ! + ...
converge, outside the region £ (z) > — \.

The first series converges if z = N+fi, the second if z - ^ = N" ±(i,
where iT and N' are integers. If both converge, we must have, by
subtraction, J = ± 2/* + an integer, so that 2/x is half an odd integer,
and cos 2fiir = 0.

In this case, therefore, we have

* . = x ( - | » - i ) - x ( - i » - f ) / l + x(-*»-*)/!• 2- (35A)
Using (28), and writing A for <£( - i ) / $ (i), w e easily deduce

from this, when n is even,

/ l 2. 3+ . . .} . . . (35B)

When n is odd, Bn is given by the same series, with A changed

into I/A.

Hence, for the asymptotic values, as n->ao,

), (n even);

), (n odd) (35c)

For this case (cos 2/«r = 0), it should be noted that the series (35)
for 2^ (z) converges for every value of a.
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11. The function \p{z) of (34) is a solution of the difference
equation

(4z2 -s2) f(z) = kii{>(z+l) + (4z - l ) ^ ( z - J ) (36)

This may easily be verified from either of the defining expansions
of (34), with the help of the difference equation (11) for \ (z);
or from the expansion in (35), with the help of the recurrence
equation (15) for the coefficients B. The equation (36) is only
proved in this way for values of z with real part greater than a
certain number; from the principle of continuation it is true for
every z, and may be regarded as giving a definition of the
function ip for values of z beyond the region for which (34) and
(35) are valid.

In(36)write z= - %$ - \ , or £ = - (2s + £).

Thus

If we bring in a function H^ where

*( - l£ - i )
this becomes

* 4 # ^ + 2 ( £ + l )#£+ , (36A)
which is the same as the equation (15) for Bn, with H for B, and
£ for n.

The function Hz is sin irz \j/ (-- £ z - \), and vanishes if z = - 1,
- 2,...; and we shall now show that Ha = - \ cos 2/«r.

We have, so long as R (t) > 0,

/ ( ) / ( ) + . . . , (37)
by (35).

The series on the right of (37) may be expressed as the sum of
two series, one of which converges for t = 0, while the other can be
easily summed for any t with R (t) > 0. This is shown as follows.

If we multiply the series in (37) by ir/co&2fiir, and write bn for
Bnir I cos 2/MT, we can write the remainder after n terms, which is
6n 2'+"/ Il(« + n) + 6n+12<+"+1/
in the form

+ {6»+1 - 2- - 1 n (n)} 2'+«+1 / n (f + n + 1) + ...
+ 2' {n (n - l ) / n (« + n) + ri(n)/n(t + n+1)+ ...}... (38)
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Now, from (18) and similar equations, by addition, it is seen at
once that Dn = D+0 (\/n"), and (16) then gives

or 6B= 2 - I I ( n - l ) { l

The general term in the first series of (38) is therefore

so that the series converges if R(t)> - 1, and is, therefore, finite
for t = 0.

The second series of (38) has the sum

i.e., \jt + a value which is finite for t = 0.

From(37), #„ = Lt #_,

= - J L t [sin<jr{
1 = 0+

= - \ (cos 2 fin I T) Lt (sin tir j t)= - \ cos 2 /xir ,

as was to be proved.

If, then, we introduce a function B, with the definition

5 , = -(2/cos 2/**•)#,
or B,= -(2/cos 2/iir) sin irz \(>(-\z-\), (39)

so that ^(£) = £(cos2/i7r/cos2£ir).B_2{-$, (40)

we shall have Bo= 1, 5_, = 0, 5_2 = 0, and, by (36A),

{(z + l)'--,?}B,-2{z+l)B,+,-ktBI_3 = 0 (41)

Hence, by (15), the coefficients 1, Bv Ba ... of (14) are the values
for z = 0, 1, 2, ... of the function B, defined by (39).

From (37) and (39),

B,= - (sin irz) I cos 2 /nr) {2~* / II ( - «)

+ J B 1 2 - + 1 / I I ( - * + l ) + . . . } , (42)

if K(z)<0.

If in (41) we write C, for II (z) Ba we find

?}C,-2C,+i-k'z(z-l)Cz_t = 0 (43)
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From (39), Cz is finite for every z with R(z)<0; it follows then,
by successive applications of (43), that Cz is finite for every z.

B, is therefore a holomorphic function of z. The function does
not exist, however, in the exceptional case when cos '2/nr — 0.

Since f(z) = ^ cos 2/*ir 2?_2z_}/sin (2s+ i)ir, the singularities of
<p (z) at a finite distance are simple poles at s = -\n — \, where n
is zero or a positive integer; and the residue of t//(z) at the pole
z = —^n-\ is ( - 1)" Bn cos Hfj.Tr/iir. Note that when cos 2fiir = 0,
^(z) is holomorphic, in agreement with the last sentence of Art. 10.

12. The function if/(z) has been defined explicitly for R(z) > - J,
and its finite singularities have been found. For other values of z,
it is virtually defined by the difference equation (36). There is an
obvious advantage, however, in having an expression for \f> (z)—
and consequently for Bt—which is valid all over the z-plane. Such
an expression will now be obtained.

Consider the integral

, f± X(K-t)dt
' J 2i II (21) sin 2<JT sin (t - z - /J.) IT sin (t - * + p) it K '

the path (P, say) being any straight line drawn downwards parallel
to the imaginary axis, passing to the left of t = 0, and avoiding any
zero of sin (t - z - fi) IT or sin (t - z + /x) IT. For any t, on or to the
right of the path P, and having a large modulus, we have, by (23),

X (z - t) ~ (2/JT) sin (z - t - n) ir sin (z - 1 + ft) JT/II (2< - 2« - | ) ,

so that the integrand in / ,
~ (1 / iir) n (2t - 1z - \) I n (2*) sin 2tir

Hence, if R (2« + f) > 1, i.e. if R (z) > - \,
I, = 2 tjr (sum of residues at poles to the right of path P) ; or,
writing down in order the residues at the zeros of sin tw, cos Iir,
sin (t - z - p) ir, sin (t - z + /i) IT, we have

' 2 sin (z + (i)ir sin (z- /J.)IT ( - ) 2 cos (z + p) ir cos (z - fi) ir

+ 2' X<-»-*•)
sin 2 (z + /x)x sin 2/ti

- 2 "
„ II (2n + 2« - 2/t) sin 2 (z - /*) ir sin 2/iir '
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Here 2' and 2" include all values of n, in ascending order, such
n n

that n + z + fi and n + z - p, respectively, are to the right of the
path P; and the sum of the other two series, by the definition at
(34), is ip (z). 2 cos 2ZTT / sin 2(z + fi)ir sin 2 (z - fi) jr. Hence
2 cos 2ZJT tf> (z) = Iz sin 2 (z + fi) TT sin 2 (z - /x) ir

- {sin 2 (z - /*) JT/ sin 2/XTT}2' x ( - n - /x)/ II (2n + 2z + 2/x)
n

+ {sin 2 (z + /i.7r/sin 2//ir}2"x ( - « + /x)/ II(2TO + 2 Z - 2/X)

..(45)

It is easy to prove, with the help of the principle of continuation,
that the expression on the right of (45) gives a representation of
the function 2 cos 2CT \p (z), or cos 2/x7r B_iz_^, valid for every z.

13. If, in the integral It of (44) we substitute for x{z-t) the
expression derived from (27) by changing z into z-t, we can
derive an asymptotic series, for \f/ (z), valid when z is real and
-» - 00. The question whether the result is valid, on the more
general supposition that (z) —> 00 in any direction, subject to
R(z)<a, is left open for the present.

Stopping, in the meantime, at the first term of (27), i.e. the
term in (23), we have

X (z) = (2/TT) sin (* + /!)*• sin (*-,,) rfl ( - Iz - f)/(«),
where/(z)->• 1, when | z | -»oo, with .ff

path P as at (44);

and /(z-t) is nearly equal to 1 along the whole path, when z is
large and negative. We may write

or, on putting 2t = z + \ + u,

* - f - « ) / * ( * - * - « ) * • (47)

If the path P is taken through the point It = z + \, i.e. the point
u = 0, and we put w = iv, we find

f n ( - z - f + w) n ( - z - f - i
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We take z to be real; so that the product of the II functions here
is real and positive; it follows easily, as in the similar case
at (29), that

/,= (l/2«*)/0 f II ( - z - l + iv) n ( - z - i - «.) dv,

where Ja -» 1, when z —> - x .

In other words, the asymptotic value of Iz is found by using the
asymptotic value of x(z~') under the integral sign at (44); and
obviously a similar result follows by the same method, if we stop at
any term of the asymptotic series for x (« - £) instead of the first.

The coefficient of Bp in the asymptotic series thus obtained
for / , is

Consider the integral

(l/2i) j II (u + c) du/Tlu sin-KU ; (49)

suppose R(c)< - 1, and for convenience let c be complex ; the path
being downwards and parallel to the imaginary axis, except that it
bends so as to keep the poles of II (u + c) to one side and those
of 1/IIM sin 7TM to the other; then the integral (49) = 2iri (sum of
residues to right of path).

= lie (1 + 1)-*-' = lie. 2-*-1. (50)

By the continuation theorem, this result holds when B(c) is
positive, in which case the integral can be takt n along the path
P of (44).

We thus find the value of (48) to be

(~l)»(l/ir)Il(-2z-§-P)2t>+i+P (51)

Hence

In (45), when z is large and negative, the series 2' and 2" are

represented asymptotically by their first terms, and are negligible,
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unless 2(z + /i) is an integer, a case considered in next article;
thus, when a is real and - » - oo ,

tff («) ~ {sin 2 (a + /x) 7r sin 2 (a - /*) n- / 2TT COS

also, by (39), when a is real and -» + oo ,

5 , 3; {cos (a + 2/i) IT cos (a - 2/t) ir / JT COS 2/«r}.
{ 2 - ' n ( a - l ) - 5 , 2 - ' + i n ( a - 2 ) + . . . } ; (54)

and, in particular, taking a = n, a large positive integer,

{2—II (n-l)-2—+1 n (n-2) £,+2—+s n (71-3)^-...},...(55)

an extension of the result already found at (31).

We may write (53) in the form

\p(e)~{- sin 2 (z + /*) ir sin 2 (z - /*)TT / 2 cos2 2air}.
l) + ...} ...(56)

The relationship of (56) and (35) is interesting; compare also (27)
and (14).

14. Returning now to (45), we have to consider the exceptional
case when 2(z±/x) is an integer. The results will lead us immedi-
ately to the asymptotic expansions of the functions of (2) and (S).
In (45), take z- n = \ N, where N is a positive or negative integer.

We find ^ ( J J IT+ f . ) -2 : "x ( -» + /»)/n(2n +JIT): (57)
n

(a) JVeven; 2n + tf=0, 2, 4, ...

* ( i ^ + / » ) - X (*-y+/*) + X (*•»>/«-1)/1-3 + (58)

(6) iVodd; 2w + iV=l ,3 , 5,...

* ( £ A » = X (**•+/* - i)/l + X (i-flfy* - |)/1 • 2. 3+...(59)

In (58), put JT= 2p, and in (59) put N= 2p + 1; then

2 + ... ...(60)

where p is any positive or negative integer. In (60) and (61) /i is
any root of the equation (8); ft may therefore be changed into - p.

It is interesting to note that although the series (34), which
define >p (a) in the region R (a) > - \, fail to converge in general
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outside this region, yet when one of them does converge, it gives
the correct value of the function—a result which of course could
not have been anticipated. The formulae (60) and (61) could,
however, be deduced by mathematical induction from (36), since
they are known, from (34) to be true when E(p + p)> - \.

15. If we change from the variable a. of Art. 1 to a variable p,

such that p = £ee°, (62)
and if we use the function X

 a s defined in (10), the defining series
(2) for J(v. 8, KC, a.) takes the form

± (-l)»j2J7x(n + li)(Kpfn+'2»; (63)

or, if Kp = icr, so that a- = Kp/i = Kceaj2i (64)
the series for J{y, s, KC, a.) is

i2" v/2/^S:x(n + ji)<r2n+2''; (65)

write this for the moment as Jv simply.

Then, from (3),

G (v, s, KC, a.) = (ir/2 sin 2/«r) (J- „ - e " »•" Jv)

= J^J2(e ~ V'/sin 2/ax) { 2X (n - /t) <r2n " %*

- 2 x ( n + At)<72»+2"} (66)

The asymptotic expansion of this function as | o- | -»oo contains

the factor e~"; and we shall deduce it from the ordinary power

expansion of the product e" 0 (v, 8, KC, a).

16. In the product of e" by the series in 65, i.e. tKe product of
the two absolutely convergent series

the coefficient of tr
2n+2'* is

, l ) /1 .2 + . . . , o r ^ ( n + /*), by (60); ...(67)

and the coefficient of ( r
2 n + 2 ' ' + 1 is

. 3 + . . . , or ^(n+ /* + £), by (61). ...(68)
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Hence e" 2 x (« + f

- 2 ^ ( J n + / . ) ^ + ̂ . (69)

Also «" { 2X (n - /*) <r2n " 2" - 2X (« + /*) °"2n + 2"}
(70)

17. The case when cos 2/«r = 0 being exceptional in some
respects, it is convenient to treat this case by a special method.
We may put fi = £. "We have here

«' X (« + i)o-2n+i =2o-2»+i{X (« + i) + X (« " I ) / 1 • 2 + ...}

the last line being obtained by changing n into w - 1.

Hence e" {2 x (n - \) o-?""i - 2 x (n + J) tr2»+i}

But if ^>>0, the coefficient of o*-i here vanishes, by (34); and
if p is 0 or negative, that coefficient is ( - \)p B_p, by (35A).

Hence, when cos 2/UJT = 0,

e" {2 x (n - | ) o-2-i - 2 x

= <r-i-B1o-i + J3a<r-t-...+(-\y>Bp<r-P-i+... (71)

Thus, when /* = %N+ \, when N is any integer, we have from (66)

e" . G (v, s, « , OL) = J (TT/2) («" ^ T / sin 2/«r)

{o-J-.B.o-i + ̂ o-J-...} (72)

It will now be proved that, in the general case when fi is

unrestricted, the series in (72) represents the function e" G
asymptotically.
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18. It was pointed out at the end of Art. 9 that if | z
in any direction within the region H(z)> - J, then

+ i ) ; (73)

this holds in particular if z-»co in a direction parallel to the
imaginary axis The latter result is true even when M (z) £ — \,
and is needed for what follows. To prove it, in the difference
equation (36) for \p (z) put

(2z - s) (74)

The difference equation becomes

2-s!!} (75)

From (73) and (74) Ez-> 1 when /(z)->oo , with R(z) constant
and > - \. I t follows from (75) that E.-j s ~ Et ~ 1 (cf. Art. 4).
Hence the required result follows.

19. Consider now the integral

= r o*4>(t)dt
' Jsin2(t + ti)7rain2(tli)v' ( '

the path, Q say, being downwards parallel to the imaginary axis
along the line t= -q, where q is real and positive; we take q so
that the path avoids any pole of the integrand.

Towards infinity on this path if, (t) ~ l/II(2< + §), (Art. 18);
and, if we write It + £ = z = x + iy, where x and y are real, then the
integrand ~ o*-i/ II («) . J cos 2?rz

~ 2a* " i or«» / {iyY II (iy) cosh 2TTIJ

If | a- | -r, andarg. a = 0, then o-'̂  = r^ e - ffJ', and | a*» | =e-9y;

also Il(ijf) II ( - iy) = try / sinh Try, and | Iliy | = %/wy/ Vsinh Try.
Hence | integrand | ~(2/ l s /x) | o- | *-l y-*-i «-«»-?»• I»I.

Hence the integral (76) converges absolutely at both ends if
| 0 | < | T , i.e. if arg. o- lies between fir - S and - |TT + S, where S is

a small positive number.

If arg. a- lies between these limits, it is easy to show that the
integral (76) = 2rri (sum of residues of integrand to right of path
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Q). To prove this, consider the integral taken round the rectangle
the equations of whose sides are t = -q, It + \ = X, It + £ = + Y,
where X and Y will be made to tend to infinity.

Take z = x + iy = It + \, as before.
When x is finite, say between q and -q, the value of the

integrand on y = ± Y has already been shown to tend to zero.
When x>q, say, | x + iy | is large over the sides of the rectangle
other than t = - q, so that

er° / II (z) 2S (1/ J2^z~) (<re / z)';

and / = e*log' = e(x+iy) (log V*a+»! + * arg. *)

so that |22 | x ,* 1 0 ' * -*"* ! .

Hence the integral over y=Y or y= — F is a convergent integral
multiplied by a factor in Y which tends to zero; and similarly
for x = X.

20. The integrand in (76) has simple poles at t = \n ± /x ; and at
the poles of \f> (t), viz. (Art. 11) when n s: 0, at t = - \n - \ ; n being
an integer.

Residue at t = ̂ n - f- is cr*"2'4 \p (^n - /*) / ( - 2ir sin ifiir);

residue at < = £n + /i is o-Jl+2'1 ^ ( i n + /*) / 2T sin 4/«r ;

residue at <= - | n - | is o-"""^ - l)"^n cos 2/J.TT/4TT COS22/*JT .

Hence, summing only for terms in which the index of the power
of a- is greater than ( — 2^),

i t o (77)

The difference between the series on the left of (77) and the
complete series on the right of (70) is of order higher than (l/o-)2*;
and, in / , , a* can be written a--iq a3'*, so that / , is of order (l/o-)1".
Hence, by (66) and (70) the series

«-*"li(-i)1> *.»—* (78)
gives the asymptotic expansion of the product of e" and a solution
of Mathieu's equation, viz., of

https://doi.org/10.1017/S0013091500077828 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500077828


47

i.e. of e" G (v, s, KC, a.), where, as at (64),

<T = KC eal2i; the argument of a must be less than
TJ IT and greater than - f ir.

21. From the asymptotic expansion of G (v, s, KC, a.) in (78),
(79), with the help of the definition (3) we can find at once the
corresponding expansions for J(v, s, KC, a.). Referring to Art. 15
(64), (65), write for brevity J(y, ia) instead of J(v, s, KC, a.) ; so that

J(v, ia) = V(2/,r) , * ' 2X (« + f) a2n + 2».

This gives obviously

J(v, iaeiir) = J(v,ia)eiy', (80)

and J(-v, iaei') = J(-v,ia)e'irr- (81)

In this notation the definition of G in (3) becomes

G(v, ia-) = (TT/2 sin vir) {J( - v, ia)-e~il" J (v, ia)} (82)

We therefore have

G(v, iaeix) = (Trl2sinvn){e-il"J(-v,ia)-J(v,ia)} (83)

and G(.<, iae~ilr) = (TT/2 sin vw) {e '" J( -v,vr)-e~2ivT J(v, ia)} (84)

From (82), (83), iriV(v, ia) = G (v, ia) - «"" G (v, iaeir); (85)

and from (82), (84),jrtV(v, ia-) = efl"r G(v, iae~ilr) - e2il"r G(v, ia) ..(86)

If arg. <r lies between - f it and J JT, we may use (85); and if
arg. a lies between - \ x and § -IT, we may use (86); the extreme
values in these limits not being included.

The asymptotic expansion of G (v, ia) is, from (78), (79)

O(v,vr)= J^r . -*» e - ' ^(- 1)" ^.a"""* , (87)

this being valid if arg. a lies between - fir and |-7r, these values
themselves excluded.

22. The corresponding asymptotic expansions for the case when
R (a.) -» - oo , or | a | -» 0, are now easily found.

The part played in the above analysis by the function
G (v, s, KC, a.) is now taken by G (v, s, KC, - a.). Its asymptotic
expansion is found from (87) by simply changing a. into - a, a
being »ceeo / 2i. The expression for G (v, s, KC, - a.) in terms of the
two functions. J( ± v, s, KC, a) is given at once by I (115), (119).
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23. In terms of the variable <r, i.e. xcea / 2i, the equation (1)
becomes

<Pu 1 du ' »2

(88)
o- Oa- \ (T1 a-- J x '

If we put u = ve ~ ", then

^r + (—-2)^-(— + ^+^)v = 0 (89)
da- \<T / do- \a- o" a- /

If we try a solution

we find the equation (15) for the coefficients B ; if we take Bo= 1,
the cofficients are found to be the same as the coefficients B
already obtained as in Art. 3.

24. Equation (88), for the special case of & = 0, is the Bessel's

equation whose solutions are J, (i<r), G, (tV).

The equation for v is now cos vrr = cos sir, or v = 2tf+ s.

We find J»,, = ( l /2"n!) ( l -s 2 ) ( | - s=) . . { (n-£) a - s 2 } ;

The expansion (14) for x (2) becomes

{l/II (2*+ £)} *-(£-«, i + s,

i?7 being the hypergeometric function. The identity of these two
expressions for x (z) is a well-known theorem of Rummer's, useful
in Spherical Harmonics. The theorem (32) degenerates into
another fundamental result in Spherical Harmonics. I t will be
found interesting to trace out the degenerate forms of the other
formulae of this paper in a similar manner.
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