
MATRIX TRANSFORMATIONS IN AN INCOMPLETE 
SPACE 
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Let X = (X, p) be a seminormed complex linear space with zero 0. Natural 
definitions of convergent sequence, Cauchy sequence, absolutely convergent 
series, etc., can be given in terms of the seminorm p. Let us write C = C(X) for 
the set of all convergent sequences x — (xk), xk Ç X; fë for the set of Cauchy 
sequences; and Lœ for the set of all bounded sequences. One has C Ç 5 Ç L r a 

and Lœ becomes a seminormed space with the natural addition and scalar 
multiplication for sequences x, with 0 = (0, 0, . . .) and seminorm p(x) = 
supn p(xn). The spaces C and E may be seminormed with the Lœ seminorm. 

In the usual way one says that X is complete if and only if C = Ê, or what 
amounts to the same thing, if and only if every absolutely convergent series 
is convergent. When X is complete, so are C and Lœ under the given seminorm. 
Most of the Toeplitz theory on transformations of sequences seems to have 
been carried out for the case in which X is the complex plane, but many of the 
important results are still valid in any complete seminormed space X. 

Let us write (C, C) for the set of all conservative infinite matrices A = (ank) 
of complex numbers, i.e., A is in (C, C) if and only if An(x) = J^k ank xk 

converges for each n to an element of X, and also (An) £ C, whenever x £ C. 
The set of Toeplitz matrices, which leave the limit of x invariant, is denoted by 
(C, C) P. In general, for sequence spaces E and F we denote by (E, F) the set of 
all A such that X) amc xk converges for each n to an element of X and (An) G F 
whenever x G E. 

By <j> we denote the space of finite sequences of complex numbers, i.e., 
sequences which have only a finite number of non-zero coordinates, and R 
denotes the set of row-finite infinite matrices, i.e., matrices whose rows are in <j>. 

When X is complete, the usual conditions for A to be in (C, C)P (or(C, C)) 
are valid. For example, A 6 (C, C)P if and only if 

\\A\\ = suPrc LK*I < °°> o»*->0 («~> oo, * fixed), XX*-> 1 (» -» oo ). 

(See, for example, (3; 4; 5), where, more generally, matrices of operators are 
used rather than matrices of complex numbers.) 

The purpose of this note is to consider regularity conditions and related 
matters in an incomplete space. Without the assumption of completeness, the 
results of (3; 4; 5) mentioned above are false, as the following example shows. 
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Let (X, p) be incomplete, so that C C S , with strict inclusion. Then the usual 
conditions for A to be conservative are not sufficient in X. Let us define the 
conservative lower semi-matrix A by ank = 2~k, 0 < k < n\ ank = 0, k > n. 
Now there is a sequence y G (S — C, whence there are positive integers 
wi < m2 < w3 < . . . such that 

P(y«k+i - 3 W ) < V&2* (k = 1 , 2 , . . . ) . 

Set xo = ymi, xk = (ymk+1 — ymk)2
k {k > 1), so that xk —> 6 and 

n 

/ * ^nk %k = ymn+l' 
k=0 

By the condition on y the subsequence (ymn+1) is divergent, whence (An(x)) is 
divergent, even though A is conservative and x converges. 

In what follows we suppose that (X, p) is incomplete. In the next lemma we 
give the convergence factor theorem which enables us to say when a matrix A 
applies to a convergent sequence in X. 

LEMMA 1. ^akxk converges whenever x = (xk) G C if and only if a Ç <j>. 

Proof. The sufficiency is trivial. For the necessity let us suppose that a $ <j>. 
Then there is a sequence of positive integers Wi < m2 < . . . such that amk ^ 0. 
Also, there is a sequence y G S — C, whence there exist positive integers 
ni < n2 < . . . such that 

P(ynk+i - ynk) < \amk\/k (k = l, 2 , . . . ) . 

Define xni = ynl/(hni, ocmk = (ynk - ynk-i)/^mk (& > 2) and xn = 6 (n ^ mk), 
so that xn —>> 0. Then X A xfe diverges, since its sequence of partial sums has the 
divergent subsequence with general term 

a>i xi + a2 x2 + . . . + amp xmp = ynp. 

The necessity now follows. 

Before we prove the first main result (Theorem 1) we introduce the notation 
M — (uk) for the sequence of column limits of the conservative matrix^., i.e., 
uk = Yimn ank (fe = 0, 1, . . .) . We may note that when X is complete the 
assertion that A is conservative implies that u G h. I t will be seen shortly that 
row-finiteness of A and finiteness of u are essential for A to be conservative 
in an incomplete space. 

For convenience we write T for (C, C) and TP for (C, C) P when C is the 
space of convergent sequences of complex numbers, reserving (C, C) and 
(C, C)P for the case of the incomplete space X. 

THEOREM 1. A G (C, C) if and only if A Ç. RC\ T and u G 4>. 

Proof. The sufficiency is essentially trivial and the proof is omitted. 
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Next consider the necessity. If, for each n, Y,ank xk is to converge to an 
element of X whenever x G C it is necessary by Lemma 1 that 

a(n) = (fl»o, a»i, • • •) G 0, 

i.e., 4̂ G i^. Thus awwl = 0 (ra > fin)), so let us define, for each fixed & < fin), 
xm = d (0 < m < k), xm = y/piy) (m > k), where p(y) > 0. Then (An(x)) 
converges and so is a Cauchy sequence. By the ''absolute homogeneity" of 
the seminorm p we see that 

is a Cauchy sequence for each fixed k, and hence is convergent. I t remains to 
show that 

IMII = supw EK*| < » . 

Here the Banach-Steinhaus theorem, so useful in the complete case, is not 
available ; we do not know that C is of the second category ; a priori it may be 
of the first category. However, the original argument used by Toeplitz (6) can 
easily be adapted to show that \\A\\ < oo, and this completes the proof 
that A £ R(^T. 

Since A G R, we have anlc — 0 (k > fin)). Consider two cases: (i) if in)) 
bounded, (ii) if in)) unbounded. In (i) we have ank = 0 (k > max/ («) ) , 
whence u G <t>> Now suppose that (ii) holds but that u £ <f>. We are then 
assuming that (An(x)) G C whenever x G C, which implies that (An(x)) G C 
whenever x converges to 6 and since A G R r\ T it follows that the sequence 

/ fin) \ 

(1) \J2UmXm) 
\m=0 /n=l,2,... 

converges whenever (xm) converges to 6. Using the proof of Lemma 1, with u 
in place of a, we construct x in terms of the Cauchy sequence y and then 
extract from (1) a subsequence of y, which will converge since (1) converges. 
This contradicts the fact that y G S — C and so completes the proof of 
Theorem 1. 

An immediate corollary to Theorem 1 is that A G (C, C)P if and only if 
A G Rr\TP. 

Perhaps it is worth mentioning at this stage that the restriction that A 
should be row-finite is not especially heavy. Even in the case when X is 
complete there are many useful row-finite matrices in (C, C)P, e.g., the Riesz 
and Cesàro methods. However, the Abel method loses its significance when X 
is incomplete. 

Next we turn to mappings of Ê into itself and prove 

THEOREM 2. A G «S, S) if and only if A G RC\T. 

Proof. First consider the necessity. By Lemma 1 we must have A G R. 
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Now suppose that (An(x)) 6 S whenever x G Ê. Using the proof of Theorem 1 
we find that the convergence of the sequence 

(m \ 
\m=k / 

for each fixed & is necessary. We shall show that ||^4|| < oo by supposing the 
contrary and exhibiting a Cauchy sequence (in fact a null sequence) such that 
(An(x)) has an unbounded subsequence. This argument is just a slight 
modification of Toeplitz' original argument mentioned in Theorem 1, but we 
might perhaps indicate it for completeness. 

If m | | = supn ]£larfc| = oo ? we determine g(k) = f(nk) such that the 
sequence (g(k)) increases to infinity and such that 

0(1) 0(i) 

E ki.*| > 22, Z K-.*| > (2M,((-i) + 2').2' (i > 2), 
0 0 

where, since ank —» uk (n —> oo ), 

Af, = sup„]>] \ank\ < oo, 

for each fixed s. Now take a fixed y G X such that £(;y) > 0 and define 
x = (xk) by 

xk = ^sgnanuk (0 < k < g( l ) ) , 

** = 2^ s S n a^>* (g(i - 1) < * < g(i) ; i > 2). 

Then p(x) < £(3/) and for i > 1, 

P\ Z anijkXk) > X ) - ^ ï " kni.fcl — Z ) />Cy)|On*.*l 
\ 0 / g(i-l) + l * 0 

> ^ £ k«.*l - 2p(y)Mt(t-.n 
* 0 

>^Cy)-2'-> » 0*-> °°), 
whence ||-4|| < oo is necessary. 

Now consider the sufficiency. We have 

oo 

•An\X) = 2^ Q'rik %ki 
0 

where I Ç 6 and A £ R r\ T. The sufficiency follows on writing 

Am\X) — An(X) = 2_, (#m£ — &nkJ\Xk — Xn) + (̂ 4TO — An)Xny 
0 

where 
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0 

THEOREM 3. A G (Lœ, Lœ) if and only if A G R and \\A\\ < œ. 

Proof. The sufficiency is trivial and the necessity follows from the proof of 
Theorem 2. 

THEOREM 4. A G (£«,, C) # arcd <w/;y if A £ R C\ T* and u £ <l>, where T* 
is the set of all A = (ank) such that limw ank = uk and ^2\ank\ converges uniformly 
inn. 

Proof. The sufficiency is immediate and since (Lœ, C) Ç (C, C) the necessity 
of A G RC\ T and u £ <j> also follows. To show that A G T* it is enough to 
show that A G (Lœ, C) with ank —> 0 implies ]£|anA;| —> 0. For, in the general 
case we replace (ank) by (ank — uk) and then Y,\amc — uk\ —> 0 implies 
Sla»*| ~^ 2IW*|> whence by Dini's theorem S|^w&| is uniformly convergent.f 
I t is now easy to adapt the argument of (1, Theorem 3) to show that A G T* 
is necessary for A G (Lœ, C). For, on the assumption that 

limsupw E K * | > 0 

one can construct a bounded sequence x such that (An(x)) has a subsequence 
which is not a Cauchy sequence. 

THEOREM 5. A G (£„, 6) if and only if A G RC\T*. 

Proof. The sufficiency is straightforward. From the inclusion 

(£», 6) Ç ( 6 , 6) 

it follows that i Ç i ^ H T is necessary. Now A G (Lœy E) implies that 
6n* = ank — uk—>0 and since w G /1 it follows that B G (Lœ, Ê). On the 
assumption that £|&nfc| ^ 0 we can construct, as in Theorem 4, a bounded 
sequence x such that An(x) has a non-Cauchy subsequence. Hence, as in 
Theorem 4, we deduce that A G T*. 

In the next theorem we shall denote by N the set of all conullj matrices A, 
i.e., the set of all A G T such that 

Km» XXfc = X>*. 

THEOREM 6. A G (S, C) if and only if A £ RC\ N and u G <t>-

Proof. li uk = 0 for k > M and # G S, we write 

fin) fin) M 

(2) An(x) = xnJ2 (ank - uk) +J2 (ank - uk) (xk — xn) + X) uk xk. 
*=»0 k=0 A;=0 

fThis is the essence of the argument given in (1, Theorem 3). 
J See Wilansky (7). 
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When A G iV, it follows that (An(x)) converges to Y^un xk, whence the 
sufficiency. 

Since (S , C) Ç (C, C), it follows from Theorem 1 that A £ R C\ T and 
u G 0 are necessary. Hence from (2) the convergence of (An(x)) for all x G 6 
implies that 

/ /Oi) \ 

l ^ w ^ \ank uk) J 

converges. 
Now write 

fin) 
an — 2^ \anJc uk)y 

0 

so that (an xn) G C whenever x G S. Clearly this implies that lim aw exists. 
Suppose that lim an = 21 ̂  0. Then there is an TZ0 such that \an\ > I for 
n > Wo. Write bn = an~

l for w > ^0 and take a sequence y G S — C. Now 
define, for w > Wo, xw = &w yn and set x = 6 otherwise. Then x G E, since 

£(*» - *TO) < y P(yn ~ ym) + \h — bm\p(y) (n, m > n0), 

but (an xn) = (yn) is not convergent. Consequently it is necessary that aw —> 0, 
which completes the proof. 

The following theorem completes the solution of the problem of finding all 
the necessary and sufficient conditions for A G (E, E), where each of E, E 
may be any of C, 6, or Lœ. 

THEOREM 7. (C, LJ = «£, L J = (Lœ, I J a ^ (C, S) = (S, S). 

Proof. Obviously (Lœ, Lœ) C (g, Lœ) Ç (C, Lœ), and from the proof of 
Theorem 2 it follows that A G i?and| |^4| | < °° are necessary for 4̂ G (C, L J . 
Hence, by Theorem 3, (C, Lœ) Ç (Lœ, Lœ), which proves the first part of the 
theorem. 

The equality of the classes (C, 6) and (S, Ë) follows from the inclusion 
(S, 6) £ (C, 6) and the proof of Theorem 2. 

For the next two theorems, which are of classical Steinhaus type, | we employ 
the terminology that a sequence x is summable A if Av (x) exists for each n and 
(An(x)) G C. 

THEOREM 8. If N' denotes the set N of conull matrices satisfying u G $, then 
(C, C) — N' and (Lœ, C) are disjoint. 

For the proof we need only observe that 4̂ G (A», C) implies that 

Hmn XX* = 2X-

fThe original theorem of Steinhaus, well known in summability theory, is that given any 
Toeplitz matrix A there is always a bounded sequence which is not summable A. 
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As a corollary to Theorem 8 we have that (C, C)P and (Lœ, C) are disjoint, 
from which follows the theorem of Steinhaus type: Given any A in (C, C)P 

there is always a bounded sequence which is not summable A. Using Theorem 6 
we can immediately improve this last result by the following theorem. 

THEOREM 9. In an incomplete seminormed space X, if A is a given Toeplitz 
matrix, i.e., A G (C, C)P, then there is always a Cauchy sequence which is not 
summable A. 

Our last result involves a generalization of the notion of "solid (or normal) 
sequence space" which is familiar from the work of Ko the and Toeplitz 
(2, Definition 4), the aim being to show that the summability field of a Toeplitz 
matrix is not solid ; this result will in fact be a special case of Theorem 10. 

Let X be a seminormed space, not necessarily complete. A sequence space 
X over X may be defined as a linear manifold in X°° such that X contains the 
space <t>(X) of finite sequences, i.e., almost all components of x G <j>{X) are 
equal to 0. Writing p{x) = (p(xn)) with x = (xn) and defining p(x) < p(y) 
to mean p(xn) < p(yn) for every n, we say that X is solid if p{x) < p(y) and 
y G X together imply x G X. Thus Lœ and Ce, the space of sequences con
vergent to 6, are solid. Unfortunately, <j>(X) is not generally solid; it is solid 
if and only if p is a norm. 

Now let A be a given coregular matrix, i.e., A G (C, C) and 

lim XX* — Huic ?* 0, 

and let (̂ 4) be the set of A -summable sequences. Then we have 

THEOREM 10. {A ) is not solid. 

Proof. We have only to show that there is at least one J G ( i ) and x Q (A) 
such that p(x) < p(y). However, it is easy to prove slightly more. For, if we 
exclude the trivial case in which p = 0, then we can show that for every y Ç S 
there is an x, depending on y, with x £ (A), such that p(x) < p{y). Here S 
denotes the non-empty set of all y 6 C such that ^(limyw) > 0. Of course 
when p is a norm, S = C — Ce. 

To prove our assertion we take any y G S with lim yn = y, say. Then there 
is an n0 such that 2p(yn) > p(y) for n > n0. Define 

(n > n0), 

(n < n0), 

where z G Lœ — (^4); z exists by the Steinhaus theorem. It is now clear that 
x G Lœ - (A) andp(x) <p(y). 
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