ON THE MEDIANS OF A TRIANGLE IN HYPERBOLIC GEOMETRY

O. BOTTEMA

1. In non-Euclidean geometry the three medians of a triangle $A_{1} A_{2} A_{3}$ (each joining a vertex A_{i} with the internal midpoint G_{i} of the opposite side) are concurrent; their common point is the centroid G. But the Euclidean theorem

$$
\frac{G G_{i}}{A_{i} G_{i}}=\frac{1}{3},
$$

which depends on similarity, does not hold. In what follows we make some remarks on this ratio, restricting ourselves to hyperbolic geometry.

In accordance with a procedure recommended by Coxeter (1, p. 229), we take $A_{1} A_{2} A_{3}$ as the triangle of reference for projective co-ordinates x_{1}, x_{2}, x_{3}; the equation of the absolute conic Ω then appears in the general form. For our purpose we take, moreover, G as the unit-point. The equation of Ω is now
(1) $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 \cosh a_{1} \cdot x_{2} x_{3}+2 \cosh a_{2} \cdot x_{3} x_{1}+2 \cosh a_{3} \cdot x_{1} x_{2}=0$, where a_{i} is the length of the side opposite A_{i}. The tangential equation of Ω reads
$\sinh ^{2} a_{1} \cdot u_{1}^{2}+\sinh ^{2} a_{2} \cdot u_{2}^{2}+\sinh ^{2} a_{3} \cdot u_{3}^{2}+2\left(\cosh a_{1}-\cosh a_{2} \cdot \cosh a_{3}\right) u_{2} u_{3}$
(2) $+2\left(\cosh a_{2}-\cosh a_{3} \cdot \cosh a_{1}\right) u_{3} u_{1}+2\left(\cosh a_{3}-\cosh a_{1} \cdot \cosh a_{2}\right) u_{1} u_{2}$ $=0$.

From A_{i} being inside Ω follows the inequality (1, p. 239)
(3) $\gamma \equiv 2 \cosh a_{1} \cdot \cosh a_{2} \cdot \cosh a_{3}-\cosh ^{2} a_{1}-\cosh ^{2} a_{2}-\cosh ^{2} a_{3}+1>0$, which is equivalent with the fact that a side of the triangle is less than the sum of the other two.
2. The median $A_{3} G_{3}$ has the equations $x_{1}=x_{2}=\lambda, x_{3}=1$, where λ is a parameter; for $\lambda=\infty, 0,1$ we have the points G_{3}, A_{3}, G. The points of intersection S_{1} and S_{2} of the median and the absolute are given by the roots λ_{1}, λ_{2} of the equation

$$
\begin{equation*}
2 \lambda^{2}\left(1+b_{3}\right)+2\left(b_{1}+b_{2}\right) \lambda+1=0 \tag{4}
\end{equation*}
$$

where b_{i} is written for $\cosh a_{i}$. Both roots are negative. We put $\mu_{i}=-\lambda_{i}$, $\mu_{2}>\mu_{1}, A_{i} G_{i}=z_{i}, G G_{i}=y_{i}$. Then

[^0]$$
z_{3}=\frac{1}{2} \log \left(S_{1} S_{2} A_{3} G_{3}\right), y_{3}=\frac{1}{2} \log \left(S_{1} S_{2} G G_{3}\right)
$$
or
$$
e^{2 z_{3}}=\frac{\mu_{2}}{\mu_{1}}, \quad e^{2 y_{3}}=\frac{\mu_{2}+1}{\mu_{1}+1} .
$$

Hence

$$
\begin{array}{ll}
\sinh z_{3}=\frac{\mu_{2}-\mu_{1}}{2 \sqrt{ }\left[\mu_{1} \mu_{2}\right]}, & \sinh y_{3}=\frac{\mu_{2}-\mu_{1}}{2 \sqrt{ }\left[\left(\mu_{2}+1\right)\left(\mu_{1}+1\right)\right]}, \tag{5}\\
\cosh z_{3}=\frac{\mu_{2}+\mu_{1}}{2 \sqrt{ }\left[\mu_{1} \mu_{2}\right]}, & \cosh y_{3}=\frac{\mu_{2}+\mu_{1}+2}{2 \sqrt{ }\left[\left(\mu_{2}+1\right)\left(\mu_{1}+1\right)\right]}
\end{array}
$$

and

$$
\begin{equation*}
\tanh y_{3}=\frac{\mu_{2}-\mu_{1}}{\mu_{2}+\mu_{1}+2}=\frac{\sqrt{ }\left[\mu_{1} \mu_{2}\right] \cdot \sinh z_{3}}{\sqrt{ }\left[\mu_{1} \mu_{2}\right] \cosh z_{3}+1} . \tag{6}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\mu_{1} \mu_{2}=\lambda_{1} \lambda_{2}=\frac{1}{2\left(1+b_{3}\right)}=\frac{1}{4 \cosh ^{2} \frac{1}{2} a_{3}}, \tag{7}
\end{equation*}
$$

and so we get the following formulae:

$$
\begin{align*}
&\left(\mu_{1}+1\right)\left(\mu_{2}+1\right)=\frac{2\left(b_{1}+b_{2}+b_{3}\right)+3}{2\left(1+b_{3}\right)}, \tag{8}\\
& \cosh z_{3}=\frac{\cosh a_{1}+\cosh a_{2}}{2 \cosh \frac{1}{2} a_{3}}, \tag{9}\\
& \frac{\sinh y_{3}}{\sinh z_{3}}=\frac{1}{\left\{2\left(b_{1}+b_{2}+b_{3}\right)+3\right\}^{\frac{1}{2}}}, \tag{10}\\
& \tanh y_{3}=\frac{\sinh z_{3}}{\cosh z_{3}+2 \cosh \frac{1}{2} a_{3}} . \tag{11}
\end{align*}
$$

3. In (9) we have the well-known formula giving the length of a median as a function of the sides. From (10) it follows that

If $A_{i} G_{i}$ are the medians of the triangle $A_{1} A_{2} A_{3}$, and G is the centroid, then

$$
\frac{\sinh G G_{1}}{\sinh A_{1} G_{1}}=\frac{\sinh G G_{2}}{\sinh A_{2} G_{2}}=\frac{\sinh G G_{3}}{\sinh A_{3} G_{3}} ;
$$

the common value of the three ratios is $\left\{2\left(\cosh a_{1}+\cosh a_{2}+\cosh a_{3}\right)+3\right\}^{-\frac{1}{2}}$.
4. From (11) it is seen that y_{3} is a function of z_{3} and a_{3} only. Therefore:

If for the triangle $A_{1} A_{2} A_{3}$ the base $A_{1} A_{2}$ and the length of the median $A_{3} G_{3}$ are given then $G G_{3}$ has a fixed value.

If for abbreviation we denote $p_{i}=2 \cosh \frac{1}{2} a_{i}$, we have (suppressing the index i):

$$
\begin{equation*}
\tanh y=\frac{\sinh z}{\cosh z+p} \tag{12}
\end{equation*}
$$

Obviously $y=0$ for $z=0$. Furthermore, differentiating the formula we get

$$
\frac{1}{\cosh ^{2} y} \cdot \frac{d y}{d z}=\frac{1+p \cosh z}{(\cosh z+p)^{2}}
$$

or

$$
\begin{equation*}
\frac{d y}{d z}=\frac{1+p \cosh z}{1+p^{2}+2 p \cosh z} \tag{13}
\end{equation*}
$$

Hence $d y / d z$ is an increasing function of z; for $z=0$ we have

$$
\frac{d y}{d z}=\frac{1}{1+p} ;
$$

its limit for $z \rightarrow \infty$ is $\frac{1}{2}$. Therefore:
If the base $A_{1} A_{2}=a_{3}$ of the triangle is fixed, then $G G_{3} / A_{3} G_{3}$ increases if $A_{3} G_{3}$ increases and we have the inequality

$$
\begin{equation*}
\frac{1}{1+2 \cosh \frac{1}{2} a_{3}}<\frac{G G_{3}}{A_{3} G_{3}}<\frac{1}{2} . \tag{14}
\end{equation*}
$$

As a consequence we have for all triangles the inequality

$$
\begin{equation*}
0<\frac{G G_{3}}{A_{3} G_{3}}<\frac{1}{2} . \tag{15}
\end{equation*}
$$

It follows from the proof that the limits in (14) and (15) cannot be sharpened.
5. The Euclidean value $\frac{1}{3}$ is between the limits given in (15). Therefore there are triangles for which

$$
\frac{G G_{3}}{A_{3} G_{3}}=\frac{1}{3} .
$$

If in (12) we put $z=3 y$, we get

$$
\tanh y=\frac{\sinh 3 y}{\cosh 3 y+p}
$$

Substituting $\sinh 3 y=\sinh y\left(4 \cosh ^{2} y-1\right), \cosh 3 y=\cosh y\left(4 \cosh ^{2} y-3\right)$, we get

$$
\cosh y=\frac{1}{2} p=\cosh \frac{1}{2} a
$$

Therefore: In the triangle $A_{1} A_{2} A_{3}$ we have

$$
\frac{G G_{3}}{A_{3} G_{3}}=\frac{1}{3}
$$

if and only if $G G_{3}=\frac{1}{2} A_{1} A_{2}$; hence in the triangle $A_{1} G A_{2}$ the angle $\angle A_{2} G A_{1}$ is the sum of $\angle G A_{1} A_{2}$ and $\angle A_{1} A_{2} G$.
6. In such a triangle we have

$$
z_{3}=\frac{3}{2} a_{3}, \quad \cosh z_{3}=\cosh \frac{a_{3}}{2}\left(4 \cosh ^{2} \frac{a_{3}}{2}-3\right)
$$

and therefore, in view of (9)

$$
\begin{equation*}
2 \cosh ^{2} a_{3}+\cosh a_{3}-\cosh a_{1}-\cosh a_{2}-1=0 \tag{16}
\end{equation*}
$$

More generally, if

$$
\begin{equation*}
k_{3}=2 b_{3}^{2}+b_{3}-b_{1}-b_{2}-1 \tag{17}
\end{equation*}
$$

we have

$$
\frac{y_{3}}{z_{3}}>\frac{1}{3}, \quad \frac{y_{3}}{z_{3}}=\frac{1}{3}, \quad \frac{y_{3}}{z_{3}}<\frac{1}{3}
$$

according as $k_{3}<0, k_{3}=0, k_{3}>0$, respectively. If $b_{1}=b_{2}=b_{3}$ we have obviously $k_{3}>0$. Hence in an equilateral triangle the ratios y_{i} / z_{i} are less than $\frac{1}{3}$. We define k_{1} and k_{2} analogously to (17). If we put $c_{i}=b_{i}+1$ we get

$$
k_{1}=2 c_{1}^{2}+5 c_{1}-c_{2}-c_{3} .
$$

Hence $k_{1}+k_{2}+k_{3}=2\left(c_{1}{ }^{2}+c_{2}{ }^{2}+c_{3}{ }^{2}\right)+3\left(c_{1}+c_{2}+c_{3}\right)>0$, since $c_{i}>0$. Therefore $k_{1}=k_{2}=k_{3}=0$ is impossible: There are no triangles for which the three ratios y_{i} / z_{i} are $\frac{1}{3}$.

We have

$$
\begin{equation*}
k_{1}-k_{2}=2\left(c_{1}-c_{2}\right)\left(c_{1}+c_{2}+3\right) . \tag{18}
\end{equation*}
$$

If $k_{1}=k=0$, then $c_{1}=c_{2}, b_{1}=b_{2}=b, b_{3}=2 b^{2}-1$; but then γ is zero and the inequality (3) is not satisfied. Therefore,

There are no triangles for which two ratios y_{i} / z_{i} are $\frac{1}{3}$.
From (18) it follows that $k_{1}>k_{2}$ inplies $c_{1}>c_{2}$ (so that $a_{1}>a_{2}$) and conversely.

We have established the existence of triangles for which one of the ratios y_{i} / z_{i} is $\frac{1}{3}$. Suppose $k_{3}=0$. Then $c_{1}+c_{2}=2 c_{3}{ }^{2}+5 c_{3}$. Moreover, we have

$$
\gamma=2 c_{1} c_{2} c_{3}+2 c_{3}\left(c_{1}+c_{2}\right)-\left(c_{1}+c_{2}\right)^{2}+4 c_{1} c_{2}-c_{3}^{2}>0
$$

or

$$
c_{1} c_{2}\left(c_{3}+2\right)>2 c_{3}^{4}+8 c_{3}^{3}+8 c_{3}^{2}
$$

that is,

$$
c_{1} c_{2}>2 c_{3}^{2}\left(c_{3}+2\right)
$$

It follows from this that

$$
\left(c_{1}-c_{2}\right)^{2}<c_{3}^{2}\left(2 c_{2}+3\right)^{2} .
$$

Therefore, assuming $c_{1} \geqslant c_{2}$, we have $c_{1}-c_{2}<c_{3}\left(2 c_{3}+3\right)$, and from $c_{1}+c_{2}$ $=2 c_{3}{ }^{2}+5 c_{3}$ it follows that $c_{1} \geqslant c_{2}>c_{3}$. Hence

If in a triangle

$$
\frac{y_{i}}{z_{i}}=\frac{1}{3}
$$

then a_{i} is smaller than each of the two other sides.

In view of all this we have: In a triangle either all three ratios y_{i} / z_{i} are less than $\frac{1}{3}$ or two of them are $<\frac{1}{3}$ and the third (belonging to the smallest side) $\geqslant \frac{1}{3}$.

Reference

1. H. S. M. Coxeter, Non-Euclidean Geometry (3rd ed.; Toronto, 1957).

Technische Hogeschool

Delft, Holland

[^0]: Received March 3, 1958.

