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Abstract

In this paper we resolve the problem of controllability of nonlinear interconnected systems
of neutral type. We consider two types of systems, a general one, and one in which
some control appears linearly. In each case we insist that each isolated system of the
interconnected problem is controlled by its own variables while taking into account the
interacting effects. Controllability is proved by assuming some controllability criteria of
each isolated system and some growth condition of the interconnecting function. Fixed
point and open mapping theorems are used. Examples from economics and engineering
are presented.

1. Introduction

It has long been recognized that the flip-flop circuit in Figure 1, which is the basic
element in a digital computer, can operate as a memory device. The crucial assumption
needed is that the single equilibrium (u*, /*) of the dynamics of the system be globally
asymptotically stable. See Slemrod [33] for the insight and Hale [22, page 5] for the
conversion of the partial differential equation satisfied by the current, /, and voltage, v,
into an isolated functional differential equation of neutral type. In a recent paper [11],
the time optimal control problem of these equations was posed and investigated as a
natural extension of the stability theory. The focu s was on the isolated single circuit
in Figure 2. But this is not all the problem is about, hi a computer system, the single
circuit is interconnected with others in a well-defined but complicated fashion, yielding
an interconnected composite system represented diagrammatically in Figure 3.

Uniform asymptotic stability of interconnected systems of neutral type was explored
in [9]. In this paper we initiate our studies of the controllability in function space
of interconnected nonlinear systems of neutral type. Guided by the basic insight of
Michel and Miller [28] we analyze large scale systems in terms of their subsystems
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288 E. N. Chukwu [3]

and the growth properties of their interconnection. Function space controllability of
the overall interconnected system will be proved if we assume that the subsystems are
controllable with a nice interconnection structure.

We insist that each subsystem is controlled by its own variables while taking into
account the effects of interconnections. Thus our point of view is that the interacting
effects are measured locally in the /th subsystem as an expression of the effects of other
subsystems on the /th subsystem. First, conditions are stated for the controllability of
the free isolated nonlinear subsystem. Assuming controllability for the free subsystem
and a certain growth condition for the interaction function, we prove the controllability
of the overall interconnected system.

It may reasonably be asked whether controllability questions of systems of neutral
type are worth the effort to investigate them. The author believes that optimal control
of such systems is the central global issue of the future: such dynamical systems may
well describe the growth of national economies, whose control determines the issue
of war and peace for the remainder of this century and the next. Indeed, Kalecki [24]
and [1] argued that the growth of capital stock x(t) of a single firm is given by

x(t) = I(t) = aox(t) + aix(t-h), (1.1)

where a, are constants and the delay h represents the time lag between the decision
to invest and the deliveries of capital equipments. The crucial assumption for (1.1) is
that the net capital formation x(t) is given by I(t). To obtain (1.1), Kalecki assumes
that the decision to invest B is given by

B(t)=a(l-c)y(t)-kx(t)+€,

a, c, k are constants, e may be time varying, v is income (output). x(t) denotes the
stock capital assets at time t. Later as an exercise [1, 8.4, no. 3, page 254], Kalecki
suggests that the decision to invest should be

B(f) = a{\ -c)y{t) - kx{t) +e + v ^ .
at

The outcome of this analysis is the functional differential equation of neutral type

d
— (x(t) - a_,jc(f - h)) = aox(t) - axx(t - h) + a2. (1.2)
at

This is a functional differential equation of neutral type which describes the growth
of capital stock of a single firm. We can introduce b(t)u(t) at the right hand side of
this system to obtain

a^x(t -h)= aox(t) + axx{t - h) + b(t)u(t). (1.3)
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[4] Control in Wj1' of nonlinear interconnected systems of neutral type 289

We interpret b{t)u{t) as follows. IfO < u(t) < 1, then u(t) is the fraction of "available
capital assets, bit)" at timer that is allocated to investment. If — 1 < u{t) < Othen«(f)
is the fraction allocated to consumption or for payment of taxes. Thus—1 < «(r) < 1
and u(t) is an investment consumption strategy which is appropriated as a control to
drive an initial capital endowment $ to a target while minimizing a cost function.

To motivate a nonlinear system of the form (1.3) which is interconnected by the
so-called "solidarity" function, we argue as follows. Let Z denote aggregate demand
consisting of consumption (C), investment (/), net exports (X) and government outlay
(G). These differentiable functions are related as follows:

Z = C + I + X + G, (1.4)

where
C = C0 + c(y-T), 0 < c < l , (1.5)

and y — T is the current after-tax income;

T = T0 + / , (?) , (1-6)

To > 0 is the level of non-income taxes, and f\ (y) is the income taxes.

X = Xo - f2(y) - eR, 0<m<\, ex > 0, (1.7)

where f2(y) is the part of income that is spent on other countries' products, Xo is
autonomous net exports, and R is the real rate of interest.

G = hiyif - h)) + w(r), (1.8)

where /3 is public consumption which is dependent on the previous high income, and
v(t) public investment:

HO = Io(.0 + g(y(t -h)). (1.9)

Thus

Z(r) = (Z0(0 + hiyif - h)) + v(t) + cy(t) - cTQ(t)

- cfx(y) + g(y(t - h)) - f2(y)) - eyR, (1.10)

where Z0(O = /0 + Xo + Co. From the model equations of money demand and
supply [27], we deduce that
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since

L/P = M/P,

L/P = j + hy- rR,

M = Af0,

Pi = Pa-

Hence M is the nominal value of money supply which is controlled by the Central
Bank, P is the prize level. The real demand for money is denoted by L/P. The
symbol j is autonomous real money demand. With this ?̂ we deduce that

Z(t) = Z0(0 + y(t) (c - e-^-\ + f3(y(t - h)) - (cfdyiO) + My(0))

+ - (^r - j) - cT0(t) + g(y(t - h)) + v(t).

Following Allen [1] we postulate that dy(t)/dt = —A.(_y(r) - Z(t)), where A is a
constant. Thus

HO -WHt-W) = -x (l + ^ - A y(t) - x(cMy(0) + f2(y«)))

— \^-j 1 + kv(t) + kZoif)
P ' 0 J

(1.12)

Denote as "solidarity function" q(t) = X[(e\/r){M0/PQ) - cT0(t) + v(t)]; and
"private initiative" by p(t) = k[Z0(t) — (ei/r)j]. Then the dynamics of income are

HO -kg(y(t -h)) = -k(l + ̂ -c\y(t) -k(cMy(0) + fiiyiO))

(1.13)

It is an interconnected nonlinear system whose controllability is investigated for
all values of p and q.

It is proper to consider x'(t) = (*,'(0, • • •, xn'{t)) to be the value of n capital
stocks with strategy u' = (u\ . . .«„'), —1 < u/(0 5 1. which are located in an
isolated region (S,). They are linked to / other such regional systems in the country
and the "interconnection" or "solidarity functions", or government intervention given

. ..x,,', uu' . . .

Here qt describes the action of the whole system on its ith interconnected subsys-
tem (Si),

x'(t) - A-JU -h) = Aox'(t) + A,x\t -h) + Bul(t). (5,)
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Thus

x'(t) - A-tx'O -h) = Aox'it) + Aix'if -h) + Bu'(t) + <?,. (1.14)

Thus formulated, we are interested in using the firm's strategy u' and government
interventions qt, to control the growth of capital stock on which the wealth of a
nation depends. Theorem 3.1 and Theorem 3.2 can be stated loosely as follows. If
a regional economy is well behaved, carefully weighted government interventions
<7, can maintain the country's economic growth. Even if a regional economy is not
controllable the intervention of solidarity function can render the system controllable.
See Remark 3.1 and Theorem 3.2. Implications of controllability questions of neutral
and other systems for the control of global economy are pursued elsewhere in [13],
[14]. The issue of optimality is currently being investigated. Because of its apparent
importance the author takes the rather general system of neutral type whose qualitative
properties have been established by Hale and his school.

2. Preliminaries

The notations and definitions of [10] will be maintained as follows.
Let E be the real line (-co, oo) and E" the Euclidean n-dimensional vector space.

The symbol L2([a, b]Em) denotes the usual Hilbert space of "square integrable"
functions from [a, b] into Em. The Sobolev space W2

(1)([a, b], E") = W2
m is the

space of all absolutely continuous functions x : [a, b] —• E" with the property that
t - • i(f) = (dx/dt)(t) belongs to L2([a, b], £").

Let/i > 0. Let x be a function from [a-h, ?,] -)• E". Lett e [a, tx] c E. We use
x, to denote the function on [-h, 0] defined by x,(9) = x{t + 9),-h <9 < 0. The
symbol C = C([—h, 0] E") is the space of continuous functions from [—h, 0] ->• E",
with sup norm. We first consider systems of nonlinear functional differential equations
of neutral type having the form

^-D(t, xt) = f{t, x,, «(/)) + B(r)«(O. (2.D
at

where the operator D, D : E x C —> E" is atomic at 0 and uniformly atomic at
0 in the sense of Hale [21, pages 170-173], and where / : E x C x Em ->• E" is
continuous and uniformly Lipschitzian in the last two arguments. We assume that
B{t) is a continuous n x m matrix function which is continuously differentiable, and
the controls are L2 functions. In (2.1), instead of the atomicity assumption on D, we
may assume that D is of the form
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where g : E x C -*• E" is continuous and is uniformly nonatomic at zero on E x C
in the following sense.

DEFINITION 2.1. For any (r, </>) e E x C, and /x > 0, s > 0, let

fi(r, 0, /x, s) = {ir e C : (t, x/f)eExC, \W - </>|| < n, f{9) = 4,(6),
6 < -s, 6 e [-h,0]}.

We say that a continuous function g : E x C -» £" is uniformly nonatomic at zero
o n £ x C if, for any (t,4>) e E x C, there exist s0 > 0, /x0 > 0 independent of (f, (p),
and a scalar function p(t, (j>, fx, s), defined and continuous for (t, </>), 0 < s < s0,
0 < fji < fJ-o, nondecreasing in fi, s such that

Po = p(E x C, IIQ, s0) = sup p(t, 0 , /io, so) < 1
ExC

and
\g(t,f)-g(t,<f>)\<poU-(j>\\

for f e £ , is € Q(r, 0 , ^i, 5) and all 0 < s < s0, 0 < /x < /x0.

It is known ([15], [21] and [23]) that under these assumptions on D, f, B and u for
each </> e C there is a unique solution of (2.1) with initial value <p at a. The solution
is continuous with respect to initial data and parameter u. For definition of solutions
see [23]. In the sequel tx is fixed and is in the interval of definition [a, r ] , of solutions
of (2.1).

DEFINITION 2.2. The system (2.1) is Euclidean controllable on [a, tt] if for any func-
tion 4> ^ ^ 2 0 > and any vector xx e E", there exists a control u G L2([a, t\\, Em) such
that the solution x(t) — x(t, a, (p, u) of (2.1) satisfies

xa(-,a,4>,u)=(j), x(tl,cr,4>,u)=xl.

It is Euclidean null controllable on [a, t\ ] if JCI = 0 in the above definition.

The system (2.1) is controllable on the interval [a,t\], t\ > a + h if for each
4>, ^f € W2

W there is a controller u e L2([cr, t\], Em) such that xa(-, a, </>, u) = <j>,
xtl(-,a,4>,u) = \fr. It is null controllable on [a, tx] if V = 0 in the preceding
definition.

In W2
m, we drop the qualifying phrase "on the interval [a,;,]" if controllability

obtains on every interval [a, t], with f, > a + h. In E" we drop "on the interval
[a, ti]" if Euclidean controllability holds on every interval [a, ti],tt > a.
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To motivate the problem, we consider a simple linear state equation of the ith
subsystem of a interconnected control system,

x'{t) - A-Ux'(t -h) = Ao,i'(O + Aux'(t -h) + Btu'(t) + A*? (r) + Avy\t - h),
(2.2)

where x'(t) e E"' the n,-dimensional Euclidean state vector of the ith subsystem;
u'(t) € Em' is the control vector and A_u, AQi, Aw, A2l, A3,-, B, are time invariant
matrices of appropriate dimensions. Furthermore, y'(t) is the supplementary variable
of the ith subsystem, and it is a function of its own Euclidean state vector x' (t) and
other subsystems' state vector xJ(t), j = 1 , . . . , / . This is expressed as follows:

where M(,, M,; (j = 1, 2 , . . . , / ) are constant matrices. On substituting (2.3) into (2.2),
we deduce that the interconnected system has the equation

t) + ei{t-h), (2.4)

where

#o; = Ao, + A-UMH, HXi = Au + A-uMji,
i i

M2iMuxj(t), et(t-h)= J2 AeiMuxJ(t-h).

In (2.4), the function g,(f, t — h) = /i,(r) + et(t — h) describes the interaction, the
effects of the whole system on the /th subsystem. This can be measured locally. We
may view the decomposed system (2.4) as an interconnection of/ isolated subsystems,

x'(t) - A.lX'(f -h) = //«*'(0 + Hux'(f -h) + Biu'(t), (2.5)

with an interconnection structure described by

KM, t-h) = hi(t) + e,(t - h), (2.6)

a function which does not depend on the state variable x'(t).
With this linear system as a guide, we consider the more general interconnected

nonlinear system

d
D{l)Dl{ftx,) fi{t,xt,u{f)) + Bi{t)u{f)+ J2 Kij(t,x,J,v'{t)), (2.7)

where
Di{t,x,i) = xi«)-gi(t,x,1), (2.8)
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and where x,' € C"([—h, 0], E"') = C' is the space of continuous functions from
[-h, 0] into E"'. We write C" = C([-h, 0], £") = C. Equation (2.7) may be viewed
as an interconnection of / isolated free subsystems described by the equations

^-Di(t, *,') = /•(/, x,', u'(») + B,{t)u'{f), (2.9)
at

with interconnecting structure

Ki(t,x,,vi)= J2 *,;('-VXO). (2.10)
y=i.y#'

We assume u' is in a different control set from u'. Here,

/• :ExCn' x £"' - • £"',

K,j : Ex C' x Emi -> £"'.

We let n = £|=1«,-, m = E!=, «/. ^T = [(*'/> • • • - (^')T] 6 E\

[f(t, xt, «)]T = [(/,(*, JC,1, i*'))T . . . (/,(/, x,', «')

, x,, v)]T = [(Kt(t, x,\ vl))T ... K,(f, x,', i / ) ] T ,

r, x,) = [ D , (r, x,1)1... D,(t, V ) T ] •

With this notation, the decomposed system (2.7) can be represented by

%-D(t,x,) = f(t,x,,u(t)) + B(t)u(t) + K(t,x,, w(0). (2.11)
at

The free system (2.9) is given as in (2.1) by

^-D{t,x,) = f{t, x,, «(/)) + *(0«(0. (2.12)
at

We assume in the sequel that f, K,B and D have the basic properties for the existence
and uniqueness of solutions as well as the continuous dependence of solution on the
initial data and parameter u.

3. Main results

In this section we maintain the notations of Section 2, and consider the free system

^-D,(t, x,') = f,(t, x,', «'(0) + BtitWif) (3.1)
at
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and the decomposed interconnected system

%-Di(f, x,1) = fi{f, *,'", «'(')) + BtifWif) + Ktif, x,J, i/(O), (3.2)
at

where D,, Kt are identified in (2.8) and (2.10) respectively. As observed, (3.2) can be
represented by (2.11), namely

^-D(t, x.) = f(t, x,, «(/)) + B(t)u{t) + K[f, x,, w(0). (3.3)
at

The first theorem is on the free subsystem (3.1). It extends the earlier paper [10]
on Euclidean controllability to a result on function space controllability; it generalizes
the more recent paper [7] by covering cases on which /• is not necessarily bounded.

THEOREM 3.1. In (3.1) assume that

(i) rank Bi(t) = nion[tl—h,tl];
(ii) Bt(t) is continuous on [a, t\], with continuous derivative;

(iii) the function g, : E x C -> E"' is uniformly nonatomic at zero on E x C',
and fi:ExCxEm^-E"is continuous;

(iv) the continuous functions Fu : C"1 x Em -> E+ and Lx functions au : E ->
E+, j = 1 , . . . , q are such that

\f(t, <j>, u')\ < X)«y(O^y(0, «') V (r, 0, M') e E x C x E2"',

limsup (r - f\y sup {Fl7(0, «') : ||(0, «')|| < r} ) = +oo.
r->°° \ ;=i /

fJJJ is controllable on [a, t\] with t\ > a + h.

In Theorem 3.1, Euclidean controllability of (3.1) is proved if we assume the
condition

rank (//,(f, - a) = / B(s)B*{s)ds ) = n for ti > a
\ Jo /

instead of
rankfi,(0 = n o n [fi — h,tt],

of Theorem 3.1, condition (i).
The hypotheses (iMiv) are conditions on each subsystem which ensure controllab-

ility. We now state a result on the interconnected system.
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REMARK 3.1. Condition (ii) and (iii) are essentially the required criteria for the exist-
ence and uniqueness of solutions of (3.1). Condition (iv) is a growth condition which
should be compared to a uniform bound imposed on / by Mirza and Womack [29,
Theorem 1 c] when treating delay equations. Such growth conditions have a long
history: see Dauer [16], Chukwu [8], Balachandra and J.P. Dauer [3], and Do [19]. In
Do [19], one sees the consequences of the growth condition.

THEOREM 3.2. In (3.2) assume

(i) all the conditions (i)-(iv) of Theorem 3.1;
(ii) for each i, j = 1 , . . . , / , / ^ j there are continuous functions Fij : E"' x

Em -> E+ and L1 functions ft, : E -+ E+, j = 1 , . . . , q such that

for all (t, tfr', u'), /}, < a,, where

sap {Fijiir1, «') : \M, u')\\ < r) j = +oo.

Then (3.2) is controllable on[o,tx\,t\ > a + h.

REMARK 3.2. Theorem 3.2 (ii) reminds one of the growth conditions in Michel
and Miller [28, Theorem 5.8.4 (ii), Theorem 3.3.5 (iii), Theorem 3.3.2 (iii), The-
orem 2.4.20 (iii)]. The condition 3.2 (ii) says that the external intervention &,, to the
system is dominated by some "power" "PjFu" of the system.

REMARK 3.3. The nonlinearity and interconnectedness which are introduced in (2.10)
and (2.11) are natural and essential in the economic application. In addition to
the firm's initiative pit) = B(t)u(t) in (1.13), the control action of government
q(t) = k[(ei/r)(M0/P0) - cT0(t) + v(t)], is (realistically) not linear in Mo, Po, To

etc. The basic contribution of Lucas's critique [31] is that pit) must be incorporated.
(See [31, Macroeconomics in the Global Economy, Chapter 19]). A deep reflection
on Lucas's contribution demands a game theoretic formulation. This is the thrust of
Mullinex's argument [30, page 91] and the reason for the insertion of a nontrivial K,•.
It is also reasonable to have a nonlinear / . Investment and savings functions may be
nonlinear, [30, page 87] (see (1.6), (1.7), (1.8), (1.9) and (1.2)). Of course results for
the linear situation are already available in Chukwu [13]. Mathematicians often object
to the full rank of B, but the economic insight of Tinbergen in [31, pages 5, 90] shows
how essential this "classical" nondegeneracy assumption is in executing monetary and
fiscal policies.
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That Ki is assumed to be sufficiently "small" compared to the linearly acting control
is nothing but a nonlinear generalization of the requirement in the linear pursuit game

y{t) - a-iyO - h) = aoy(t) + a,y(t ~h) + p(t) + q(t), pit) e P, q{t) G Q

that
Int P D Q :

the firm's control set (or initiative) should dominate the government's. This is a
necessary and sufficient condition (on the control sets) for controllability. See Hajek
[20, page 61] for the genesis of this idea. It settles a basic problem: how much (in
comparison with private effort) should government intervention be in the economy.

PROOF. Under the conditions of the theorem, the system (3.1) is Euclidean control-
lable. Indeed, let *; e E"', 0' e C" then the solution x1 of (3.1) is given by

x'(f + cr) = 0'(O te[-h,0]

X
i(t) = Di(a,(t>i) + gi(t,x

i
t) (3.4)

f Ms,x[, u'isVds + [ Bi
J a Ja

+ f Ms,x[, u'isVds + [ BiWu'Wds, t > a.

From (i) with B* the algebraic adjoint of Bit Bj(t)B*(t) has rank «, on [f) — h, t\\ so
that Hi(t\) = /J1 Bj(s)Bj*(s) ds has rank «,-, for t\ > a + h, since

' Wds+ / B,(s)B,*(s)ds
J
/ " B,

Jlt—h

and the last term is positive definite. As a consequence of this,

rh—o

Hi(t\ -o)= I B(s + o)B*(s + a) ds
Ja

is nonsingular for a carefully chosen t\ (e.g. tt > 2o + h). The solution of (3.1) with
u' as a control is given by (3.4). Let x' e C([CT — h, r ] , E">). Define

* » = jc'(O r e [a -h, a ] ,

and define 0' : [—h, oo) -^ E"',by

t€[-h,O],

r e [0,oo).
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It follows from these definitions and from (3.4) that x' is a solution of (3.1) on
[a, a + r] , 0 < r < oo, if and only if

x'{cr+t) = $(t)+zi0), -h<t<z,

where z'(t) satisfies

z'(0 = giit + or, 4>\ + z\) - ft (a, 4?) + [ fi(5+a,ti+ z\, u\s + a))ds
Jo

+ / B,(s + a)u'(s + a)ds, z0' = 0. (3.5)
Jo

Note that if ?, e [a, r], then x'itx) = x\ if and only if

z ' ( r , - o r ) = x ; - 0 ' ( r , - a ) .

The corresponding u' which steers <j>' to x\ in time tx is given by

K ' ( 0 = B*Q)Hr\h - a)(x[ - 4>'(h -a) + gi(a, </>) (3.6)

-g,(r,, ̂  - a + z\x - a) I' Ms + o,fi + z\, u\s + a)) ds\.

We need the following lemmas.

LEMMA 3.1. (Hale and Cruz, [23, page 70]) Let U be an open set in I x Cj" x
C2([<7, fi], Emi) and let V be its projection on I x C"\ where C"' = C,([-A, 0], £"<)•
Let W = {(a, xa,u(o))}. Let Ue(W) be an ^-neighbourhood of W c U. Let
ft : U -+ E"' be continuous, | / | | < M on Uf(W) and g,• : V —> E"' nonatomic at
zero. There are positive real numbers y0, 80, S, v and tu 0 < t\ < So, 0 < S < So/2,
such that

(i) (a) Mr, < vS/2 or (b) Afr, < (w(l — v)S/2);
(ii) ||jcff( - xa || < (50/2, t e[o,cr + r,];

(iii) \g(t, xat) - g(a, xa)\ < vS/2, t € [a, a + t(\;
(iv) pit, \fr, So, Yo) < 1 - v < I for (t, \jr) € F(y0, So), where

h,O],En) t e [a,cr+SQ], U-xa\\<S0};

(v)

LEMMA 3.2. Let B : I -*• Enxm be a continuous n x m matrix function. Then the
constants tt, v in Lemma 3.1 can be chosen such that

{\ - v)(\ + \\B\t)H-\o,tx - o)\\ < \.
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We now prove that such a u' in (3.6) exists. Now set

', »')(r)=0 if/e[-A,0];

S(z\ «')(/) = 0 iftz[-h,0];
i i iff e[0,r];

i f r € [ O , T ] ,

where

y(0 = gi(t + a, ft + z/) - gi(a, </>');
C

/

l\ —a

fi (s + o, ft + Zj', u'(s + a))ds.

Recall that t\ e fa, ?]. From the earlier remarks, it is clear that if an operator T + S
given by

(T + 5)(z', «')(r) = (y(t) + h(t), w(t)

has a fixed point, so that

then (3.1) is Euclidean controllable. In this case z'(O is given by (3.5) and u'(t)
by (3.6), so that

Jo
x,' - 0'(r, - a) + gj(a, 0') - gi(tu ftx_a + z,,_ff')

f'1'" . . . . \
- I fi(s +cr, <t>'s + zs', u'(s + a))ds I

That is,
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or
x1' = z'{tl-a)+#(tl-o)=xi(fi).

Our immediate aim now is to establish the existence of a fixed point of T + S in an
appropriate function space. Introduce the following space:

X = C([-h,t1],E"')xL2([0,ti),E
m0

with norm

where ||0|| = supJ6[_A (|] |0O)|, and ||u||2 is the L2 norm of u. We show that there is
a positive constant r0 and a subset A of X such that

A =Al(tur0) x A2(ti,r0),

where

AiOu r0) = {? : i-h, r,] -* £"' continuous, £0 = 0, ||f,|| < r o , f 6 [0, *,]};

A2ai, r0) = {« 6 L2([0, *,], £"') : |«(0l < r0 a.e. in r e [0, ?,]}.

Also T : A —> A is a contraction; and 5 : A —> A is completely continuous, and
T + S : A -* A. With this a fixed point is established by virtue of [10, Lemma 1.1].
Most of the details are as contained in [10, Theorem 2.1]. Indeed, let

Fu(r) = sup{Fu((t>,u):\\(ct>,u)\\ <r}.

Since the growth condition in (iv) is valid, there exists a constant r0 > 0 such that

iijio) >d

7 = 1

or

)+d <r0,
7 = 1

(see [19, page 44]). By direct calculations and estimates contained in [10, pages 121-
122] we easily show that if ( Z / , M / ) g A,j = 1, 2, W , «,1")(0 + 5(z2

1', «2'')(O = 0,
t e [-h,0]. Also

5(z2', «2')| <

where

\y(t)\ < \g(t + o,4>, + z,() - £(f + a, 0,)| + \g(t + a, 4>,) - g(fr, <p)\

< (1 - v)S + vS/2 = 8 - vS/2,
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and we have used Lemma 1.2 of Hale [23] where v, S are identified in Lemma 3.1.
Also

< f \fi(s + a,& + z2s,u2(s + o))\ds + f \B,{s + a)u2(s +a)\ds
Jo Jo

< V / aj(s + a)F,7(& + Z2,«2(J + a)) ds + Nvq

where N = maxjeto,r,] ||5,(5 + a)\\ and ||o!;|| = j^ ' 1 |ay(s + CT)|di. Hence

\Ht)\ < (1 - u

<r0,

where

di =max{(l-v/2)8 + Nv^, ||fl*(O//~J||(|xi -0(f,<r)\) + (l-v/2)S}

c,-=max{||a;||, \\B*H~l\\ ||ay||}.

Hence
IMI + PI|<r0.

Now

\w(t)\<\\B\t)H-'\\{\Xl-4>{h-a)\)-

< \\B\t)H-x [|(U, - <K'i - a ) | ) + P(tu 0(1-f f , S, t{)8 + vS/2

< (1 - v)8 + vS/2 + \\B*H-'\\(\Xl - 0(f, - (7)|).

Also

*{t)H-'\v(t)\<\\B*{t)H
Jo

l

\Jo 7=1

7 = 1
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where/0"-CT|a,-| = ||a;||. Thus

MOI + KOI < (1 - v)S + S/2v + \\B*H-l\\(\Xl - 4>(h ~ or)l)

;='
We have proved that T + S : A —> A. It is clear that 5 is continuous and S : A -> A.
That 5 is compact is due to the following arguments.

|S(z\ u')(t) - 5(z', «')(f')l = Mt) - h(r)\ + \v(t) - v(t')\

<M\t-tl\ + Nro\t - r11 + |fi,*(O - B*{t')\G

< p\t -tx\ forM1 e / ,

where

G = | | / / , -1 | |M(*1-a),

M = max | / (5 + a , <j>'s + z/, u'(s + <r))|,

N = max ||fi,-0 + <T)||,

p = M + NM + mnc,

c = max max ——, (bu*) = B*.
i.j 0<l<T dt

We now prove that T is a contraction. Let (z/, «/) e A, y = 1, 2. Then

M = ITCz.'.M/Xf) - T(z2W)(OI < |yi(0 - 3*(0l + |w,(0 - u;2(0|.

But

l̂ i (0 - J2(0l < \g(t + <?,$,+ z{,) - g(r + a, ^ + zj,)|

<p(t + a,4>, +zilt,&,tx)\\z2,
i -z\t\\

< {\ - v)^ - z\,\\,

where || • || is the norm in A \ and we have used the nonatomicity of g as was done in
Chukwu [10, page 120]. Also

|U>,(0 - «>2(0l < \\B*(t)H'l\\ (\g(t, 4>,-a + Z2.J) - g(t, 4>,-a + Zu-a)])

< \\B*(t)H-l\\i(l -v)\\z[,_a - (.z\,_a)\\)

https://doi.org/10.1017/S0334270000010456 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010456


[18] Control in W2
(l) of nonlinear interconnected systems of neutral type 303

We have obtained

|u>i(0 - W2(t)\ < ||B*(O//-'II{(1 - v)\\z\,_o - 4-JIJ-

As a consequence of these calculations,

where

Because v can be chosen so that the sum n is less than 1, we have proved that T is a
contraction. We use Lemma 1.1 of [10] to assert, that T + S has a fixed point which
proves that

and any </>' e W2
(1) can be transferred to X\l € E" in time t\. Thus (3.1) is Euclidean

controllable on [a, ti]. The same argument proves that (3.1) is Euclidean controllable
on [a, t\ — h], since B(t) is continuous. Indeed, since B, is continuous and Bt{t\ —
h)B*(t - h) has rank n, there is an e > 0 such that B,(?i — h — e)B*(tx - h — e) has
rank n and Bt(t — h - s)B*(t - h - s) has rank n for all J € [0, e]. Therefore

"/ / ( * , - * ) = / " Bi(s)B*(s)ds
Jo

= f' * B, (5) B ; (S) <fr + /"' B,
Jo Jt—h—e

is positive definite. As argued before, (3.1) is Euclidean controllable on [a, t\ — h].
Because of this, given 0 ' , V € W2

m([-h, 0], £"') there exists a w e L2([a, /, -
A], £"") such that xCT' = 0 and x'(/, - /i, a, </>', M) = ^'(-h). We extend this w and
jc'(-, a, 0 j , M) to the interval [CT, f j , ?! > a + h, so that

-^ (D,-(f, JC,')) = f,(t, x\, i i (0) + fl,-(0«(0 (3-7)

on [/, — h, t\\ where x ( 0 = ir(t — t\),tx—h <t < tu on the right-hand side of (3.7).
In view of hypothesis (i) we define a control u as follows,

= B,+(t) (jt (D,(r,*,') - f,(f,x\, u(t))\ , (3.8)

for t\ — h < t < t\, where B,+ is the generalized inverse of B,. With this u, x
satisfies (3.7). Indeed insert u defined by (3.8) in (3.7):

^-Di(t, x\) = f,{t, x\, «(0) + B,(0B,+(0 (zrDiit, x\) - f,{t, x\, 11
at \at

= ^-Di(t,x
i
l),at
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w i t h x { t ) = i]f(t — t \ ) , t \ — h < t < t \ . E v i d e n t l y u i s s q u a r e i n t e g r a b l e o n [t\ — h , t\]
because of hypothesis (ii) and the continuity of /-, x and xjr. We now prove that
u is well-defined as a solution of the functional equation (3.8). We now define the
following set:

A = A{(r0) = \u e L2{\t\ — /Mi], Em) : \u(t)\ < r0 a.e. and v € A implies

\v(t +s)- v(t)\2dt ->• 0 as s ->• 0 uniformly with v e A \.
J.-h

By [13, page 297], A is compact. Define an operator T(u)(t) = v(t) where

v(t) = 5,+(f) (jtD(f, if,.,,) - f(t,x,', u(t))\ .

We now show that there is a constant r0 and a Banach space A = A(r0) such that
T : A -+ A where T is continuous. Thus we are guaranteed a fixed point T(u) =
(M) G A which proves that (3.8) holds. The existence of a fixed point follows from
[25, page 297] and [25, page 645] because A is compact convex subset of the Banach
space L2. To demonstrate the validity of our assertions, we observe that by (i) and (ii),
the generalized inverse B,+(0 is continuous [6, page 225], and is therefore uniformly
bounded on [f, — h, tx]. Also £),(?, x,) is differentiable wit h an L2 derivative. Let
(M) e A. Since the growth condition (iv) is valid there exists r0 > 0 such that

<r0,

for some d. With this r0, define A = A(r0). Now introduce the following notations

0 = max{||fl(f, 0) | | :<r < * < * , } ,

P+ = max{\\B+(t,4>)\\ :a < * < / , } ,

||a,|| = max J jT' \ai(s)\ds, ||a,-1|2, sup |ay(r)l 1 ,

ft,-= 311a,-1|,
c, = max {a,, ft,},

d2 = max

d = max{di,d2).

https://doi.org/10.1017/S0334270000010456 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010456


[20] Control in W2
(1) of nonlinear interconnected systems of neutral type 305

Since u e A, we have \T(u)(t)\ < \v(t)\, where

MOI < |fi+(?-<) jtD(f, if,.,,) - Mt,x,-,t,u(t))

7 = 1

0

~ 3k ° - 3
Hence \T(u)(t)\ < r0. We have proved that T : A -*• A provided the second condition
is satisfied. To verify the second condition we note that

[ \T(u)(t+s)-T(u)(t)\2dt= [ \B+(t+s)k(t+s)-B+\(t)]\2dt,
t\—h Jt\—h

(3.9)
where

MO = j t (D(t, if,.tl)) - fl{t,x,.u,u{f))

is integrable. Consider the function k(t) = Bf(t)k(t), which is measurable in / and
is L2. Therefore there is a sequence {kn(t)} of continuous functions such that

/ \k(t) - kn(t)\
2dt - • 0 as n -> oo.

Hence

\k(t + s) - kn(t + s)\2dtY + (j" \kn(t + s) - knit)\
2dt\

(f \kn{t)-k{t)\2dt\ .

The last and first integrals on the right hand side of the inequality can be made
arbitrarily less than e > 0 by selecting n very large. The second integral can be made
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less than e if s is selected small enough. This proves that

/ \B+(t + s)k(f+s) - B+(t)k(t)\2dt -+0 as s -» 0.

Therefore,

It -» 0 as 5 ->• 0.
Jti-h

We now verify continuity. Note that u —*• x{-, u) is continuous. Also t —> Bit),
(t, 0 , u) —> fi(t, <j>, u) are continuous. Let (u), (w) e L2 and

= T(u),

Then

|u(/)-i/(/)l = |£,+(O («"-?") + (.Mt,xZ,,w(t)) - /,(*,*,"_„, «(O)))|
X . (3.10)

Because M' —• / ( / , xf, u' (0) is continuous, given any e > 0, there is an r) > 0 such

thatif | K ( 0 - U > ( 0 I < *?then|//(/,jt;",M'(0)-/;a,Jcl
IO'.u'l'(0)l < e for all/ € [a,/,].

Divide [a, /J into two sets ex and e2; and put the points at which \u'(t) — w'(t)\ < rj

to be ei and the remainder e2. If we write \\u' — w' \\2 = y, then

|«'(0 - w'(t)\2dt > / |«'(0 - w'(t)\2dt > T]2mes e2,

J e2

so that
mes e2 < y2/rj2.

Consider

/ = f ' l/i(/, Jc,"!,,, «'(/)) - / / ( / ,< , w(/))|2d/.
JIT

Obviously

1 = f + f \f(t,xf_ti,u'(t)) - Mt,x?lh,w(t))\2dt

+ V
»?2

. 4 y
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for some R,. Because u -> j,D(t, x,) is continuous, given c > 0, there exists an
m > 0 such that if \u(t) - w(t)\ < r\2 then \~D(t, fl%) - ±D(t, ^/-,),)l < e for all
/ e [a, ?]]. Consider Ci, e2, y, as defined above, and

-f
Jo

dt

d

~dt
dt.

Clearly

-hi
J e\ Jet

dt dt
dt

ex

< e2mese! + -ArR2
V2

for some R2. We now insert these estimates of / and / in (3.10). We deduce that if
\u-w\ < r),then\(v{t)-v'(O)\2 < ||Bf

+|||?"' -£"* | + yS+2(e2 + e2). Thus

\{v(t) - v\t))\2 dt
u-h

Because y2 = \\u — w\\2, the left hand side of this inequality can be made as small as
possible if u and w are sufficiently close. This proves that T is a continuous map. As
claimed T : A —»• A is a continuous mapping of a compact convex subset of L2 into
itself. By Schauder's fixed point theorem [25, page 645], T has a fixed point. With
u (3.8) is satisfied since x(t) = \j/(t — ti) on [?, — h, tt], and

fit, x,', « B(t)B+(t) (^-
dt at

The history of the growth condition (iv) of Theorem 3.1 is outlined in the recent paper,
[19, pages 46-51]. Inspired by these ideas we have the following corollaries.

COROLLARY 3.1. In the system in (3.1) assume
(i) condition (i)-(iii) of Theorem 3.1;

(ii)
lim \fi(t, 4>, M) | / | | (0 , U)\\ = 0 (3.11)

uniformly int(t e [a, ti]).

Then (3.1) is controllable on [o, tt] = I with tx > a + h.
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REMARK. (3.11) is used in [16] and generalizes [29].

PROOF. Let

Fi(4>,u) = sup{\fi(t,(P,u)\:tel}.

Then

}*£, \r ~ i , C i SUP {F'jU>> M1) : l(<^' M'')l < ' • } ) = + o o (3.12)

if
l i m i n f ( - ) sup{F,(</>, H ) : | ( 0 , « ) | < / • } < — . (3 .13)
'-°° \rj c,

But condition (3.11) implies (3.13) by a modification of an argument of Do [19,
page 47]. The required modification is the proof that if the corresponding sequence
{(4>j, uj)} is bounded we can assume it compact (see the definition of the set A =
Ai x A2). Therefore (3.12) is valid and Theorem 3.1 can be concluded.

Recall that /(/,</>, u) is said to be locally bounded in u if for any M > 0, there is
an L > 0 such that \\f(t, </>, u)\\ < L for all (t,<j>) e E x C and for all ||w|| < M.
The next corollary is valid.

COROLLARY 3.2. For the system (3.1) assume conditions (i)-(iii) of Theorem 3.1. If
fi.ExCxEmis locally bounded in u and

lim | | /(f,0,M)| | / | |« | |=O (3.14)
||M||->OO

uniformly in (t, <p) 6 E x C, then (3.1) is controllable on [a, t\], ty > a + h.

PROOF. Let F,{<t>, u) = sap{\\ f(t, (p,u) :t € I}. Then

Wftif, <}>, u)\\ < FM, u) W(t,4>,u)€lxCx Em.

Because of (3.14) the following is valid:

)|| <r) = 0.,im (I )
As a consequence (3.13) holds, and the result follows.

PROOF OF THEOREM 3.2. The proof is similar to that of Theorem 3.1. The integral
equation of (3.2) corresponding to (3.4) is

x'(t) = D,(a, 0') + gi(t,x,') + f f,(s, xj, u'(s))ds
Ja

+ I Ki(s,xs,v
i(s))ds+ [ Bi(s)ui(s)ds,

Ja Ja
t>a.
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The control function is defined by

ii'(0 - B;(r)//r'(/i - o)(x[ - 4>\h - a) + gl(tr, <j>) - &(*„#,_ + z^a)

- /"' fi{s + <r,^ + zl
t,u

l(s + cr)) + Ki{s + <T,^ + z's,v
i{s + a))ds\ (3.15)

This control steers </>' to x\ in time t\.
The additional term J'a Kt(s, xs, v' (s)) ds is taken care of in the various estimates

by using condition (ii), and noting that # < a,-.
Just as in the proof of Theorem 3.1, under the conditions of Theorem 3.2, sys-

tem (3.2) is Euclidean controllable. The corresponding u' which steers </>' to X\ in
time t\ is given by (3.15). This is comparable to (3.6), the difference being the "Inter-
connection integral" — /J' ff Kt (s + a, 4>'s + zs', v' (s + a)) ds. The operators T and
S are defined as in the proof of Theorem 3.1 with the modification that

iff e[0 , r ] ,

where

= [ Ms + c
Jo

/ Bi(s + a)ul(s + o)ds+ / K,
Jo Jo

h(t) [ ft
Jo

/ l(s + o)ds+ / K,(s + a, # + z's, v'(s + a))ds;
J

v(t) = -B*{t)H~\h ~ a) (xj - <£'(?, - a) + gi(cr4>) ~ gii.h^_a + z ^ j )

(Ms + o,4>'s + z\, u'(s + a)) + Kt{s + a,4>'s + z\, vl(s + a)))ds.
Jo

Just as before, we prove that the operator T + S defined by

(T + S)(z', «'•)(') = (v(f) + h{t),

has a fixed point:

so that (3.2) is Euclidean controllable. We proceed as before to prove this fixed point.
Suppose

fy(r) = sup{fy(0,«): ||(0,«)|| <#•},

so that by the growth condition there is some r0 such that
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and
Ku{r) = sup {K,0, «') : ||(0, «')|| < r]

so that
i

^CiKij(ro)+d <r0.
j=i

We use Lemma 1.2 of Hale [23] to estimate that

Mt)\ < J2 \\<x>\\Fu(r0)

where \\aj\\ = /„" \aj(.s + a)\ ds, ||/3,-|| = /0" \Pj(s + a)\ds. Thus

\h(t)\ < £ HH(F,,(/o) + ^-(r0)) + NU9,

since )3y < ay by condition (ii). This and the previous estimates yield

\y(0\ + \h«)\ < dx

where d\ is as before and cx = max{2||a;-||, | | /3*//" ' | | ||ay||}. In the estimate for ^(
we replace ||a;|| by 2||or;||. Thus T + S : A ->• A. The previous argument shows
that S : A -> 5 is continuous and compact. In the earlier argument replace M by
M = Mi + M2, where

Afi = max 1/(5 | a, # + rj, M'(J + a ) ) | ,

M2 = max | Ar,-(j | cr, % + z'5i, v'(s + or))|.

The argument that T is a contraction is unchanged. Lemma 1.1 of [10] asserts that
T + S has a fixed point, so that (3.2) is Euclidean controllable on [cr, t\]. Because B(t)
is also Euclidean controllable on [a, tx - h], given </»', V e W2

(1)([-/i, 0], £"'), there
isaw e L2([o,tx-h], Em') such that x'a = (j>, and x'(tx - h, a, <f>':, u) = i/'(-h). This
control u and the solution * ' ( • , a , </>',, M) are extended on the interval [a, t\],t\ > a + h
so that

A C V ) / ( V ( 0 ) ^ ( ; ( 0 ) 5 ( 0 ( 0 ( 3 . 1 6 )

on [tx - h,tx], where

- h), U — h < t < t\.
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Define a control

jtDi{t, x') - f,(f, x,', «(0) - Ki(t, xt\ v(t))\ (3. 17)

for t\ — h < t < t\, where B,+ is the generalized inverse of Bt. It is easy to prove
that with this u, x satisfies (3.16). To prove the existence of u in (3.17) we modify the
earlier proof when AT, = 0. To account for interconnection Kt there is an additional
term £J=i W y ( * , \ "'(')) which yields

With minor modification the rest of the proof is complete.

REMARK. It may be said that ft is a measure of the action of the whole system S on its
j'th interconnected subsystem, while a, is a measure of the subsystem's internal power.
To ensure controllability, a, > /?,-. Broad policy implications of this are pursued in [9].
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