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Abstract We show that the flow generated by the totally competitive planar Lotka–Volterra equations
deforms the line connecting the two axial equilibria into convex or concave curves, and that these curves
remain convex or concave for all subsequent time. We apply the observation to provide an alternative
proof to that given by Tineo in 2001 that the carrying simplex, the globally attracting invariant manifold
that joins the axial equilibria, is either convex, concave or a straight-line segment.
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1. Introduction

Consider the planar autonomous Lotka–Volterra equations with both intra- and inter-
specific competition written in the following form:

ẋ = f(x, y) = px(1 − x − ay), ẏ = g(x, y) = qy(1 − y − bx), (1.1)

where p, q, a, b > 0. Let R>0 = {x ∈ R : x > 0} and R�0 = {x ∈ R : x � 0}. Then the flow
of (1.1) leaves R

2
�0 invariant. The system (1.1) is also dissipative, as all orbits eventually

enter the interior of the compact set B = [0, 2]2, and thus the orbits of (1.1) are globally
defined in time.

It is well known that (1.1) has a locally Lipschitz invariant manifold S2 that connects
the so-called axial equilibria (0, 1) and (1, 0), and that this manifold attracts all points
in R

2
�0 \ {0}. This manifold is known as the carrying simplex, and its existence can be

traced back to de Mottoni and Schiaffino [2] and Hirsch [4]. It is also known [5] that the
carrying simplex of a planar strongly competitive system, that is

ẋ = f(x, y) = xF (x, y), ẏ = g(x, y) = yG(x, y) (1.2)
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Figure 1. Examples of the carrying simplex (solid line) for four parameter sets for the flow
generated by (1.1): (a) a = 0.5, b = 0.7 (concave), (b) a = 1.5, b = 1.2 (convex), (c) a = 1.9,
b = 0.8 (convex), (d) a = 1.1, b = 0.7 (concave); p = 1, q = 1 in all cases. Steady states are
denoted by the solid dots. Note that the vector field has been rescaled in order to show the flow
directions more clearly.

with Fx, Fy, Gx, Gy < 0 and F (0, 0) > 0, G(0, 0) > 0 (and normalized so that the axial
equilibria are at (1, 0), (0, 1)), is the graph of a decreasing function u : [0, 1] → R that is
at least C1([0, 1]), and in [7] conditions are found for u to be C2([0, 1]). Hence, we know
that for (1.1) the carrying simplex S2 is unique, globally attracts R

2
�0 \ {0} and is the

graph of a decreasing C1([0, 1]) function.
Examples of the carrying simplex are shown in Figure 1, where in each case, for sim-

plicity, p = q = 1. Part (a) shows the case a = 0.5, b = 0.7, which has four equilibria.
The carrying simplex for this case, where α = −0.8, is concave.∗ Part (b) shows the
case a = 1.5, b = 1.2, which gives α = 0.7 and a convex carrying simplex. In parts (c)
and (d), we show examples where there is no interior equilibrium. The carrying simplex
in each case was computed as the graph of the converged solution u∞ of the first-order
quasilinear partial differential equation (PDE)

∂u

∂t
= −f

∂u

∂x
+ g, (x, t) ∈ (0, 1) × R>0, (1.3)

with initial data u(x, 0) = 1 − x. Notice that in all cases in Figure 1 the curvature
of the carrying simplex appears to be one-signed. This non-vanishing of the curvature

∗ Here ‘concave’ means that for two points on the carrying simplex, the chord joining them lies below
the simplex. Similarly, ‘convex’ means that for two points on the carrying simplex, the chord joining
them lies above the simplex. This follows the terminology used in [7], but is opposite to that used in [8].
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has been investigated recently in [7,8]. For equations (1.1) it was shown [7] that, with
α := p(a − 1) + q(b − 1), the carrying simplex of (1.1) is strictly convex if α > 0, strictly
concave if α < 0 and linear if α = 0.

In computing the carrying simplex using the PDE (1.3) we were led to the unit simplex
Σ2 = {(x, y) ∈ R

2
�0 : x + y = 1} as the natural choice of initial curve. The constant α has

one interpretation as determining the uniform sign of the normal component of the vector
field along Σ2, and hence whether the competitive flow moves the unit simplex above
or below its initial position. However, we also found that, at least for small times, the
curvature of the image of Σ2 under the flow has the same sign as α uniformly along Σ2.
More precisely, if α > 0, the image of the simplex is strictly convex for small enough
time, and if α < 0, it is strictly concave for small enough time. If α = 0, the carrying
simplex S2 = Σ2. In fact, a similar observation is true for all lines in the plane: due to
the quadratic form of the vector field generating the flow, straight lines are rendered
strictly convex or strictly concave by the flow, at least for small enough time, or they are
invariant.

The aims of this paper are two-fold. The first purpose is to show that the carrying
simplex S2 is the identical limit of upper and lower solution sequences of a first-order
quasilinear PDE. That is, the carrying simplex is the common limit of two bounded and
monotone sequences of graphs: one that is non-increasing in time and the other that
is non-decreasing in time. This provides a variation on the general method of proof of
the existence of carrying simplices (where they are graphs of functions) found in [2,4],
where it is shown, by considering individual orbits, that the carrying simplex Sn is the
upper boundary of the basin of repulsion of the origin in R

n
�0. By comparison, the proof

given here for S2 follows a line of orbits, and an advantage of this approach is that the
curvature of the image of the line under the flow can be tracked. In other words, we solve
a time-dependent PDE for the carrying simplex. A similar method establishes concavity
of solutions of a non-homogeneous Burger equation occurring in the study of Fréedericksz
transitions in liquid crystals [1, Remark 1].

The second purpose of the paper is to show that the convexity or concavity of S2 can
be established by squeezing a sequence of convex or concave graphs that are the image
of the unit simplex under the flow between these upper and lower solution sequences.
The methods used here are of interest since the majority of them can be applied to
higher-dimensional competitive Lotka–Volterra systems. We shall deal with the higher-
dimensional case in a separate paper.

2. Preliminaries

Let f, g : R
2 → R

2 be smooth functions. The ordinary differential equations

ẋ = f(x, y) = xF (x, y), ẏ = g(x, y) = yG(x, y) (2.1)

give rise to a flow ϕt : R
2
�0 → R

2
�0. For simplicity, we suppose that the flow exists for

all t ∈ R. The flow of (2.1) leaves R
2
�0 invariant, and also the two coordinate axes

{(x, 0) : x � 0} and {(0, y) : y � 0} are invariant. Let u0 : R�0 → R be a given smooth
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function, and denote by Σ = {(x, u0(x)) : x � 0} the graph of u0. Then, under the flow ϕt

of (2.1), Σ is mapped to a new set Σt = ϕt(Σ), which is the graph of a smooth function
u(·, t) : R�0 → R provided that Σt projects in a one-to-one way onto the non-negative
x-axis. The function u(·, t) : R�0 → R satisfies the first-order quasilinear PDE

ut + f(x, u)ux = g(x, u), (x, t) ∈ R>0 × R>0, (2.2)

with initial data u(x, 0) = u0(x), x ∈ R�0. If solutions u(·, t) exist for all time (no-shocks
form), and converge to a continuous function u∞ : R�0 → R, the graph of u∞ is an
invariant manifold for (2.1). We shall therefore seek the carrying simplex as the steady
solution of (2.2).

In what follows we will use d/dt to denote the material (Lie, Lagrangian) derivative
following a trajectory of (2.1), that is d/dt = ∂/∂t + f∂/∂x. Thus, dux/dt measures the
rate of change of the gradient of the curve following a material point on the curve as it
moves with the flow (2.1). It is worth noting that, since in most cases we will be working
with functions (e.g. ux, uxx) that are non-positive or non-negative everywhere, it will
not be necessary to identify material points, since typically our aim is to show that the
functions cannot change sign anywhere on R�0.

The first lemma below shows that non-increasing graphs remain non-increasing under
the competitive flow (i.e. the normal to the curve lies in the first quadrant), and the
second and third lemmas are useful for determining how the flow component normal to
a surface changes as the surface evolves under the flow. Finally, the fourth lemma shows
that the graph of a non-increasing function is a Lipschitz manifold.

Lemma 2.1. Suppose u0 : R�0 → R is smooth, and f, g : R
2 → R are smooth functions

of the form given in (2.1). For small enough t, the solution u(·, t) : R�0 → R of (2.2)
satisfying u(·, 0) = u0 exists, is smooth in x, and we have

dux

dt
= gx + (gy − fx − fyux)ux. (2.3)

Proof. By differentiating (2.2) we obtain uxt +fuxx +(fx +fyux)ux = gx +gyux and
hence (2.3) via identifying dux/dt = (ux)t + f(x, u)(ux)x. �

Now take (f, g) to be a smooth totally competitive vector field, as in (1.2), so that
gx � 0 and fy � 0. Recall that the flow leaves the first quadrant invariant.

Corollary 2.2. If the smooth initial data u0 satisfies u0 � 0 and (u0)x � 0, then
u(·, t) is defined and smooth for all t � 0 and u(·, t) � 0, ux(·, t) � 0 for all t � 0.

Proof. If ux(s, t) = 0 for some material point labelled by s ∈ R>0, then since gx � 0
we have dux(s, t)/dt � 0 from (2.3). Moreover, the solution u(·, t) remains defined for all
t � 0, since ux cannot grow unbounded in finite time. To see this, simply note that the
coefficient of u2

x in (2.3) is −fy = −xFy > 0 if x > 0. �

Remark 2.3. For the f , g in (1.1), if u0 : R�0 → R is decreasing, then ux(x, t) < 0
whenever x is such that u(x, t) > 0, since then gx = −bqu.
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Remark 2.4. We recall that R
2 can be made into an ordered space (R2,�) through

the ordering defined by x � y if and only if xi � yi for i = 1, 2, x < y if x � y, and
x �= y and x � y if and only if xi < yi for i = 1, 2. Hirsch uses the fact that, backwards
in time, (1.2) is strongly monotone on R

2
>0. A flow ψt : U → U , U ⊂ R

2 open, is strongly
monotone if, whenever x < y, ψt(x) � ψt(y) for all t > 0. Thus, if ψt = ϕ−t, where ϕt

is the flow of (1.2), then ψt is a strongly monotone flow on R
2
>0.

For convenience, write F = (f, g)T.

Lemma 2.5. Let n denote the upward unit normal to the graph of u(·, t). Then
ṅ = −DFTn + (nTDFn)n.

Proof. Pick a point x on the graph of u and v a tangent vector at x. Then nTv = 0
so that 0 = ṅTv + nTv̇ = ṅTv + nTDFv. Hence, ṅ + DFTn = θn for some θ. Since n is
a unit normal, we find θ = nTDFn as required. �

Lemma 2.6. Let n denote the upward unit normal to the graph of u(·, t) and q = nTF .
Then q̇ = (nTDFn)q. Hence, q is either zero or has constant sign for all t.

Proof. q̇ = ṅTF + nTDFF = FT(−DFTn + (nTDFn)n) + nTDFF = (nTDFn)q.
�

This lemma says that the component of the flow normal to the curve always has the
same sign.

The following establishes directly that decreasing functions have Lipschitz graphs. For
an alternative approach, see [4].

Lemma 2.7. If u : R�0 → R�0 is smooth and non-increasing, then the graph of u is
a Lipschitz manifold with Lipschitz constant unity.

Proof. Consider the transformation of coordinates X = 1
2 (x − y), Y = 1

2 (x + y).
Then in the new coordinates y = u(x) transforms to Y = X + u(X + Y ). Without loss
of generality we may suppose that limx→∞ u(x) = 0. Given X ∈ J = [−u(0)/2,∞),
Y = X +u(X +Y ) has a unique solution Y = Φ(X) ∈ R�0, which defines a single-valued
function Φ : J → R�0. The function Φ is continuous. Suppose, on the contrary, it is not.
Then, if Φ(X+) = Y1, Φ(X−) = Y2 and ∆Y = Y2 − Y1, then ∆Y = u(X + ∆Y + Y1) −
u(X + Y1) and since u is non-increasing we must have ∆Y = 0. Formally, we compute

Φ′(X) =
1 + u′(X + Φ(X))
1 − u′(X + Φ(X))

,

which shows that Φ is continuously differentiable on J since u′ � 0 and Φ is continuous,
and we have

|Φ′(X)| =
|1 − |u′(X + Φ(X))||
1 + |u′(X + Φ(X))|

and so |Φ′| � 1 on J . �
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3. Evolution of the curvature

Lemma 3.1. We have

duxx

dt
= gxx + ux(2gxy − fxx) + u2

x(gyy − 2fxy) − fyyu3
x + uxx(gy − 2fx − 3fyux). (3.1)

Proof. This is similar to that of Lemma 2.1. �

Corollary 3.2. For the functions f(x, y) = px(1 − x − ay), g(x, y) = qy(1 − y − bx)
we obtain

duxx

dt
= 2ux(p− bq +(ap− q)ux)+uxx(3apxux +2(ap− q)u+(4p− bq)x+ q −2p), (3.2)

and, at t = 0, duxx/dt = 2α when u0(x) = 1 − x, where

α = p(a − 1) + q(b − 1). (3.3)

The corollary shows that, with the initial data u0(x) = 1−x, the solution u(·, t) to (2.2)
is strictly convex (concave) for small enough t > 0 when α > 0 (α < 0). Equivalently, if
α > 0(< 0), then Σt = ϕt(Σ) is strictly convex (concave) for t > 0 sufficiently small. We
will show later that α > 0(< 0) is actually enough to ensure strict convexity (concavity)
of u(·, t) and Σt for all t > 0.

4. Convexity of u(·, t) when α > 0

Now we restrict our attention to the evolution of the unit simplex Σ2 under the flow ϕt

of (1.1). We parametrize the unit simplex Σ2 = {(s, 1 − s) : s ∈ [0, 1]}. We now show
that once the manifold Σt = ϕt(Σ2) is strictly convex, it remains strictly convex. Note
that since (1, 0) and (0, 1) are equilibria, Σt can be considered as the graph of a smooth
function over the interval [0, 1].

First we prove a lemma which will enable us to track the curvature following a material
point.

Lemma 4.1. Let θ, σ : R�0 → R be continuous functions. Suppose that ψ : R�0 → R

satisfies
dψ

dt
= σψ + θ,

with ψ(t0) = ψ0, for some t0 � 0. Then if

(a) ψ0 � 0 and

(b) θ(T ) > 0 whenever ψ(T ) = 0 (T � t0),

then ψ(t) > 0 for all t > t0.

https://doi.org/10.1017/S0013091510000684 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000684


Convexity-preserving flows of totally competitive planar LV equations 59

Proof. We simply compute, for t � w,

ψ(t) = exp
( ∫ t

w

σ(τ) dτ

){
ψ(w) +

∫ t

w

θ(ν) exp
(

−
∫ ν

w

σ(τ) dτ

)
dν

}
. (4.1)

If ψ0 = 0, then since we are told in (b) that θ(t0) > 0, by right continuity of θ we
have θ(t) > 0 for t ∈ [t0, t0 + δ0) for some δ0 > 0. But then by (4.1) we have ψ(t) > 0
for t ∈ (t0, t0 + δ0). If ψ(t0) > 0, then there exists δ1 > 0 such that ψ(t) > 0 for all
t ∈ [t0, t0+δ1). Thus, when ψ(t0) � 0 there exists some smallest δ2 > 0 such that ψ(t) > 0
for t ∈ (t0, t0 + δ2) and ψ(t0 + δ2) = 0. Either δ2 = ∞ or δ2 is finite and ψ(t0 + δ2) = 0.
But then θ(t0 + δ2) > 0, and by continuity θ(t) > 0 for t ∈ (t0 + δ2 − η, t0 + δ2 + η) for
some η > 0. From (4.1) this then implies that ψ(t0 + δ2) > 0: a contradiction. �

We now apply this lemma as follows: in equation (3.2), set

θ = 2ux(p − bq + (ap − q)ux),

σ = 3apxux + 2(ap − q)u + (4p − bq)x + q − 2p.

Thus, the idea is to show that whenever the curvature uxx = 0 we must necessarily
have θ > 0. We actually achieve this by showing that, in fact, θ(·, t) > 0 on [0, 1] for
t � 0.

Recall that Σt is the graph of a C∞([0, 1]) function u(·, t) for each t � 0. From Corol-
lary 2.2 and Remark 2.3, competitiveness of the flow ensures that u(·, t) is a decreasing
function on [0, 1]. Notice also that ux(1, t) < 0 for all t � 0, since z = ux(1, t) is a solution
of ż = z(q(1 − b) + p + apz) with z(0) = −1. Hence, ux(·, t) < 0 on [0, 1] for t � 0.

We continue to work with the case α > 0 (which means θ(·, 0) > 0 on [0, 1]). Since
ux < 0 for x ∈ [0, 1] for t � 0, we need only consider the expression

ξ = (p − qb) + (pa − q)ux.

We will show that ξ < 0 for all t � 0 and hence that θ > 0 for all t � 0.
We know that, since α > 0, ξ < 0 on [0, 1] at t = 0. Suppose that ξ first vanishes at

some t = T > 0. From equation (4.1) with ψ = uxx and θ, σ as defined above, we see that
uxx > 0 for all t ∈ (0, T ], so that Σt is strictly convex for t ∈ (0, T ] and thus we know
that if ξ vanishes at t = T it must be for x = 0 or x = 1 (since by convexity ux takes its
extreme values at these end points). First we dispense with the case pa = q. If pa−q = 0,
then ξ = (p − qb) < 0, since we are assuming 0 < α = p(a − 1) + q(b − 1) = qb − p.
Thus, for ξ to vanish we need pa − q �= 0. Thus, now suppose that pa �= q. If qb = p,
then pa − q = α > 0 and at a point where ξ = 0 we must have ux = 0, which contradicts
the notion that ux < 0 for t � 0. If qb �= p and pa �= q, then at a point where ξ = 0 we
have ux = −(p − qb)/(pa − q), which is only possible if (p − qb)/(pa − q) > 0. In other
words, we have shown that ξ cannot vanish unless p > qb, pa > q or p < qb, pa < q. We
compute

ξ̇ = (ap − q)
dux

dt
= (ap − q){gx + gyux − (fx + fyux)ux}.
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We find at x = 0, y = 1 that

ξ̇ = (p − q)(p − bq) − (ap2 + bq2 − 2pq)

= p(p(1 − a) + q(1 − b))

= −pα < 0.

Similarly, one finds that at x = 1, y = 0 we have

ξ̇ = qα

(
qb − p

pa − q

)
< 0

since here (qb− p)/(pa− q) = ux < 0. Thus, we find that, whenever ξ = 0, ξ̇ < 0, so that
in fact, since initially ξ < 0, ξ(·, t) < 0 for all t � 0. By Lemma 4.1, uxx > 0 for all t > 0.

Hence, when α > 0 the solutions u(·, t) (equivalently, the manifolds Σt) are strictly
convex for all t > 0. When α < 0 a similar argument shows that u(·, t) is strictly concave
for all t > 0.

At this point, we can easily conclude the existence of a convex invariant manifold
for (1.1) that connects the axial equilibria. To see this, note that we have a bounded
and uniformly Lipschitz sequence of strictly convex manifolds Σt, from which we may
extract a convergent subsequence that converges to an invariant and convex Lipschitz
manifold S2 which passes through the axial equilibria by construction. However, we will
now improve on this by showing that S2 is the graph of a locally Lipschitz function and
that it attracts all points in R

2
�0 \ {0}.

5. Construction of upper and lower solution sequences

We do the following for the strongly competitive system (1.2) which includes the Lotka–
Volterra system (1.1). The system (1.2) has unique axial equilibria and we suppose that
the coordinates are scaled so that they lie at E1 = (0, 1) and E2 = (1, 0).

Since F (0, 0) > 0, G(0, 0) > 0, the origin is an unstable node for (1.2) and there
exists a δ0 > 0 such that for all 0 < δ < δ0 all points with x ∈ [0,∞) on the non-
increasing, piecewise linear curve yL : R → R given by yL(x) = max{δ − x, 0} move
in the upwards direction or along it. We smooth yL using a suitable mollifier to pro-
duce a new non-increasing C∞(R�0) function ỹL : R�0 → R�0 (i.e. now restrict to the
invariant first quadrant) such that n(r) · F(r) � 0 along its graph, where n(r) is the
upward unit normal at the point r on the graph. Let ΓL,t be the image of the graph
of ỹL under the competitive flow, and let yL(·, t) : R�0 → R�0 be the function whose
graph is ΓL,t. The functions yL(·, t) are solutions of the PDE (1.3), and we call them
lower solutions. By Lemma 2.6 we have that ∂yL/∂t = (−∂yL/∂x, 1)TF � 0, so that the
sequence yL(·, t) is non-decreasing. By Corollary 2.2, since ỹL is non-increasing, each
yL(·, t) is a non-increasing function, and, moreover, yL(·, t) has compact support upon
which it is decreasing. The non-decreasing sequence of Lipschitz manifolds ΓL,t, which
is bounded by dissipation, converges to a Lipschitz manifold Γ ∗

L that is invariant under
the flow. Let y∗

L(x) = max{y � 0: (x, y) ∈ Γ ∗
L}. Then yL(x, t) → y∗

L(x) for each x ∈ R�0.
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By Helly’s Theorem for sequences of monotone functions (see, for example, [3]), y∗
L is

non-increasing, with a countable number of points of discontinuity.
Now we follow [2] to show that y∗

L is continuous and decreasing. Suppose that τ > 0
is a point of discontinuity of y∗

L (which is isolated since they are countable in number).
Then the two points A = (τ, y∗

L(τ−)) and B = (τ, y∗
L(τ+)) are ordered: A1 = B1 and

B2 < A2, so that B < A. Since the flow is strongly monotone backwards in time (see
Remark 2.4) on R

2
>0, we then have two points ϕ−t(A), ϕ−t(B) in the invariant graph Γ ∗

L
of y∗

L that satisfy ϕ−t(B) � ϕ−t(A) for t > 0. On the other hand, since A2 > B2, for
δ > 0 small enough (ϕ−δ(A))2 − (ϕ−δ(B))2 > 0, whereas by invariance of Γ ∗

L we must
have (ϕ−δ(A))1 − (ϕ−δ(B))1 � 0. Hence, the line segment joining ϕ−δ(A) and ϕ−δ(B)
has either finite and negative slope or is vertical. In either case we contradict the notion
that ϕ−t(B) � ϕ−t(A) for t = δ > 0.

Hence, y∗
L is continuous on (0,∞). If y∗

L were not also continuous at x = 0, then since
Γ ∗

L is a Lipschitz manifold, Γ ∗
L would have a vertical line segment at x = 0. But since

x = 0 is invariant, and on the set {(0, y) : y > 0} the dynamic is convergent to the axial
equilibrium E1 = (0, 1), this line segment must be the single point E1, and hence y∗

L is
continuous on R�0, with y∗

L(0) = 1.
Now note that we could have done all the foregoing analysis with the roles of x, y

reversed, and hence y∗
L must be a locally Lipschitz function satisfying y∗

L(0) = 1, y∗
L(1) = 0

and decreasing on [0, 1].
Similarly, by choosing δ1 > 0 large enough, for each δ > δ1, we may construct a curve

yU(x) = max{δ − x, 0} such that in the first quadrant each point on the curve either
moves along the curve or moves downwards under the flow. We then smooth this function
to give the C∞ function ỹU. The image of the graph of ỹU under the flow is then the
graph of a smooth non-increasing function yU(·, t). The non-increasing sequence yU(·, t)
of non-increasing functions converges to a locally Lipschitz function y∗

U : [0,∞) → R with
y∗
U(0) = 1, y∗

U(1) = 0, decreasing on [0, 1], and whose graph Γ ∗
U is invariant under the

flow.

Remark 5.1. Hirsch’s results in [4] show that S2 is balanced and its interior intS2

is strongly balanced. By ‘balanced’ here we mean that no two points p1, p2 ∈ S2 can be
strongly ordered (i.e. neither p1 � p2 or p2 � p1 is true), and by ‘strongly balanced’
we mean no two points can be ordered. In the present context, this amounts to showing
that S2 is the graph of a decreasing function on [0, 1].

6. Convergence of upper and lower solutions to the carrying simplex

We now demonstrate that these upper and lower solutions converge to the same limit:
y∗
L = y∗

U. For ease of notation let y1 = y∗
L and y2 = y∗

U. Let Gi denote the graph of yi

restricted to [0, 1] for i = 1, 2. By construction, y2 � y1. We also know that y1, y2 are
continuous (in fact, locally Lipschitz) and decreasing and hence invertible with continuous
inverses y−1

1 , y−1
2 . For ε ∈ [0, 1] define Dε = {(x, y) ∈ [ε, 1]2 : y1(x) � y � y2(x)}. Then

Dε is measurable and, if y1 �= y2, has decreasing measure for increasing ε ∈ [0, 1]. We
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will work in generality here: to cover the strongly competitive system (1.2) take f = xF ,
g = yG, where Fx < 0, Gy < 0.

By Green’s Theorem for smooth functions, and a region whose boundary is Lipschitz,
∫

Dε

div
(

1
xy

(f, g)
)

dA =
∫

∂Dε

1
xy

(f, g) · n ds,

where dA is the area element, ds the line element and n the (outward) unit normal to
the Lipschitz boundary ∂Dε of Dε taken anticlockwise. But the left-hand side L is just

L(ε) =
∫

Dε

(
1
x

Fx +
1
y
Gy

)
dA < 0,

since Fx < 0, Gy < 0, and hence L(ε) is decreasing with decreasing ε ∈ [0, 1].
On the other hand, for the right-hand side R(ε) the line integrals along the sections

of the graphs G1, G2 vanish by invariance under the flow. The right-hand side terms that
remain are

R(ε) =
∫ y1(ε)

y2(ε)
−F (ε, y)

y
dy +

∫ y−1
2 (ε)

y−1
1 (ε)

−G(x, ε)
x

dx.

We have

|R(ε)| � (y2(ε) − y1(ε)) max
y∈[y1(ε),y2(ε)]

∣∣∣∣F (ε, y)
y

∣∣∣∣
+ (y−1

2 (ε) − y−1
1 (ε)) max

x∈[y−1
1 (ε),y−1

2 (ε)]

∣∣∣∣G(x, ε)
x

∣∣∣∣.
Now as ε → 0+, y1(ε), y2(ε) → 1 and y−1

1 (ε), y−1
2 (ε) → 1, so that R(ε) → 0 as ε → 0+.

Since L(ε) < 0 and is decreasing with decreasing ε ∈ [0, 1], for ε small enough we
contradict the Green Theorem identity R(ε) = L(ε). Hence, we must have that the
measure of D is zero, and thus G1 = G2 and y∗

L = y∗
U.

Now all we need to do is observe that the graphs Σt = ϕt(Σ2) are sandwiched between
suitably chosen convergent upper and lower sequences that converge to the same Lipschitz
and invariant manifold, which we will denote by M∗, and which is the graph of a locally
Lipschitz function ψ∗ : [0, 1] → R. Each Σt is the graph of a locally Lipschitz convex
function and hence ψ∗ is also convex [6] and locally Lipschitz. Finally, by choosing δ > 0
small enough in the lower solution or δ large enough in the upper solution, we may push
any point in R

2
�0 \ {0} onto M∗ and so M∗ = S2 attracts all points in R

2
�0 \ {0}.
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Fréedericksz transition with weak anchoring, J. Diff. Eqns 246 (2009), 2590–2600.

2. P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: a
geometric approach, J. Math. Biol. 11 (1981), 319–335.

3. J. L. Doob, Measure theory, Graduate Texts in Mathematics, Volume 143 (Springer,
1994).

https://doi.org/10.1017/S0013091510000684 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000684


Convexity-preserving flows of totally competitive planar LV equations 63

4. M. W. Hirsch, Systems of differential equations that are competitive or cooperative, III,
Competing species, Nonlinearity 1 (1988), 51–71.
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