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Paradoxical predictions of swirling jets
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This paper examines the shape of a steady jet with a swirling component, ejected from a
circular orifice at an angle to the horizontal. Assuming the Froude number to be large, we
derive a set of asymptotic equations for a slender jet. In the inviscid limit, the solutions
of the set predict that, if the swirling velocity of the flow exceeds a certain threshold, the
jet bends against gravity and rises until the initial supply of the liquid’s kinetic energy is
used up. This effect is due to the fact that the contributions of the swirl and streamwise
velocities to the centrifugal force are of opposite signs, with their sum to be balanced
by gravity. As a result, swirl- and streamwise-dominated jets bend in opposite directions.
Downward-bending jets also exhibit counter-intuitive behaviour. If the swirling velocity
is strong enough (but is still below the above threshold), the streamwise velocity on the
jet’s axis may decrease with the distance from the orifice, despite the acceleration due to
gravity. Eventually, a stagnation point emerges due to this effect, arguably destabilising the
jet. Also paradoxically, viscosity-dominated jets can reach higher (if they bend upwards)
and farther (in all cases) than their inviscid counterparts, due to the fact that viscosity
suppresses formation of stagnation points.

Key words: jets

1. Introduction

Straight and nearly straight jets have been studied for almost 150 years, since the seminal
works of Plateau (1873) and Rayleigh (1878). Curved jets, on the other hand, have a much
shorter history – probably because they cannot be examined using the usual (cylindrical)
coordinates. Alternative curvilinear coordinates associated with the jet centreline were
suggested by Entov & Yarin (1984); even though they are non-orthogonal and, thus, make
the Navier–Stokes equations several pages long, they have been successfully applied to
gravity-affected slender jets (Wallwork 2001; Wallwork et al. 2002; Shikhmurzaev &
Sisoev 2017; Decent et al. 2018).

The present paper considers jets where the velocity involves a non-zero swirling
component, so that the trajectories of fluid particles are spirals; such jets can be created by
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inserting a propeller into the orifice. We are concerned with oblique swirling jets: those
ejected in a direction other than the vertical, so that their trajectories are curved by gravity.
A set of asymptotic equations have been derived for slender jets, i.e. those whose radii of
curvature exceed their thickness.

Three highly counter-intuitive results will be presented in this paper.

(i) We show that the Navier–Stokes equations admit asymptotic solutions describing
swirling jets which bend upwards, i.e. against gravity. They have yet to be tested
for stability, but even if they turn out to be unstable, downward-bending jets are not
the alternative, as they do not exist in this range of parameters. The only realistic
alternative is unstable, eternally evolving flow.

(Note that solutions describing upward-bending jets have been found before – and
not only jets (Wallwork 2001), but also liquid curtains (Keller & Weitz 1957; Benilov
2019, 2021). These jets and curtains, however, bend upwards due to surface tension,
whereas the jets found in this work do so even if the capillary coefficient is zero. It
is the swirling velocity that makes them bend upwards, not surface tension.)

(ii) We show that the streamwise velocity in some downward-bending jets decreases
with the distance from the orifice – to the extent that a stagnation point (SP) emerges
in the flow. This behaviour is at odds with the intuitive perception that falling objects
accelerate due to gravity. It is further argued that SPs cause instability, so that
downward jets developing them terminate due to an instability at a finite distance
from the orifice.

(Note that the emergence of SPs in swirling flows (not necessarily jets) has been
reported before, and is usually referred to as ‘vortex breakdown’ (e.g. Benjamin
(1962), Escudier (1988), Brown & Lopez (1990), Gelfgat, Bar-Yoseph & Solan
(1996), Billant, Chomaz & Huerre (1998), Ruith et al. (2003), Moise & Mathew
(2021), Shtern (2012) and references therein). So far, it has been observed in
flows not affected (thus, not accelerated) by gravity, so their slow-down is less
counter-intuitive – but it is still the same effect as the one described here. The mere
fact that our asymptotic model describes a paradoxical, but known, phenomenon,
indirectly validates the rest of our results.)

(iii) Viscosity-dominated jets may reach higher (if they bend upwards) and propagate
farther (in all cases) than their inviscid counterparts. The reason is that the latter
are prone to be terminated by SPs, whereas the former are affected by cross-stream
homogenisation (either eliminating, or at least postponing, formation of SPs).

This paper has the following structure. In § 2, we formulate the problem for an inviscid
fluid without surface tension, and in § 3, derive a set of asymptotic equations describing
jets with a large Froude number. Examples of solutions of these equations are obtained
in § 4, and the results obtained are extended to viscous capillary fluids in § 5. In § 6, we
compared our results with those obtained previously for liquid curtains.

2. Formulation of the problem: ideal fluids without surface tension

2.1. Preliminaries
Consider a steady flow of fluid of density ρ ejected with a flux F from a circular orifice of
radius R0. Choosing the characteristic velocity scale to be

U = F

2
(
πR2

0
) , (2.1)
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l
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Figure 1. The setting: a jet ejected from a circular outlet. Here (l, r, φ) are the curvilinear coordinates
associated with the jet’s centreline, and α(l) is the angle between the centreline and the horizontal.

we introduce the reciprocal of the Froude number,

ε = gR0

U2 , (2.2)

where g is the acceleration due to gravity. It can be shown that the characteristic radius of
the jet’s curvature due to gravity is

L = R0

ε
. (2.3)

Everywhere in this paper, we assume that ε � 1 – hence, L � R0 and the slender-jet
approximation can be employed.

We shall use the curvilinear coordinates (l, r, φ) related to the Cartesian coordinates
(x, y, z) by

x = x̄ + r sin α sin φ, y = −r cos φ, z = z̄ − r cos α sin φ, (2.4a–c)

where x̄(l) and ȳ(l) are the coordinates of the jet’s centreline, and α(l) is the local
angle between the centreline and the horizontal (see figure 1). Observe that the second
expression in (2.4a–c) does not include the lateral displacement ȳ(l), so that all of
the centreline is in the vertical (x, z) plane. It can be readily verified that (l, r, φ) are
orthogonal coordinates (which they would not be, should ȳ(l) be introduced in (2.4a–c)
(Entov & Yarin 1984; Shikhmurzaev & Sisoev 2017; Decent et al. 2018)).

To identify l with the centreline’s arclength, we require

dx̄
dl

= cos α,
dz̄
dl

= sin α, (2.5a,b)

x̄ = 0, z̄ = 0 if l = 0. (2.6a,b)

Equations (2.5a,b) and boundary conditions (2.6a,b) relate uniquely (x̄, z̄) to α, whereas
the latter remains mathematically undetermined. It will be fixed later as convenient.

2.2. Governing equations
In order to minimise straightforward, yet extremely tedious, algebra associated with the
use of curvilinear coordinates, we shall first consider the simplest setting: an ideal fluid
without surface tension. Once this limit has been examined, we shall briefly explain how
the results can be extended to the general case of viscous capillary jets.
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The scaling in the present problem is similar to that used by Benilov (2019) for liquid
curtains. In application to jets, it amounts to introducing the following non-dimensional
variables:

lnd = l
L

, rnd = r
R0

, φnd = φ, (2.7a–c)

(
ul, ur, uφ

)
nd =

(
ul, ur, uφ

)
U

, pnd = p
ρgL

, (2.8a,b)

where (ul, ur, uφ) are the projections of the velocity onto the local axes of the curvilinear
coordinates and p is the pressure.

In terms of the non-dimensional variables, the Euler equations have the form (the
subscript nd omitted)

ul

hl

∂ul

∂l
+ 1

ε

[
ur

∂ul

∂r
+ uφ

r
∂ul

∂φ
+ ul

hl

(
ur

∂hl

∂r
+ uφ

r
∂hl

∂φ

)]
+ 1

hl

∂p
∂l

= − 1
hl

(
dz
dl

+ εr sin α
dα

dl
sin φ

)
, (2.9)

1
ε

(
ε

ul

hl

∂ur

∂l
+ ur

∂ur

∂r
+ uφ

r
∂ur

∂φ
− u2

l
hl

∂hl

∂r
− u2

φ

r
+ ∂p

∂r

)
= cos α sin φ, (2.10)

ul

hl

∂uφ

∂l
+ 1

ε

(
ur

∂uφ

∂r
+ uφ

r
∂uφ

∂φ
+ uφur

r
− u2

l
rhl

∂hl

∂φ

)
+ 1

εr
∂p
∂φ

= cos α cos φ, (2.11)

∂ (rul)

∂l
+ 1

ε

[
∂ (rhlur)

∂r
+ ∂

(
hluφ

)
∂φ

]
= 0, (2.12)

where the Lamé coefficient for the variable l is

hl = 1 + εr
dα

dl
sin φ. (2.13)

The other two Lamé coefficients have been replaced with their values, hr = 1 and hφ = εr.
Let the jet’s free boundary be determined by the equation r = R(l, φ), where R satisfies

the kinematic boundary condition,

ul

hl

∂R
∂l

− ur

ε
+ uφ

εr
∂R
∂φ

= 0 if r = R. (2.14)

The dynamic boundary condition, in turn, is

p = 0 if r = R. (2.15)

3. Asymptotic analysis

3.1. Asymptotic equations
Within the framework of the slender-jet approximation, the jet’s cross-section is almost
circular, and the radial velocity ur is much smaller than ul and uφ . Thus, we seek a solution
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of the form

R = R(0)(l) + εR(1)(l, φ) + O(ε2),

ul = u(0)
l (l, r) + εu(1)

l (l, r, φ) + O(ε2),

ur = 0 + εu(1)
r (l, r, φ) + O(ε2),

uφ = u(0)
φ (l, r) + εu(1)

φ (l, r, φ) + O(ε2),

p = p(0)(l, r) + εp(1)(l, r, φ) + O(ε2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

Substituting these expansions into the exact problem (2.9)–(2.15) and keeping the leading
order only, we obtain

−u(0)2
φ

r
+ ∂p(0)

∂r
= 0, (3.2)

p(0) = 0 if r = R(0). (3.3)

Evidently, we do not have enough equations to determine the leading-order solution –
hence, we have to consider the next order.

The next-to-leading order yields the following equations:

u(0)
φ

r
∂u(1)

l
∂φ

+ ∂u(0)
l

∂r
u(1)

r = − sin α − ∂p(0)

∂l
− u(0)

l
∂u(0)

l
∂l

− u(0)
l u(0)

φ

dα

dl
cos φ, (3.4)

u(0)
φ

r
∂u(1)

r

∂φ
− 2u(0)

φ

r
u(1)
φ + ∂p(1)

∂r
=
(

cos α + u(0)2
l

dα

dl

)
sin φ, (3.5)

(
∂u(0)

φ

∂r
+ u(0)

φ

r

)
u(1)

r + u(0)
φ

r

∂u(1)
φ

∂φ
+ 1

r
∂p(1)

∂φ
= −u(0)

l

∂u(0)
φ

∂l
+
(

cos α + u(0)2
l

dα

dl

)
cos φ,

(3.6)

∂
(

ru(1)
r

)
∂r

+
∂u(1)

φ

∂φ
= −r

∂u(0)
l

∂l
− ru(0)

φ

dα

dl
cos φ (3.7)

and the following boundary conditions:

u(1)
r − u(0)

φ

r
∂R(1)

∂φ
= u(0)

l
dR(0)

dl
, p(1) + R(1) ∂p(0)

∂r
= 0 if r = R(0). (3.8a,b)

Boundary-value problem (3.4)–(3.8a,b) is consistent with the following ansatz:

u(1)
l = u(1,0)

l (l, r) + u(1,1)
l (l, r) sin φ, u(1)

r = u(1,0)
r (l, r) + u(1,1)

r (l, r) cos φ,

u(1)
φ = u(1,0)

φ (l, r) + u(1,1)
φ (l, r) sin φ, p(1) = p(1,0)(l, r) + p(1,1)(l, r) sin φ,

R(1) = R(1,0)(l) + R(1,1)(l) sin φ,

⎫⎪⎪⎬
⎪⎪⎭ (3.9)
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where the functions with the superscripts (1,0) and (1,1) satisfy two non-coupled problems,

∂u(0)
l

∂r
u(1,0)

r = − sin α − ∂p(0)

∂l
− u(0)

l
∂u(0)

l
∂l

, (3.10)

−2u(0)
φ

r
u(1,0)
φ + ∂p(1,0)

∂r
= 0, (3.11)(

∂u(0)
φ

∂r
+ u(0)

φ

r

)
u(1,0)

r = −u(0)
l

∂u(0)
φ

∂l
, (3.12)

∂
(

ru(1,0)
r

)
∂r

= −r
∂u(0)

l
∂l

, (3.13)

u(1,0)
r = u(0)

l
dR(0)

dl
if r = R(0), (3.14)

p(1,0) + R(1,0) ∂p(0)

∂r
= 0 if r = R(0) (3.15)

and

u(0)
φ

r
u(1,1)

l + ∂u(0)
l

∂r
u(1,1)

r = −u(0)
l u(0)

φ

dα

dl
, (3.16)

−u(0)
φ

r
u(1,1)

r − 2u(0)
φ

r
u(1,1)
φ + ∂p(1,1)

∂r
= cos α + u(0)2

l
dα

dl
, (3.17)(

∂u(0)
φ

∂r
+ u(0)

φ

r

)
u(1,1)

r + u(0)
φ

r
u(1,1)
φ + 1

r
p(1,1) = cos α + u(0)2

l
dα

dl
, (3.18)

∂
(

ru(1,1)
r

)
∂r

+ u(1,1)
φ = −ru(0)

φ

dα

dl
, (3.19)

u(1,1)
r − u(0)

φ

r
R(1,1) = 0 if r = R(0), (3.20)

p(1,1) + R(1,1) ∂p(0)

∂r
= 0 if r = R(0). (3.21)

Expressing u(1,0)
r from (3.10) and substituting it into (3.12)–(3.14), we obtain

(
∂u(0)

φ

∂r
+ u(0)

φ

r

)(
u(0)

l
∂u(0)

l
∂l

+ ∂p(0)

∂l
+ sin α

)
= u(0)

l

∂u(0)
φ

∂l
∂u(0)

l
∂r

, (3.22)

∂

∂r

⎡
⎢⎢⎢⎣ r

∂u(0)
l

∂r

(
u(0)

l
∂u(0)

l
∂l

+ ∂p(0)

∂l
+ sin α

)⎤⎥⎥⎥⎦ = r
∂u(0)

l
∂l

, (3.23)
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1

∂u(0)
l

∂r

(
u(0)

l
∂u(0)

l
∂l

+ ∂p(0)

∂l
+ sin α

)
→ −u(0)

l
dR(0)

dl
as r → R(0). (3.24)

Observe that (3.22)–(3.24) include only the leading-order unknowns and, thus, can be
viewed as the solvability conditions for boundary-value problem (3.10)–(3.15).

To derive the solvability condition(s) for problem (3.16)–(3.21), one should express
u(1,1)
φ from (3.19), and substitute it into (3.18) and (3.17) – which yield, after straightforward

algebra,

∂

∂r

[
ru(0)2

φ

∂

∂r

(
ru(1,1)

r

u(0)
φ

)]
= −dα

dl

[
2r2

(
u(0)

l
∂u(0)

l
∂r

+ u(0)
φ

∂u(0)
φ

∂r

)
+ 3ru(0)2

φ

]
, (3.25)

p(1,1) = ru(0)
φ

∂u(1,1)
r

∂r
− r

∂u(0)
φ

∂r
u(1,1)

r + r cos α + r
(

u(0)2
l + u(0)2

φ

) dα

dl
. (3.26)

Substituting the above expression for p(1,1) into condition (3.21) and recalling (3.20), we
obtain

u(0)2
φ

∂

∂r

(
ru(1,1)

r

u(0)
φ

)
= −r cos α − r

(
u(0)2

l + u(0)2
φ

) dα

dl
if r = R(0). (3.27)

Integrating (3.25) from r = 0 to r = R(0) and taking into account condition (3.27), we
observe that a solution for u(1,1)

r exists only if

− R(0)2 cos α = dα

dl

∫ R(0)

0
r
(

2u(0)2
l − u(0)2

φ

)
dr. (3.28)

Given suitable entry conditions at the orifice, (3.2), (3.22)–(3.23), (3.28) and boundary
conditions (3.3), (3.24) fully determine u(0)

l (l, r), u(0)
φ (l, r), p(0)(l, r) and α(l). Once these

are found, one can use (2.5a,b)–(2.6a,b), to find x̄(l) and z̄(l) – i.e. the jet’s trajectory.

3.2. Discussion: singular points of the equations derived
Observe that (3.23) and boundary condition (3.24) appear to be singular if/where
∂u(0)

l /∂r = 0. It turns out, however, that the apparent singularity of the boundary-value
problem does not translate into singularity of the solution.

To understand why, integrate (3.23) from r = 0 to r = R(0), take into account (3.24) and
thus obtain

d
dl

∫ R(0)

0
ru(0)

l dr = 0. (3.29)

Integrating this equation with respect to l and equating (without loss of generality) the
constant of integration to unity, we obtain∫ R(0)

0
ru(0)

l dr = 1. (3.30)

This (non-singular) equality reflects conservation of the mass flux. In what follows, it will
replace the singular condition (3.24).
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To resolve the singularity in (3.23), we note that the asymptotic boundary-value problem
is invariant with respect to simultaneously changing

(l, r) → (l, −r) , (u(0)
l , u(0)

φ , p(0)) → (u(0)
l , −u(0)

φ , p(0)). (3.31a,b)

Thus, u(0)
l and p(0) can be analytically extended to the region r < 0 as even functions,

whereas u(0)
φ can be extended as an odd function. Since all three should be analytic at

r = 0, this implies

∂u(0)
l

∂r
= O(r),

∂p(0)

∂r
= O(r), u(0)

φ = O(r) as r → 0. (3.32a–c)

Then, as follows from (3.22),

u(0)
l

∂u(0)
l

∂l
+ ∂p(0)

∂l
+ sin α = O(r2) as r → 0. (3.33)

Keeping this in mind, we integrate (3.23) from r = 0 to r = r′, interchange r ↔ r′, and
obtain

u(0)
l

∂u(0)
l

∂l
+ ∂p(0)

∂l
+ sin α = 1

r
∂u(0)

l
∂r

∫ r

0
r′ ∂u(0)

l (l, r′)
∂l

dr′, (3.34)

where functions without explicitly stated arguments depend on (l, r). Using (3.34), we
reduce (3.22) to (

∂u(0)
φ

∂r
+ u(0)

φ

r

)
1
r

∫ r

0
r′ ∂u(0)

l (l, r′)
∂l

dr′ = u(0)
l

∂u(0)
φ

∂l
. (3.35)

In what follows, (3.34)–(3.35) replace (3.22)–(3.23).

4. Inviscid jets

To simplify the notation, we change

u(0)
l → u, u(0)

φ → w, R(0) → R. (4.1a–c)

Now, (3.2), (3.28)–(3.35) and boundary condition (3.28) become

u
∂u
∂l

+ ∂p
∂l

+ sin α = 1
r

∂u
∂r

∫ r

0
r′ ∂u(l, r′)

∂l
dr′, (4.2)

u
∂w
∂l

= 1
r

(
∂w
∂r

+ w
r

)∫ r

0
r′ ∂u(l, r′)

∂l
dr′, (4.3)

−w2

r
+ ∂p

∂r
= 0, (4.4)

dα

dl

∫ R

0
r
(

w2 − 2u2
)

dr = R2 cos α, (4.5)

∫ R

0
ru dr = 1, (4.6)

p = 0 if r = R. (4.7)

925 A12-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

66
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.664


Paradoxical predictions of swirling jets

The solution should be analytic at r = 0, which implies

∂u
∂r

= 0, w = 0 if r = 0. (4.8a,b)

It can be shown that, on the (l, r) plane, boundary-value problem (4.2)–(4.7) is hyperbolic
and, as such, requires entry conditions at the orifice. We assume that

R = 1, u = u0(r), w = w0(r) at l = 0, (4.9a–c)

α = α0 at l = 0, (4.10)

where the jet’s initial radius matches that of the orifice, and [u0(r), w0(r)] and α0 are the
ejection velocity and angle, respectively. Note that u0(r) should comply with (4.6), i.e.∫ 1

0
ru0 dr = 1. (4.11)

This requirement is not a restriction, as it can be always enforced via a proper choice of
the scale U during non-dimensionalisation.

Note also that, near the orifice, the jet may experience certain adjustments – e.g.
slight reduction of its radius. These adjustments are not described by the slender-jet
approximation, but they can be still accounted for by changing entry conditions
(4.9a–c)–(4.10). In this case, the point l = 0 would correspond to a cross-section located
at a certain distance from the actual orifice.

Finally, changing x̄ → x and z̄ → z, we write (2.5a,b)–(2.6a,b) in the form

dx
dl

= cos α,
dz
dl

= sin α, (4.12a,b)

x = 0, z = 0 if l = 0. (4.13a,b)

4.1. Exact results
Some of the mathematical properties of boundary-value problem (4.2)–(4.13a,b) have
far-reaching physical consequences.

(i) If ∫ 1

0
r(w2 − 2u2)dr > 0, (4.14)

(4.5) implies that dα/dl > 0.
Thus, if the swirling velocity w is sufficiently large, the jet bends upwards, against

gravity.
To understand the physics behind such a counter-intuitive behaviour, we rewrite

(4.5) as a balance of the centrifugal force and gravity,

1
2

dα

dl

(
2π

∫ R

0
rw2 dr

)
− dα

dl

(
2π

∫ R

0
ru2 dr

)
= πR2 cos α. (4.15)

The right-hand side of this equality represents the cross-stream component of the
gravitational force acting on a cross-section of radius R – and the first/second term
on the left-hand side describes the contribution of the swirl/streamwise velocity to
the centrifugal force. To understand the structure of the latter is easy: one should
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only keep in mind that dα/dl is the curvature of the jet’s centreline, and the minus in
front shows that the centrifugal force is directed away from the centre of curvature.

As for the swirl contribution to the centrifugal force, it is also proportional to
dα/dl (because the forces affecting individual particles in a straight swirling jet
average out to zero). Most importantly, this term’s sign is opposite to that of its
streamwise counterpart.

To understand why, consider, say, an upward-bending jet. It is clear from basic
geometry that its upper half slightly shrinks, whereas the lower half expands – hence,
the trajectories of particles swirling through the former are curved more than those in
the latter. Due to this difference and the fact that the centrifugal force is proportional
to the curvature of the particles’ trajectories, the swirl part of the force affecting the
whole cross-section is directed upwards, i.e. opposite to the streamwise part.

Thus, the upward bending of a swirling jet could be understood through an
analogy with a system of two interconnected bodies: one with positive mass and
another, with negative. If the absolute value of the latter exceeds that of the former,
gravity makes the whole system soar.

(ii) Given the counter-intuitive nature of property (i), it should be reassuring to ascertain
that our equations are consistent with basic physical principles. Two of these are
discussed below.
(a) Boundary-value problem (4.2)–(4.13a,b) is consistent with the following ansatz:

u(l, r) = u(l), w(l, r) = 0, p(l, r) = 0, (4.16a–c)

where u(l), α(l) and R(l) satisfy

uR = 2, u
du
dl

+ sin α = 0, −dα

dl
u2 = R cos α. (4.17a–c)

Using (4.12a,b)–(4.13a,b), one can show that the above equations describe
free-falling liquid, such that the particles follow parabolic trajectories.

(b) It follows from (4.2)–(4.13a,b) that

d
dl

∫ R

0

(
u2 + w2

2
+ p + z

)
ur dr = 0, (4.18)

which reflects conservation of the energy flux through the jet’s cross-section.
This property of the asymptotic model is helpful for controlling the accuracy of
numerical simulations.

One can also show that

d
dl

[(
u2

2
+ p
)

r=0
+ z
]

= 0,

d
dl

[(
1
u

∂w
∂r

)
r=0

]
= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.19)

These ‘local’ conservation laws do not seem to have physical meaning, but one
of them happens to be useful anyway.

(iii) Important information can be obtained by relating ∂u/∂l, ∂w/∂l and dR/dl to u, w
and R (in (4.2)–(4.13a,b), the former are related to the latter implicitly).
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Paradoxical predictions of swirling jets

Differentiating (4.4) with respect to l and using the resulting equation and (4.2) to
eliminate ∂w/∂l and ∂p/∂l from (4.3), one obtains

∂

∂r

(
1
r

∂v

∂r

)
+ 1

u

[
2w
r2u

(
∂w
∂r

+ w
r

)
− ∂

∂r

(
1
r

∂u
∂r

)]
v = 0, (4.20)

where

v(l, r) =
∫ r

0
r′ ∂u(l, r′)

∂l
dr′. (4.21)

Next, one can use boundary conditions (4.6)–(4.8a,b) to verify that

∂

∂r

(
1
r

∂v

∂r

)
→ 0 as r → 0, (4.22)

∂v

∂r
+ 1

u

(
w2

Ru
− ∂u

∂r

)
v + R

u
sin α = 0 if r = R. (4.23)

Given u, w and R, boundary-value problem (4.20), (4.22)–(4.23) determines v, and
then (4.21) yields

∂u
∂l

= 1
r

∂v

∂r
. (4.24)

Observe that, if a pair (l, r) exist such that u(l, r) = 0 the coefficients in (4.20)
become singular. In what follows, such pairs will be called SPs even if w(l, r) /= 0.

(iv) It follows from (4.20) that ∂u/∂l is singular at SPs (see Appendix A.1). The following
physical aspects of these singularities are worth noting.
(a) Given the hyperbolic nature of our equations and the fact that the streamlines are

their characteristics, it comes as no surprise that the solution becomes singular
where one of the characteristics ‘stops’.

(b) If viscosity is introduced, the solution becomes regular (due to the fact that the
governing equations become parabolic, see § 6 below).

(c) The presence of an SP invalidates – at least, locally – the assumption that
the Froude number be large (which underlies all of our results). Whether this
invalidates the global solution is unclear – but is also unimportant in view of
item (d), below.

(d) Stagnation points in ideal fluids often make the flow unstable (Friedlander
& Vishik 1991), and even in viscous fluids they are a destabilising influence
(Benilov & Lapin 2014). It is safe to assume that an inviscid or weakly viscous
jet exists only between the orifice and the first SP, and it breaks up immediately
after it.

4.2. Numerical results
Boundary-value problem (4.2)–(4.13a,b) was solved numerically using the method of lines
(Schiesser 1978): the r axis was discretised, so that the governing (partial differential)
equations turned into a large set of ordinary-differential equations. These equations are
implicit with respect to the l-derivatives, which were solved for (at each step in l) using the
MATLAB function FSOLVE. The actual integration of the equations was carried out using
the function ODE15s (an adaptive-step solver designed for stiff problems). For reasons
explained above, the solutions were terminated at the first SP (if any).
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Figure 2. The trajectories of inviscid jets described by boundary-value problem (4.2)–(4.13a,b), with entry
conditions (4.24) and α0 = 0. The curves are marked with corresponding values of ω0. Note that curve (1) is
the only one that continues indefinitely, whereas curve (5) continues beyond the boundary of this figure, but
eventually stops.

Several particular cases of entry conditions where simulated, but the results will be
presented only for the simplest one,

u0 = 2, w0 = ω0r, (4.25a,b)

where the value of u0 was chosen to satisfy constraint (4.11). If there were no gravity,
conditions (4.25a,b) would describe a non-sheared solid-body-rotating flow (as seen later,
this is convenient when comparing inviscid and viscous jets). According to condition
(4.14), upward-bending jets exist if and only if

ω0 > 4. (4.26)

Figure 2 shows the trajectories of four jets with the same ejection angle, but different ω0.
The following features can be observed.

(i) As expected, the two jets satisfying condition (4.26) bend upwards.
(ii) Out of the four jets depicted, three are terminated by SPs

(a) In the downward-bending jet with ω0 = 3 and upward-bending jet with ω0 = 7,
the SPs emerge on the jet’s axis (see figures 3b and 4b).

(b) In the upward-bending jet with ω0 = 5, the SP emerges somewhere between
the axis and free surface (unfortunately, we have been unable to finish this
computation due to numerical instability, so figure 3(a) shows only the tendency
of developing an SP).

(iii) Not all downward-bending jets develop SPs, as illustrated in figure 4(a) for the jet
with ω0 = 1. The fluid particles in this case do accelerate on the way down.

Figure 5 illustrates how the behaviour of jets depends on the ejection angle – with the
conclusion that α0 affects the trajectory only near the orifice, but the rest of the behaviour
is determined by ω0. However, there is a counter-intuitive feature in this case too, as
illustrated in figure 6. The jet depicted in this figure is one of those that should bend
downwards and develop an SP – but the ejection angle is positive – so, initially, the
jet is rising. Given this, its streamwise velocity should be decreasing everywhere in the
jet’s cross-section, but figure 6 shows that the velocity on the jet’s axis initially grows
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Figure 3. The cross-sectional profiles of the streamwise velocity u and swirl velocity w for the
(upward-bending) jets with (a,b) ω0 = 5 and (c,d) ω0 = 7. The positions of the cross-sections are marked
on the jets’ trajectories in figure 2 by circles with the corresponding values of ω0.
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Figure 4. The cross-sectional profiles of the streamwise velocity u and swirl velocity w for the
(downward-bending) jets with (a,b) ω0 = 1 and (c,d) ω0 = 3. The positions of the cross-sections are marked
on the jets’ trajectories in figure 2 by circles with the corresponding values of ω0.
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Figure 5. The trajectories of jets with ω0 = 3.5 and various α0. The curves are marked by the corresponding
values of α0 (in degrees).

0.2

0.4

0.6

0.8

r

Top of the trajectory

0.5 1.0 1.5 2.0 2.5
u

0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1.0

r

Terminal point

1 2 3

0.5 1.0 1.5 2.0 2.50 0 1 2 3

w

(a) (b)

(c) (d )

Figure 6. The cross-sectional velocity profiles for the (downward-bending) jet with ω0 = 3.5 and α0 = 45◦.
One can see that fluid particles on the jet’s axis accelerate on the way up and decelerate on the way down.

and reaches its maximum at the top of the trajectory. After that, the jet switches to the
behaviour expected for this value of ω0 and maintains it until it is terminated by an SP.

We simulated numerous other entry conditions, and the following tendencies were
observed.

(i) If condition (4.14) holds at the orifice, it continues to hold for the rest of the
trajectory. Thus, if a jet bends upwards near the orifice, it bends upwards everywhere.

(ii) Upward-bending jets typically develop SPs (either on or off the axis). In some cases,
however, it is impossible to actually see the SP, as our numerical method becomes
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unstable due to the emergence of a region with highly sheared w. (Refining the mesh
did not help in this case, suggesting that the root cause of the instability is a physical
one, e.g. a tangential jump emerging in the cross-stream profile of w. Unfortunately,
we have been unable to verify this hypothesis beyond reasonable doubt, as this would
require a completely different numerical method: one suitable for weak solutions.
Furthermore, even if tangential jumps do occur in reality, they are closely followed
by emergence of an SP which breaks the jet up anyway.)

(iii) Downward-bending jets with α0 < 0 develop SPs only at r = 0, and only if

∂u
∂l

< 0 at l = 0, r = 0, (4.27)

i.e. at the centre of the orifice, particles decelerate in the streamwise direction.

Conclusion (iii) allows one to use boundary-value problem (4.20), (4.22)–(4.23) to
derive a sufficient criterion for detecting SPs in downward bending jets. For entry
conditions (4.25a,b) and α0 < 0, criterion (4.27) amounts to (see Appendix A.2)

4 J0 (ω0) + ω0J1 (ω0) < 0, (4.28)

where Jn(ω0) is the Bessel function of the first kind. Keeping in mind that jets with entry
conditions (4.25a,b) bend downwards only if ω0 < 4, one can show that (4.28) yields

2.9892 � ω0 < 4. (4.29)

This condition agrees with our numerical results very well; and not only for negative α0,
but also for most positive ones (in which case criterion (4.28) is formally inapplicable).
This is probably due to the fact that, for a downward-bending jet, an initially positive α

rapidly becomes negative, so that u and w remain close to their entry profiles.

4.3. Approximate results: near-critical jets
Our asymptotic model (4.2)–(4.13a,b) was derived under the sole assumption that the
Froude number is large, but the derived equations are not simple enough to be solved
analytically. Thus, it is worthwhile to try to find some extra assumptions allowing one
to further simplify (4.2)–(4.13a,b). To avoid confusion, the results of such analyses will
be called ‘approximate’, with the word ‘asymptotic’ reserved for boundary-value problem
(4.2)–(4.13a,b) itself.

Denote

δ =
∫ 1

0
r(w2

0 − 2u2
0)dr, (4.30)

and consider a near-critical regime, i.e. such that

|δ| � 1. (4.31)

Under this assumption, all parameters of the jet can be calculated approximately.
Admittedly, the extra assumption can make our asymptotic model inconsistent due to

the fact that some of the retained terms can now be smaller than the omitted ones. Since
the latter are O(ε), one can ensure consistency by requiring |δ| � ε. This constraint could
be replaced with a weaker one, |δ| � ε, if the near-critical regime were examined using the
exact Navier–Stokes equations (which is, however, beyond the scope of the present work).

Numerical experiments show that near-critical jets evolve in two stages. First, only α

varies with l, whereas u, w, p and R remain virtually unchanged – i.e. the jet’s trajectory is
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Figure 7. The trajectories of jets with α0 = 0 and (1) ω0 = 3.99, (2) ω0 = 3.9, (3) ω0 = 3. The solid curves
show the approximate (small-δ) solution, and the dotted curves, the numerical solution of boundary-value
problem (4.2)–(4.13a,b).

curved, but all other characteristics are close to their entry values. Second, α approaches
either π/2 or −π/2, after which the rest of the characteristics start to evolve.

The second stage is difficult to examine analytically, but the first stage, is easy (see
Appendix B). The approximate results have been compared with the numerical solution of
asymptotic problem (4.2)–(4.13a,b) for entry conditions (4.25a,b), see in figure 7. One can
see that the approximate solution predicts the shape of the trajectory well even if δ = 1.

Note that the approximate results assume that u is close to its entry value: hence, they
are not applicable near the SP. However, if δ is indeed small, the approximate solution does
predict the position of the stagnation (termination) point reasonably well (see figure 7).

5. Viscous capillary fluids

5.1. The asymptotic equations
It is well known that the behaviour and characteristics of an inviscid flow can be
qualitatively different from those of a viscous one. Thus, it is essential to verify whether
upward-bending jets and jets with SPs can be observed in the presence of viscosity.

Let the fluid’s kinematic viscosity and surface tension be ν and σ , respectively. Then, in
addition to the Froude number, two extra non-dimensional parameters arise: the so-called
‘reduced Reynolds number’ and the Weber number. We shall use their reciprocals, namely,

μ = νL

UR2
0
, γ = σ

ρR0U2 , (5.1a,b)

where L is defined by (2.3). Omitting the details (which are similar to those of the inviscid
non-capillary case (see Dubovskaya 2020)), we only formulate the resulting asymptotic
equations.

To incorporate viscosity and surface tension in set (4.2)–(4.13a,b), one needs to replace
(4.2)–(4.3), (4.5) and boundary condition (4.7) with

u
∂u
∂l

+ ∂p
∂l

+ sin α = 1
r

∂u
∂r

∫ r

0
r′ ∂u(l, r′)

∂l
dr′ + μ

r
∂

∂r

(
r
∂u
∂r

)
, (5.2)
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u
∂w
∂l

= 1
r

(
∂w
∂r

+ w
r

)∫ r

0
r′ ∂u(l, r′)

∂l
dr′ + μ

∂

∂r

[
1
r

∂ (rw)

∂r

]
, (5.3)

dα

dl

⎡
⎣ R∫

0

r
(

w2 − 2u2
)

dr + γ R

⎤
⎦ = R2 cos α, (5.4)

∂u
∂r

= 0,
∂

∂r

(w
r

)
= 0, p = γ

R
if r = R, (5.5a–c)

respectively.
Accordingly, the condition of existence of upward-bending jets becomes

1
R

∫ R

0
r(w2 − 2u2) dr + γ > 0. (5.6)

This condition does not involve the viscosity coefficient μ, whereas an increase in the
capillary coefficient γ makes it easier to hold.

However, jets with γ = O(1) break up near the orifice due to the Plateau–Rayleigh
instability. Thus, in what follows, we let γ = 0, i.e. assume that surface tension is
negligible.

To illustrate this assumption, consider water at 20 ◦C, in which case

ρ = 998.2 kg m−3, ν = 1.002 × 10−6 m2 s−1, σ = 72.8 mN m−1. (5.7a–c)

Let the jet parameters correspond to those of a garden hose, say,

R0 = 0.5 cm, U = 1 m s−1, (5.8a,b)

in which case

μ ≈ 4.1 × 10−3, γ ≈ 1.5 × 10−2. (5.9a,b)

Since μ and γ are small, viscosity and surface tension can be both neglected (i.e. these
effects influence the jet at a much larger distance from the orifice than gravity).

If, however, water is replaced with glycerol, then

ρ = 1260.8 kg m−3, ν = 1.1214 × 10−3 m2 s−1, σ = 63.4 mN m−1, (5.10a,b)

and we obtain (for the same jet parameters)

μ ≈ 4.6, γ ≈ 1.0 × 10−2. (5.11a,b)

In this case, viscosity has to be accounted for, whereas surface tension can still be
neglected.

Generally, for different liquids and jets, μ and γ vary in a wide range and, thus, should
be estimated on a case-to-case basis.
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5.2. Viscosity-dominated jets
We shall examine viscous jets under an extra assumption,

μ � 1. (5.12)

Observe that the leading-order approximation of boundary-value problem comprising
(4.4), (4.6), (4.8a,b) and (5.2)–(5.5a–c) is consistent with the following ansatz:

u = u(l) + O(μ−1), w = rω(l) + O(μ−1), (5.13a,b)

R =
[

2
u(l)

]1/2

+ O(μ−1), p = ω2(l)
r2 − R2

2
+ O(μ−1), (5.14a,b)

which describes an almost shearless/solid-body-rotating flow, with the streamwise
velocity u(l) and angular velocity ω(l) varying along the jet. Ansatz (5.13a,b)–(5.14a,b)
automatically eliminates SPs, but allows u to vanish in a certain cross-section of a jet, with
R simultaneously tending to infinity (the slender-jet approximation fails some distance
before that, of course).

In order to derive asymptotic equations for u(l) and ω(l), one should generally examine
higher orders of the perturbation theory. In the present case, however, there is a simpler
option: the governing equations can be rearranged in such a way that the leading-order
terms are eliminated. Then, substitution of leading-order solution (5.13a,b)–(5.14a,b) into
the rearranged equations will immediately yield the desired equations for u(l) and ω(l).

Following this plan, consider∫ R

0
r × (5.2) dr,

∫ R

0
r2 × (5.3) dr. (5.15a,b)

Integrating by parts, taking into account boundary conditions (5.5a–c) and setting γ = 0,
we observe that the O(μ) terms disappear, and we obtain∫ R

0
r
(

u
∂u
∂l

+ ∂p
∂l

)
dr + R2

2
sin α =

∫ R

0

∂u
∂r

∫ r

0
r′ ∂u(l, r′)

∂l
dr′ dr,

∫ R

0

(
∂w
∂r

+ w
r

)
r
∫ r

0
r′ ∂u(l, r′)

∂l
dr′ dr =

∫ R

0
r2u

∂w
∂l

dr.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.16)

Substituting into these equations ansatz (5.13a,b)–(5.14a,b) and keeping the leading-order
terms only, we obtain, after straightforward algebra,

u
du
dl

− ω
dω

dl
1
u

− ω2

2
d
dl

(
2
u

)
+ sin α = 0, (5.17)

ω
du
dl

= u
dω

dl
. (5.18)

Assume that entry conditions comply with the leading order of ansatz (5.13a,b) and
constraint (4.11). For the streamwise velocity u(l), this amounts to

u = 2 if l = 0. (5.19)

Using this condition together with

ω = ω0 if l = 0, (5.20)
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Paradoxical predictions of swirling jets

we reduce (5.18) and (5.17) to

ω = ω0

2
u, (5.21)

du
dl

= −sin α

u
, (5.22)

respectively. Finally, substituting ansatz (5.13a,b)–(5.14a,b) into (5.4), recalling (5.21) and
setting γ = 0, we obtain, to leading order,

dα

dl
= cos α(

1
8
ω2

0 − u
)

u
. (5.23)

Equations (5.22)–(5.23) and entry conditions (4.10) and (5.19) fully determine u(l) and
α(l).

It can be readily verified that set (5.22)–(5.23) have a first integral,(
1
8ω2

0 − u
)

cos α =
(

1
8ω2

0 − 2
)

cos α0. (5.24)

This equality guarantees that, if
ω0 > 4, (5.25)

the right-hand side of (5.23) remains positive: so the jet bends upwards until u vanishes.
Dividing (4.12a,b) by (5.19), one obtains

dz
du

= −u, (5.26)

which allows one to deduce that all viscosity-dominated upward-bending jets reach the
same maximum (non-dimensional) height, zmax = 2.

Equations (5.22)–(5.23) can be readily integrated numerically, and examples of
solutions are presented in figure 8 together with the corresponding solutions of the
inviscid boundary-value problem (4.2)–(4.13a,b). Interestingly, viscosity-dominated jets
may propagate farther and reach higher than their inviscid counterparts: simply because
the latter are terminated by SP, whereas the former, cannot.

Note also that the leading-order ansatz (5.13a,b)–(5.14a,b) satisfies the energy
conservation law (4.18): hence, energy dissipation due to viscosity is a higher-order
effect.

6. Concluding remarks: jets versus liquid curtains

The main question associated with our results is whether or not upward-bending jets can be
observed in an experiment. Since a similar issue has been debated in the context of liquid
curtains it is worthwhile to briefly review this work and see if the conclusions drawn for
capillary curtains apply to swirling jets.

Liquid curtains are flows originating from a long slot (outlet), the same way jets
originate from a circular orifice. Solutions describing upward-bending curtains (which
exist when the Weber number We is less than unity) were originally found by Keller &
Weitz (1957), and then rediscovered in a more general formulation by Benilov (2019).
The latter work, however, was criticised by Weinstein et al. (2019), who pointed out that
the hyperbolic equations used by Benilov are such that, for upward-bending curtains, one
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Figure 8. Comparison of viscosity-dominated (solid line) and inviscid (dotted line) jets with α0 = 0. The
curves are marked with the corresponding values of ω0. For ω0 = 1, the solid and dotted curves are
indistinguishable.

of the characteristics corresponds to (capillary) waves propagating upstream. As a result,
one of the boundary conditions set at the outlet effectively constrains events occurring in
the past and, thus, contradicts the causality principle.

This issue was re-examined by Benilov (2021) for the simplest setting comprising
an ideal fluid and almost shearless curtains. It was further assumed that We ≈ 1,
in which case the phase velocity of the upstream-propagating waves is small, so
that their dispersion becomes important. It was claimed that, since the velocity of
dispersive waves is not bounded above, events occurring anywhere in the curtain
are immediately sensed near the outlet, thus resolving the conflict with the causality
principle.

Mathematically, the asymptotic equation derived by Benilov (2021) for curtains with
We ≈ 1 is not hyperbolic: as a result, the concept of characteristics becomes irrelevant.
Overall, it was argued that upward-bending curtains with We ≈ 1 could be observed
experimentally, but curtains with We differing from unity by O(1) are likely to be
unstable.

It turns out that none of the results obtained by Benilov (2021) can be immediately
extended to swirling jets. To do so, we need an evolutionary model for jets, not just the
one describing steady states. If the former were available, we would be able to see if it is
hyperbolic in the (t, l, r) space and, if it is, where its characteristics ‘go’. We would also be
able to examine the parameter region where the phase velocity of waves vanishes (which
would be similar to the region We ≈ 1 for curtains).

Unfortunately, there is no simple way to derive an evolutionary model for a swirling
jet. The problem is that, unlike curtains, a jet cannot move just in the vertical (x, z) plane:
as soon as it starts doing so, the gyroscopic force pushes it laterally. To account for the
lateral motion, the curvilinear coordinates (2.4a–c) have to be modified by introducing the
displacement ȳ(l, t) – which, however, makes the modified coordinates non-orthogonal
(Entov & Yarin 1984; Shikhmurzaev & Sisoev 2017). As a result, one has to either cope
with the extremely cumbersome algebra due to the use of non-orthogonal coordinates
or try to extend the two-dimensional approach of Benilov (2019) to three dimensions.
(Benilov (2019) treated the Cartesian coordinates as extra unknowns (depending on the
curvilinear coordinates and time), and the orthogonality conditions, as extra governing
equations.) The latter appears to be simpler.
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Paradoxical predictions of swirling jets

Once the technical framework for evolving swirling jets is in place, one can use it to
study their stability (so far, this issue has been examined only for straight jets with strong
surface tension (e.g. Ponstein 1959; Kubitschek & Weidman 2007; Eggers & Villermaux
2008), which are irrelevant to the problem at hand).

Another potentially important modification of the present setting consists in taking into
account of the drag force created by the surrounding air. Its density and viscosity are small,
but the stress it generates can be important, especially, for the swirl component of the flow
(which is highly sheared).
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Appendix A. Stagnation points and singularities

A.1. The flow near as SP
Two kinds of SPs can be distinguished: those located on the jet’s axis and those located
elsewhere. (In three dimensions, the latter are actually rings, but we will call them points
anyway, as that is what they are on the (l, r) plane.) The latter will be examined first.

(i) Let an SP be located at (lsp, rsp), where rsp /= 0. Then, letting l = lsp, one can expand

u = u2
(
r − rsp

)2 + O[
(
r − rsp

) 3]
w = w0 + w1

(
r − rsp

)+ O[
(
r − rsp

) 2]

}
as r → rsp, (A1)

where u2, w0 and w1 are constant coefficients. Substituting these expansions into
(4.20), one can readily find the asymptotics of the general solution for v,

v ∼ C1
(
r − rsp

)
cos

√
A

r − rsp
+ C2

(
r − rsp

)
sin

√
A

r − rsp
as r → rsp, (A2)

where C1,2 are constants of integration and

A = 2w0

rspu2
2

(
w1 + w0

rsp

)
(A3)

is, for simplicity, assumed positive (which it indeed was in all our simulations).
Recalling (4.24), one can deduce that

∂u
∂l

∼
√

A1

rsp
(
r − rsp

)
(

C sin

√
A

r − rsp
− C2 cos

√
A

r − rsp

)
as r → rsp, (A4)

which shows that the streamwise derivative of the streamwise velocity is indeed
singular.
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(ii) Let an SP be located at (lsp, 0). This time, we need the behaviour of the solution near
the SP, not just at it; hence, we let

u = u0 + u2r2 + O(r4), w = w1r + O(r3) as r → 0, (A5a,b)

where
u0 = u′

0
(
l − lsp

)+ O[
(
l − lsp

) 2] as l → 0. (A6)

This asymptotic and the conservation law (4.19) imply that

w1 = w′
1
(
l − lsp

)+ O[
(
l − lsp

) 2] as l → 0. (A7)

Substitution of asymptotics (A5)–(A7) into (4.20) yields

∂

∂r

(
1
r

∂v

∂r

)
+
[

4w′2
1

ru′2
0

− O(1)

]
v = 0. (A8)

Expanding the solution of this equation in r and recalling boundary condition (4.22),
we obtain

v ∼ Cr2 + O(r4) as l → lsp, r → 0, (A9)

where C is a constant of integration (note that C /= 0, otherwise v would be zero
for all r and, thus, would not be able to satisfy the boundary condition (4.23) unless
α = 0), then (4.24) yields

∂u
∂l

∼ 2C + O(r2) as l → lsp, r → 0. (A10)

Thus, the asymptotics of ∂u/∂l at the SP is finite (unlike that in the case rsp /= 0
examined previously). This does not mean, however, that it remains finite after the
SP, which can be proved by contradiction.

Assume that ∂u/∂l remains finite in a certain neighbourhood of r = 0, for a
certain interval after l = lsp. Since ∂u/∂l was negative before the SP, it will remain
negative after it – which means that, for l > lsp, the SP moves away from the axis –
say, to r = rsp. This situation, however, is different from case (i) , because now the
asymptotics of u and w are

u = u1
(
r − rsp

)+ O[
(
r − rsp

) 2]
w = w0 + w1

(
r − rsp

)+ O[
(
r − rsp

) 2]

}
as r → rsp (A11)

(compare these equalities with (A1)).
Substituting (A11) into (4.20), one can readily find the asymptotics of the general

solution for v,

v ∼ C1
(
r − rsp

)1/2+1/2
√

1−4A + C2
(
r − rsp

)1/2−1/2
√

1−4A as r → rsp, (A12)

where

A = 2w0

rspu2
1

(
w1 + w0

rsp

)
. (A13)

Finally, it follows from (4.24) that, regardless of the value and sign of A, ∂u/∂l is
singular as r → rsp – which is what we set out to prove.
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A.2. Criterion (4.28)
When applied to entry conditions (4.25a,b), (4.20) and boundary conditions (4.22)–(4.23)
become

∂

∂r

(
1
r

∂v

∂r

)
+ ω2

0
r

v = 0,

∂

∂r

(
1
r

∂v

∂r

)
→ 0 as r → 0,

2
∂v

∂r
+ ω2

0
2

v + sin α0 = 0 if r = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A14)

The solution of this boundary-value problem can be expressed in terms of the Bessel
function of the first kind,

v = C1r J1 (ω0r) , (A15)

where

C1 = − 2 sin α0

ω0 [4 J0 (ω0) + ω0J1 (ω0)]
. (A16)

To find (∂u/∂l)l=0, recall (4.24) and use the standard identity for the derivative of J1 to
obtain (

∂u
∂l

)
l=0

= 2 (− sin α0)

[4 J0 (ω0) + ω0J1 (ω0)] r

[
J0 (ω0r) − 1

ω0r
J1 (ω0r)

]
. (A17)

It can be verified that, for a jet ejected downwards (α0 < 0), the condition(
∂u
∂l

)
l=0,r=0

< 0 (A18)

coincides with criterion (4.28).

Appendix B. Near-critical jets

To examine near-critical jets, boundary-value problem (4.2)–(4.13a,b) needs to be rescaled.
Given that R ∼ 1, (4.5) remains consistent in the limit δ → 0 only if the jet’s streamwise

scale is O(δ). This argument and the fact that r varies from 0 to R suggest the following
rescaling of the spatial variables:

l = δl̃, r = r̃. (B1a,b)

Next, (4.12a,b) remain consistent only if we set

x = δx̃, z = δz̃. (B2a,b)

It turns out that a consistent asymptotic theory can be obtained only if we assume that u,
w, p and R remain close to their initial (near-orifice) values, i.e.

u = u0(r) + δũ(l̃, r̃), w = w0(r) + δw(l̃, r̃), p = p0(r) + δp̃(l̃, r̃), (B3a–c)

R = 1 + δR̃(l̃), (B4)

where

p0(r) = −
∫ 1

r

w2
0(r

′)
r

dr′. (B5)
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The change of α(l), however, has to remain to be order one,

α = α̃. (B6)

In terms of the rescaled variables, (4.2)–(4.4) and entry conditions (4.9a–c)–(4.10) become
(small terms and tildes omitted)

−2w0w
r

+ ∂p
∂r

= 0, (B7)

u0
∂w
∂l

= 1
r

(
dw0

dr
+ w0

r

)∫ r

0
r′ ∂u(l, r′)

∂l
dr′, (B8)

u0
∂u
∂l

+ ∂p
∂l

+ sin α = 1
r

du0

dr

∫ r

0
r′ ∂u(l, r′)

∂l
dr′, (B9)

p + w2
0

r
R = 0 if r = 1, (B10)

(ru0)r=1 R +
∫ 1

0
ru dr = 0, (B11)

dα

dl

[
1 + (w2

0 − 2u2
0)r=1R + 2

∫ 1

0
r (w0w − 2u0u) dr

]
= cos α, (B12)

u = 0, w = 0, R = 0 if l = 0, (B13a–c)

α = α0 if l = 0. (B14)

We restrict ourselves to the simplest particular case of entry conditions, (4.25a,b).
Substituting them into (4.30), one obtains

ω0 = 4
√

1 + 1
4δ. (B15)

Thus, recalling that δ is small, one can, to leading order, let

u0 = 2, w0 = 4r, (B16a,b)

so that (B7)–(B12) become

−8w + ∂p
∂r

= 0, (B17)

∂w
∂l

= 4
r

∫ r

0
r′ ∂u(l, r′)

∂l
dr′, (B18)

2
∂u
∂l

+ ∂p
∂l

+ sin α = 0, (B19)

(p)r=1 + 16R = 0, (B20)

2R +
∫ 1

0
ru dr = 0, (B21)

dα

dl

[
1 + 8R + 8

∫ 1

0
r (rw − u) dr

]
= cos α. (B22)
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Paradoxical predictions of swirling jets

To solve these equations, differentiate (B21) with respect to l and use (B19) to eliminate
∂u/∂l, which yields

4
dR
dl

−
∫ 1

0
r
∂p
∂l

dr − 1
2

sin α = 0. (B23)

Next, divide (B22) by dα/dl and differentiate the results with respect to l, then use (B17),
(B19) and (B23) to obtain a closed-form equation for α,

sin α = d
dl

⎛
⎜⎝cos α

dα

dl

⎞
⎟⎠ . (B24)

In addition to entry condition (B14), this equation requires condition for dα/dl, which can
be obtained by substituting (B13)–(B14) into (B22),

dα

dl
= cos α0 if l = 0. (B25)

Boundary-value problem (B24)–(B25), (B14) can be readily solved,

α = arctan
l + sin α0

cos α0
. (B26)

Substituting this expression into (4.12a,b)–(4.13a,b), one can calculate the jet trajectory,

x = cos α0 ln
l + sin α0 +

√
cos2 α0 + (l + sin α0)

2

1 + sin α0
,

z =
√

cos2 α0 + (l + sin α0)
2 − 1.

⎫⎪⎪⎬
⎪⎪⎭ (B27)

To calculate the pressure, one should use (B17) and (B19) to rearrange (B14) in the form

∂

∂r

(
r

16
∂2p
∂l ∂r

)
= −r

(
∂p
∂l

+ sin α

)
. (B28)

This is an ordinary differential equation for ∂p/∂l, and its solution can be expressed
through the Bessel function of the first kind. Recalling boundary condition (B20) and
requiring a regular behaviour as r → 0, we obtain

∂p
∂l

= − sin α + 1
J0 (4)

(
sin α − 16

dR
dl

)
J0 (4r) . (B29)

Substituting this expression into (B23) and solving it with entry condition (B13), we obtain

R = C
4 (1 + 4C) cos2 α0

[√
cos α2

0 + (l + sin α0)
2 − 1

]
, (B30)

where

C =
∫ 1

0
r

J0 (4r)
J0 (4)

dr. (B31)

Finally, (B30), (B29), (B17) and (B19) yield

w = 1
8 J0 (4) (1 + 4C)

[√
cos2 α0 + (l + sin α0)

2 − 1
]

d J0 (4r)
dr

,

u = − 1
2 J0 (4) (1 + 4C)

[√
cos2 α0 + (l + sin α0)

2 − 1
]

J0 (4r) .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B32)
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