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FUNCTORS ON FINITE VECTOR SPACES AND UNITS 
IN ABELIAN GROUP RINGS 

BY 

KLAUS HOECHSMANN 

ABSTRACT. If A is an elementary abelian group, let U(A) denote the 
group of units, modulo torsion, of the group ring Z[A]. We study U(A) by 
means of the composite 

YlÙ(C)-»Ù(A)-+nÙ{B), 
C B 

where C and B run over all cyclic subgroups and factor-groups, respec
tively. This map, 7, is known to be injective; its index, too, is known. In 
this paper, we determine the rank of 7 tensored (over Z);with various fields. 
Our main result depends only on the functoriality of U. 

1. Introduction. Let F be a field of q = ps elements and AT be a field whose 
characteristic does not divide q — 1. Letting T denote the category of finite dimensional 
vector spaces, consider an arbitrary functor E : Y(F) —» Y(K) such that E(0) = 0. We 
shall be interested in the rank of a certain T(A^)-morphism 7 obtained, via E, as 
follows. 

Let V be an (n + l)-dimensional F-space, at:F —> V and bh : V -* F be families of 
rank one maps such that the images of the a{ and the kernels of the bh are precisely all 
subspaces of dimension one and codimension one, respectively, each occurring exactly 
once. Then 7 is the composition 

EI E(F)^E(V)-^UE(F), 
1 h 

where a = H[E(ai) and (3 = UhE(bh). 
It turns out that, for char(K) =£ p, 7 is an isomorphism. In the more interesting case, 

char(K) = p, the rank of 7 can be computed by the formula given in the theorem of 
Part 3 below. 

In Part 4 we apply this result to the context which had originally motivated the study 
of 7: F is the prime field and E(V) comes from the non-torsion units of the integral 
group ring belonging to the additive group V+. 

2. Preliminaries. We need to recall a couple of elementary facts about polynomials. 
For later reference they will be presented in the form of two lemmas. 
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LEMMA 1. Letf(Xl,.. . , X„) be a polynomial of degree d over K. IfK has more than 
d elements, there exist cu . . . ,cn E K such that f(cu . . . , cn) =£ 0. 

PROOF. Induction on n, the case n = 1 being obvious. Writing f(Xu . . . ,Xn) = 
Hgk(X2,. . . ,Xn)X\, we first find c2,. . . ,cn such that gm(c2,. . . ,cn) =£ 0 for the 
highest occurring power X7 and then apply the case n = 1. 

The next lemma is about homogeneous polynomials of degree d7 also called d — 
forms, in n + 1 indeterminates over K. The set H(n,d,K) of these is a vector space 
spanned by the monomials X1 = XQ • • • X1'^ where i runs over all (n + l)-tuples of 
non-negative integers such that /0 + ' ' ' + h = d. 

An important subspace H' (n,d,K) consists of those d-forms which involve only the 
monomials Xj such that 

(d) = dl 

is non-zero. Note that all dth powers of 1-forms are automatically in H'(n, d,K). It is 
easy to see that the dimension h(n,d) of H(nyd,K) satisfies h(n,d) = h(n — \,d) + 
h(n,d — 1), whence by induction one has the well-known formula 

(n + d\ 
h(n,d) = ( d J . 

The dimension hK{n,d) of Hf(n,d,K) can be smaller; however, this happens only if 
0 < char(K) < d. 

LEMMA 2. IfK has more than d elements, H' (n, dy K) is spanned by the dth powers 
of I-forms. 

PROOF. With every c = (cu . . . , c„) E Kn we associate the linear form 

gc(X) =X0 + c,X, + ••• + cnXn. 

With every multi-index j such that (j ) =£ 0 we associate the monomial 

x^ = (.)xJs---xt 

These monomials form a basis of H' (n, d, K). We shall prove that this space is spanned 
by the d-forms 

gc(xy = lcJ;-< c J ^ . 
j 

By Lemma 1, it is impossible to find a non-trivial set of coefficients ^ E K such that 

S asc
Jl • • • c3: = 0 

j 

for all c E Kn. This means that the matrix c\l • • • cj1, whose hK{n,d) columns are 
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labelled by j and whose (perhaps infinitely many) rows are labelled by c, has rank 
hK(n,d). Hence there are that many linearly independent forms gc(X)d. 

DEFINITION. A subset of non-trivial elements of a vector space V will be called 
projective if it contains exactly one element of every 1-dimensional subspace ofV. 

PROPOSITION 1. Let F be afield of q elements, ()> a non-degenerate bilinear form on 
F"+1, and P C Fn + 1 a projective subset. For 0 < d < q, consider the matrix 

M(x,y) = <b(x,y)d 

defined on P x P. Then M has rank hF(n,d). 

PROOF. If we replace an element x E P by a non-tri vial multiple ex, the cor
responding row of M is multiplied by cd. If we replace (j) by i|/ where I|/(JC, y) = $(Tx, y) 
for some invertible linear T, the rows are permuted and modified as above. Neither of 
these operations affects the rank. Without loss of generality, we may therefore take 

n 

$(x,y) = 2 xkyk. 
k = 0 

If we enlarge the matrix by allowing x to run over all of Fn+\ we are only adjoining 
multiples of rows that are already there. Ditto for columns. We may therefore work 
with the larger matrix M° defined on the index set Fn+] x Fn+l by 

M°(x,y) = (lxkyk) . 

Each row of this matrix consists of all possible evaluations of the d-form 

I 2J XkXk ] • 

As x runs over Fn+l, there are exactly hK(n,d) linearly independent such forms, by 
Lemma 2. The qn+ '-tuples of their evaluations remain independent by Lemma 1. 

3. The result. Returning now to the context of the introduction, note that every 
object V of T(F) is automatically a G-module, where G = Aut(F + ) = F x , and so is 
its image E(V). Since the order of G is prime to char(K), the G-modules E(F), E(V), 
etc. are semi-simple. 

As the rank of y is not affected by extension of K, we may take K to be algebraically 
closed. Then E(F) is a direct sum, over some index set/, of 1-dimensional G-modules 
Wi9 (/ E / ) , on each of which G acts via a character jx, : G -^ Kx. In case char(K) = 
p, F can be identified with a subfield of K, and these characters are simply the dth 

powers of the inclusion, with d = 1, ...,<? - 1. We let md denote the multiplicity of 
the J^-power character in the G-module E(F). 

THEOREM. Let V, E, 7 be as in the introduction. 
(a) If char (K) ± p, 7 is an isomorphism. 
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(b) If char(K) — p, the rank of ^ is 
q-\ 

2 mdhK(n,d). 

PROOF. It is convenient to use some non-degenerate bilinear form <\> on V in order to 
identify hyperplanes with lines and to parametrize the latter by some projective subset 
F C V. 7 thus appears as an endomorphism of the A -̂space 

L = EI E(F) 
xEP 

given by the F x F-matrix pv° ax, with a, :E(F) -> F( V), P, : E(V) -> E(F) being 
the functorial images of ax\F —> V, by : V—» F, respectively. Since by°ax = $(x,y) 
is either trivial or in G the same goes for P_v

0<Xr-
Now, G acts diagonally on the product L, and 7 is a G-morphism. Therefore 7 is a 

direct sum of endomorphisms 7, : L( —» L,, where L, = IIï6/>W, is made up of |P| copies 
of the 1-dimensional AT-space Ĥ ,-, on which G acts via |JL, , as described at the beginning 
of this paragraph. 7, is given by the P X F-matrix 

with entries in K. 
It remains to be shown that, for any multiplicative character \x on F, the F x 

F-matrix M(x,y) — fi((j)(*,)?)) is non-singular, in case (a), and has rank hK(n,d), in 
case (b). The latter being immediate from Proposition 1, we are reduced to case (a). 

LetM*(x,)0 = |JL_1 (4>(x,3;)) and consider the product S = MM*. It is shown in [2] 
that S(x, x) = qn and that, for x i= y, 

(q- \)S(x,y) = < T ' 2 Ma) 2 \x~\b) 
a b 

with a,b E F. If fx ¥= 1, the latter yields 0. For (x = 1, we get S(x,y) = 
q"~l(q — 1). Since q 41 0 in K, we can say that q~n+iS has q on, and q — 1 off, the 
diagonal. Adding all rows into the first one, we obtain there q\P\ — \P\ + 1 = qn+\ 
in each column. Hence q~n^]S has determinant qni \ 

4. An application. We shall apply the theorem to study the group of units modulo 
torsion, Ù( V+), of the group ring Z[ V+], taking F to be the prime field. When we need 
to consider the group of units, again modulo torsion, of an algebraic number field Q(0), 
we shall use the abbreviation £/(9). 

Let ebea/? f / ! root of unity. The Wedderburn isomorphism Q[F + ] - * Q © Q[e] 
yields an injection Z [ F + ] - * Z © Z [ e ] , whence an injection U(F + ) —» U(e) of finite 
index (cf. [3], II.2.9, p. 49). By Dirichlet's Unit Theorem, Ù(e) and Ù(e + e"1) have 
the same rank (p — 3)/2, and hence we have an isomorphism 

£>(F + ) 0 Q - > £ / ( € + € - ! ) ® Q 

with the unit group in additive notation and (x) meaning tensor over Z. Now 
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Minkowski's Unit Theorem (cf. [1], Anhang, p. 271) implies that the latter is 
Go-isomorphic to Q[G0] modulo ''traces", where G0 = G/{± 1} is the Galois group of 
Q[e + e - 1 ] . The upshot of all this is that the G-module Ù(F+) involves only the 
non-trivial even characters of G, each of them with multiplicity 1. 

Again working with duality and a projective subset P C V, we obtain an endo-
morphism y of the lattice A = HxEPU(F + ) as a composition 

A - ^ Û(V+)Q A, 

exactly as before, except for the minor fact that here we are dealing with Z-modules 
instead of vector spaces. We are ultimately interested in the module Ù(V+)/à(A), 
which measures the extent to which the units of Z[V+] do not come from cyclic 
subgroups. Now, p induces an injection of this module into the cokernal T = A/7(A) 
of 7, and we are led to study T as a first approximation of our goal. 

In [2] the order of T was shown to bepin/2)R, where R = ((p - 3)/2)\P\ is the rank 
of A. Our present purpose is to determine the p-rank of T, i.e. the number of its cyclic 
summands or, equivalently, the dimension of the F-space T (x) F = Y/pY. Tensoring 
the exact sequence 

AX A->T-^O 

with F, we see that dimY/pY equals the corank of 7 = 7 0 F, which can be read off 
from the theorem by taking for E the functor Ù(-) ® F. We obtain 

PROPOSITION 2. dimY/pY = R — ^dh(n,d), where d runs over all even numbers 
between 1 and p — 2. 

COROLLARY. Y is elementary abelian if and only if n < 1. 

PROOF. Y is elementary abelian if and only if (n/2)R = R - ^dh(n,d) or 
(1 — (n/2))R — ^dh(n,d). Since the right hand side of the latter expressions is 
positive, the cases n > 2 are ruled out. For n = 1, we have to verify that (1/2)7? = 
2dA(l,d). Now, h(\,d) = d + 1, and the right side is ((/? - 3)/4) (p + 1), which 
is exactly (1/2)/?. For n — 0, Y is, of course, trivial. 
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