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Abstract

The minimal faithful permutation degree µ(G) of a finite group G is the least non-negative integer n such
that G embeds in the symmetric group Sym(n). Work of Johnson and Wright in the 1970s established
conditions for when µ(H × K )= µ(H)+ µ(K ), for finite groups H and K . Wright asked whether this
is true for all finite groups. A counter-example of degree 15 was provided by the referee and was added as
an addendum in Wright’s paper. Here we provide two counter-examples; one of degree 12 and the other
of degree 10.
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1. Introduction

The minimal faithful permutation degree µ(G) of a finite group G is the least
nonnegative integer n such that G embeds in the symmetric group Sym(n). It is well
known that µ(G) is the smallest value of

∑n
i=1 |G : Gi | for a collection of subgroups

{G1, . . . , Gn} satisfying
⋂n

i=1 core(Gi )= {1}, where core(Gi )=
⋂

g∈G Gg
i .

We first give a theorem due to Karpilovsky [3] which will be needed later. Its proof
can be found in [2] or [7].

THEOREM 1.1. Let A be a nontrivial finite abelian group and let A ∼= A1 × · · · × An
be its direct product decomposition into nontrivial cyclic groups of prime power order.
Then

µ(A)= a1 + · · · + an,

where |Ai | = ai for each i .

One of the themes of Johnson and Wright’s work was to establish conditions for
when

µ(H × K )= µ(H)+ µ(K ) (1.1)

for finite groups H and K . The next result is due to Wright [9].
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THEOREM 1.2. Let G and H be nontrivial nilpotent groups. Then µ(G × H)
= µ(G)+ µ(H).

Wright [9] constructed a class of groups C with the property that for all G ∈ C ,
there exists a nilpotent subgroup G1 of G such thatµ(G1)= µ(G). It is a consequence
of Theorem 1.2 that C is closed under direct products and so (1.1) holds for any two
groups H, K ∈ C . Wright proved that C contains all nilpotent, symmetric, alternating
and dihedral groups; however, the extent of it is still an open problem. In [1], Easdown
and Praeger showed that (1.1) holds for all finite simple groups.

The counter-example to (1.1) was provided by the referee in Wright’s paper [9] and
involved subgroups of the standard wreath product C5 o Sym(3), specifically the group
G(5, 5, 3) which is a member of a class of unitary reflection groups. We now give a
brief exposition on these groups.

Let m and n be positive integers, let Cm be the cyclic group of order m and
B = Cm × · · · × Cm be the product of n copies of Cm . For each divisor p of m,
define the group A(m, p, n) by

A(m, p, n)= {(θ1, θ2, . . . , θn) ∈ B | (θ1θ2 . . . θn)
m/p
= 1}.

It follows that A(m, p, n) is a subgroup of index p in B and the symmetric group
Sym(n) acts naturally on A(m, p, n) by permuting the coordinates.

The group G(m, p, n) is defined to be the semidirect product of A(m, p, n) by
Sym(n). It follows that G(m, p, n) is a normal subgroup of index p in Cm o Sym(n)
and thus has order mnn!/p.

It is well known that these groups can be realized as finite subgroups of GLn(C),
specifically as n × n matrices with exactly one non-zero entry, which is a complex
mth root of unity, in each row and column such that the product of the entries is a
complex (m/p)th root of unity. Thus the groups G(m, p, n) are sometimes referred
to as monomial reflection groups. For more details on the groups G(m, p, n), see [5].

1.1. A note on cyclotomic polynomials The following definition and result is taken
from [4].

DEFINITION 1.3. For r a prime number, the polynomial

Qr (x)= 1+ x + x2
+ · · · + xr−1

is called the r th cyclotomic polynomial. The roots of this polynomial are nontrivial r th
roots of unity.

THEOREM 1.4. Let Fq be a finite field of q elements and let n be a positive integer
coprime to q. Then the polynomial Qn(x) factors into (φ(n))/d distinct monic
irreducible polynomials in Fq [x] of the same degree d, where d is the least positive
integer such that qd

≡ 1 mod n and φ is the Euler’s phi function.

Thus for r a prime, Qr (x) splits into (r − 1)/d monic irreducible factors, where d
is the multiplicative order of r in the group of units (Z/nZ)∗.
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We shall use this result in the next section when we calculate the minimal degree of
G(2, 2, 5).

2. Calculation of minimal degrees

2.1. Calculation of µ(G(4, 4, 3)) Recall that G(4, 4, 3)= A(4, 4, 3)o Sym(3),
where

A(4, 4, 3)= {(θ1, θ2, θ3) ∈ C4 × C4 × C4 | θ1θ2θ3 = 1}

which is isomorphic to a product of two copies of the cyclic group of order 4. Hence

G(4, 4, 3)∼= (C4 × C4)o Sym(3).

From now on, we shall let G denote G(4, 4, 3). A presentation for this group can be
given thus:

G = 〈x, y, a, b|x4
= y4

= b3
= a2
= 1, xy = yx, xa

= y, xb
= y,

yb
= x−1 y−1, ba

= b−1
〉.

Since 〈x, y〉 ∼= C4 × C4 is a proper subgroup of G, then, by Theorem 1.1,
8= µ(〈x, y〉)≤ µ(G). Moreover, since G is a proper subgroup of the wreath product
W := C4 o Sym(3), for which µ(W )= 12, then we have the inequalities

8≤ µ(G)≤ 12.

We shall prove that in fact µ(G)= 12 by a sequence of lemmas.

LEMMA 2.1. 〈x2, y2
〉 is the unique minimal normal subgroup of G.

PROOF. Observe by the conjugation action of a and b on x2 and y2 that M := 〈x2, y2
〉

is indeed normal in G. Let N be a nontrivial normal subgroup of G so there exists an

α = x i y j bkal

in N where i, j ∈ {0, 1, 2, 3}, k ∈ {0, 1, 2}, l ∈ {0, 1} are not all zero. It remains to
show that M is contained in N .

CASE (a): k = l = 0.
Subcase (i): i = j so α = x i yi . Then ααb

= x i yi yi x−i y−i
= yi
∈ N , so y−iα = x i

∈ N . But i 6= 0, so M ⊆ 〈x i , yi
〉. Hence M ⊆ N , as required.

Subcase (ii): i + j 6≡ 0 mod 4. Then ααa
= x i+ j yi+ j and we are back in subcase (i).

Subcase (iii): i + j ≡ 0 mod 4. Then ααb
= x i− j yi . If 2i − j 6≡ 0 mod 4, then we

are back in subcase (ii), so suppose that 2i ≡ j mod 4. Then, together with i + j ≡
0 mod 4, it follows that i = 0. Therefore j is zero and α is trivial, a contradiction. This
completes case (a).
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CASE (b): k 6= 0 or l 6= 0.
Subcase (i): l = 0 so k 6= 0. Then αα−b

= x i y j bk(x− j yi− j bk)−1
= x i+ j y2 j−i . If

i + j 6≡ 0 or 2 j − i 6≡ 0 mod 4, then we are back in case (a) so suppose that i + j ≡
2 j − i ≡ 0 mod 4. Solving gives i = j = 0 and so α = bk , whence 〈b〉 ∈ N . Hence

b−1bx
= b−1x−1bx = y−1x ∈ N

and we are back in case (a).
Subcase (ii): l 6= 0 and k 6= 0. Then

αα−a
= x i y j bkal(x j yi b−kal)−1

= x i y j bkala−lbk x− j y−i
= x p yqb2k

where p, q ∈ {0, 1, 2, 3} and we are back in subcase (i), replacing k by 2k.
Subcase (iii): k = 0 so l = 1. Then

αα−b
= x i y j a(x i y j a)−b

= x p yqb2

for some p, q ∈ {0, 1, 2, 3} and again we are back in subcase (i).

This completes the proof. 2

It is worth observing at this point that Lemma 2.1 tells us that any minimal
faithful representation of G is necessarily transitive. That is, any minimal faithful
representation is given by just a single core-free subgroup.

LEMMA 2.2. Elements of 〈x, y〉b and 〈x, y〉b2 have order 3. All other elements of G
have order dividing 8.

PROOF. It is a routine calculation to show that any element of the form α = x i y j bk

for k nonzero has order 3. Now suppose that α = x i y j bkal , where l is nonzero. Then
l = 1 and

α2
= x p yq(bka)2 = x p yq ,

for some p, q, which has order dividing 4. Therefore α has order dividing 8. 2

It is an immediate consequence that G does not contain any element of order 6.

LEMMA 2.3. If L is a core-free subgroup of G then |G : L| ≥ 12.

PROOF. Suppose for a contradiction that core(L)= {1} and |G : L|< 12. Since
|G| = 96, |L|> 8. However, if |L|> 12 then |G : L|< 8 and so µ(G) < 8,
contradicting the fact that µ(G)≥ 8. Therefore |L| = 12 and so, by the classification
of groups of order 12 (see [6]), L is isomorphic to one of the following groups:

L ∼=



C12,

C6 × C2,

A4,

D6,

T = 〈s, t | s6
= 1, s3

= t2, sts = s〉.
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Notice that the groups C12, C6 × C2, D6 and T each contain an element of order 6
and so cannot be isomorphic to L by Lemma 2.2.

Hence L is isomorphic to A4 and so we can find two noncommuting elements
α = x i y j bk and β = x s yt br of order 3 that generate it such that αβ has order 2. Now

αβ = x p yqbk+r

for some p, q ∈ {0, 1, 2, 3} and so k + r ≡ 0 mod 3 by Lemma 2.2. Without loss of
generality, let k = 1. Now, we get three possibilities:

αβ =


x2,

y2,

x2 y2

and upon conjugation by α = x i y j b, we get respectively

(αβ)α =


y2,

x2 y2,

x2.

So in each case we get 〈x2, y2
〉 ⊆ L , contradicting that L is core-free. 2

Combining the above lemmas, we find that any minimal faithful representation of
G is necessarily transitive and that any faithful transitive representation has degree at
least 12. Therefore, 12≤ µ(G). But µ(G)≤ 12, so we have proved the following.

THEOREM 2.4. The minimal faithful permutation degree of G(4, 4, 3) is 12.

2.2. Calculation of µ(G(2, 2, 5)) In this section, let G and A denote the groups
G(2, 2, 5) and A(2, 2, 5) respectively. Let c1, c2, c3, c4 be the generators of the base
group A and let b = (1 2 3 4 5) be the 5-cycle in Sym(5). Define a subgroup H of G
by

H := 〈c1, c2, c3, c4, b〉 = A o 〈b〉.

Then it can easily be proved that H is isomorphic to

(C2 × C2 × C2 × C2)o C5

and, furthermore, we may treat A as a four-dimensional 〈b〉-module over the finite
field F2. The element b acts on the generators of the base group thus:

cb
1 = c2, cb

2 = c3, cb
3 = c4, cb

4 = c1c2c3c4.
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The matrix of this action with respect to this basis is the companion matrix
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 1 1


and so the minimal polynomial for this action is the cyclotomic polynomial Q5(λ)=

1+ λ+ λ2
+ λ3

+ λ4. By Theorem 1.4, Q5(λ) splits into (φ(5))/d monic irreducible
polynomials of degree d , where d is the multiplicative order of 2 mod 5. So in this
particular case, since φ(5)= d = 4, Q5(λ) is irreducible over F2. This shows that A
is a minimal normal subgroup of H , and we prove below that it is the unique minimal
normal subgroup of H .

PROPOSITION 2.5. A is the unique minimal normal subgroup of H.

PROOF. It suffices to show that A is contained in every nontrivial normal subgroup of
H . Let N be a nontrivial normal subgroup of H and suppose that N does not contain A.
Then, by normality, the group AN is the internal direct product of A with N . Since A
is maximal in H , we must have that AN = H and so every nontrivial element not
contained in A centralizes A. But b is not contained in A and we have c1b = c2b, a
contradiction. 2

It is immediate from this proposition that every minimal faithful representation of
H is transitive and thus given by a single core-free subgroup.

PROPOSITION 2.6. If L is a nontrivial core-free subgroup of H, then |H : L| ≥ 10.

PROOF. Suppose that L is a core-free subgroup of H whose index is strictly less
than 10. Since 8≤ µ(H)≤ 10,

8≤ |H : L|< 10.

Moreover, since |H | = 24.5, we can deduce that |L| = 10 and this forces L to be either
the cyclic group or the dihedral group of order 10.

If L is the dihedral group, then there is an element of order 2 which normalizes and
hence inverts the element of order 5. Observe that any element of order 5 has the form
ab j , where a ∈ A and 1≤ j ≤ 4. Since H is the semidirect product of A with 〈b〉, all
elements of order 2 are contained in A, of which none can invert b.

Suppose now that L is the cyclic group of order 10. Then there is an element of
order 5 commuting with an element of order 2. We may treat this element of order
2 as a 1-eigenvector for the element b. However, this contradicts that fact that 1 is
not a solution to Q5(λ) in F2. Therefore no such L can exist and we have proved the
proposition. 2

The above results immediately prove the following.

THEOREM 2.7. The minimal faithful permutation degree of G(2, 2, 5) is 10.
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3. G(4,4,3) forms a counter-example of degree 12

As above, let W = C4 o Sym(3) be the wreath product. Observe at this point
that since the base group of W is C4 × C4 × C4, and µ(C4 × C4 × C4)= 12 by
Theorem 1.1, µ(W )= 12. Let γ1, γ2, γ3 be generators for the base group of W and
let a = (2 3), b = (1 2 3) be generators for Sym(3) acting coordinatewise on the base
group. It follows that γ := γ1γ2γ3 commutes with a and b and thus lies in the centre
of W . Let H = 〈γ 〉, so µ(H)= 4.

Set x = γ−1
1 γ 2

2 γ
−1
3 and y = γ−1

1 γ−1
2 γ 2

3 . Then it readily follows that

xa
= xb

= y, ya
= x, yb

= x−1 y−1,

so that G = 〈x, y, a, b〉 is isomorphic to G(4, 4, 3). Moreover, with a little calculation
it can be shown that G ∩ H = {1}.

It now follows that W is an internal direct product of G and H . Therefore by
Theorem 2.4,

12= µ(G × H) < µ(G)+ µ(H)= 16

and so G and H form a counter-example to (1.1) of degree 12.

4. G(2,2,5) forms a counter-example of degree 10

In this section, we let U be the wreath product C2 o Sym(5). Let θ1, θ2, θ3, θ4, θ5
generate the base group of U and let a = (1 2) and b = (1 2 3 4 5) be generators for
Sym(5) action coordinatewise on the base group. Let

c1 = θ1θ2, c2 = θ2θ3, c3 = θ3θ4, c4 = θ4θ5.

Then it can be easily proved that G := 〈c1, c2, c3, c4, b, a〉 is isomorphic to the group
G(2, 2, 5). Let θ = θ1θ2θ3θ4θ5 and set K := 〈θ〉. Then with a little calculation it can
be shown that G ∩ K = {1} and that G and K centralize each other in U . So U is the
internal direct product of G with K and so by Theorem 2.7,

10= µ(G × K ) < µ(G)+ µ(K )= 10+ 2= 12

and we get a counter-example of degree 10.
Finally, we remark that using the result from [8] that µ(G(p, p, p))= p2 for p a

prime, it follows that µ(G(3, 3, 3))= 9. However, the centralizer CSym(9)(G(3, 3, 3))
in Sym(9) is a proper subgroup of G(3, 3, 3). So it is not possible to get a counter-
example to (1.1) of degree 9 in this case, by this method.

Similarly, by realizing G(2, 2, 3) as Sym(4), it is immediate that µ(G(2, 2, 3))= 4
and again a counter-example to (1.1) of degree 4 is impossible by this method.

The author does not know whether 10 is the minimal degree of any counter-
example. Furthermore, the author is not aware of any examples where, for two groups
G and H ,

min{µ(G), µ(H)}< µ(G × H) < µ(G)+ µ(H).
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