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Abstract
In this paper, we consider a general single population model with delay and patch structure, which could model
the population loss during the dispersal. It is shown that the model admits a unique positive equilibrium when
the dispersal rate is smaller than a critical value. The stability of the positive equilibrium and associated Hopf
bifurcation are investigated when the dispersal rate is small or near the critical value. Moreover, we show the effect
of network topology on Hopf bifurcation values for a delayed logistic population model.

1. Introduction

The population dynamics can be investigated via reaction–diffusion systems or discrete patch models
[1, 3]. For some biological species, time delays such as the maturation time and hunting time may
have important effect on the population dynamics, and it should be included in the modelling pro-
cess. Therefore, various reaction–diffusion models with time delay and delayed patch models have been
proposed to understand the interaction between biological species [30, 40].

For reaction–diffusion models with time delay, time delay-induced Hopf bifurcations and double
Hopf bifurcations were studied extensively. For example, one can refer to [16, 18, 20, 31, 33, 43] and
references therein for results on Hopf bifurcations of reaction–diffusion models with time delay under the
homogeneous Neumann boundary conditions, and see [13, 14] for results on double Hopf bifurcations.
For the case of the homogeneous Dirichlet boundary conditions, delay-induced Hopf bifurcations were
studied in [2, 10–12, 19, 21, 37, 38, 42] and references therein, and the bifurcating stable periodic
solutions through Hopf bifurcation are usually spatially heterogeneous. Moreover, spatial heterogeneity
was recently taken into consideration for reaction–diffusion models with time delay, and the associated
Hopf bifurcations were investigated in [6, 9, 22, 24, 26, 34].

There are also extensive results on bifurcations for delayed patch models. For the spatially homoge-
neous environments, one can refer to [4, 15, 17] and references therein for dispersal-induced Turing
bifurcations, and delay-induced Hopf bifurcations were also studied extensively, see, for example,
[5, 29, 32, 36, 39]. Considering the spatial heterogeneity, Liao and Lou [27] investigated the following
two-patch model, which models the growth of a single species:

⎧⎪⎪⎨⎪⎪⎩
du1

dt
= d (α11u1 + α12u2)+μu1 [m1 − u1(t − r)] , t> 0,

du2

dt
= d (α21u1 + α22u2)+μu2 [m2 − u2(t − r)] , t> 0,

(1.1)
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Figure 1. The connection between two patches. (Left) Dispersion matrix (a); (right) dispersion
matrix (b).

where uj denotes the population density in patch j and time t, d is the dispersal rate, μ is a scalar factor,
r represents the maturation time and mj is the intrinsic growth rate in patch j, which depends on patch j
and represents the spatial heterogeneity. Dispersion matrix A := (αjk)2×2 in [27] is chosen to be

(a) α11 = α22 = −1, α12 = α21 = 1, or (b) α11 = α22 = −2, α12 = α21 = 1,

where αjk(j �= k) ≥ 0 denotes the rate of population movement from patch k to patch j, and αjj < 0 denotes
the rate of population leaving patch j. Model (1.1) with dispersion matrix (a) (respectively, (b)) can be
regarded as a discrete form of Hutchinson’s model under the homogeneous Neumann (respectively,
Dirichlet) boundary condition. For case (a), the dispersion matrix satisfies −αjj =∑

k �=j αkj for j = 1, 2,
which implies that the two-patch habitat is closed, and there is no population loss during the dispersal.
For case (b), the dispersion matrix satisfies −αjj >

∑
k �=j αkj, and the species has population loss at the

boundary, see Figure 1.
A natural question is whether Hopf bifurcations can occur for model (1.1) when the number of patches

is finite but arbitrary, and in such a case, the connection among patches may also be complex. One can
also refer to [41, 45] for detailed discussions on complex connection among patches. In this paper, we
aim to answer this question and consider the following patch model:⎧⎪⎨⎪⎩

duj

dt
= d

n∑
k=1

αjkuk + ujfj

(
uj, uj(t − τ )

)
, t> 0, j = 1, · · · , n,

u(t) =ψ(t) ≥ 0, t ∈ [−τ , 0].

(1.2)

Here u = (u1, · · · , un)T , where uj stands for the number of individuals in patch j, n ≥ 2 is the number
of patches, fj(·, ·) is the growth rate per capita, d> 0 is the dispersal rate of the population and time
delay τ ≥ 0 represents the maturation time of the population. Moreover, A := (αjk)n×n is the dispersion
matrix, where αjk(j �= k) ≥ 0 denotes the rate of population movement from patch k to patch j, and αjj ≤ 0
denotes the rate of population leaving patch j.

We remark that if there is no population loss during the dispersal (−αjj =∑
k �=j αkj for j = 1, . . . , n),

Hopf bifurcation can occur when the dispersal rate is small, large or near some critical value, see
[7, 23]. Therefore, in this paper, we consider model (1.2) when the species has population loss during
the dispersal. That is, the following assumption holds:

(H0) A := (αjk)n×n is irreducible and essentially nonnegative; and −αjj ≥∑
k �=j αkj for all j = 1, · · · , n,

and −αjj >
∑

k �=j αkj for some j.

Here, we remark that real matrices with nonnegative off-diagonal elements are referred as essentially
nonnegative matrices. Throughout the paper, we also impose the following assumption:

(H1) For j = 1, 2, · · · , n, fj(x, y) ∈ C4(R×R, R), fj(0, 0) = mj > 0 and g′
j(x)< 0 for x> 0 with gj(x) =

fj(x, x).

Here, mj represents the intrinsic growth rate in patch j. The smooth condition that fj(x, y) ∈ C4(R×R, R)
is used to determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic
solutions, and we do not include this part in the paper for simplicity. We remark that for the case of
population loss, we need to modify the arguments in [7, 23] to derive a priori estimates for eigenvalue
problem. Moreover, we show the effect of dispersal rate d and network topology on the Hopf bifurcation
values for the logistic population model.
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For simplicity, we give some notations here. For a matrix D, we denote the spectral bound of D by

s(D) := max{Reμ :μ is an eigenvalue of D}.
For μ ∈C, we denote the real and imaginary parts by Reμ and Imμ, respectively. For a space Z, we
denote complexification of Z to be ZC := Z ⊕ iZ = {x1 + ix2|x1, x2 ∈ Z}. For a linear operator T , we
define the domain and the kernel of T by D(T) and N(T), respectively. For Cn, we choose the inner
product 〈u, v〉 =∑n

j=1 ujvj for u, v ∈C
n and define the norm

‖u‖2 =
(

n∑
j=1

∣∣uj

∣∣2

)1/2

.

For u = (u1, · · · , un)T ∈R
n, we write u  0 if uj > 0 for all j = 1, · · · , n.

The rest of the paper is organised as follows. In Section 2, we give some preliminaries and show that
model (1.2) admits a unique positive equilibrium ud for d ∈ (0, d∗). In Section 3, we show the existence
of the Hopf bifurcation when 0< d � 1 and 0< d∗ − d � 1, respectively. In Section 4, we apply the
obtained theoretical results to a logistic population model, discuss the effect of network topology on
Hopf bifurcation values and give some numerical simulations.

2. Some preliminaries

In this section, we cite some results on the properties of the spectrum bound s(dA + diag(mj)) and the
global dynamics of model (1.2) for τ = 0. The first one is from [8].

Lemma 2.1. Assume that (H0) holds, and denote s(d) := s(dA + diag(mj)). Then s(d) is strictly decreas-
ing in d ∈ (0, ∞), limd→0 s(d) = max1≤j≤n{mj}, and limd→∞ s(d) = −∞. Moreover, there exists d∗ > 0
such that s(d∗) = 0, s(d)> 0 for d ∈ (0, d∗) and s(d)< 0 for d> d∗.

This, combined with [8, 25, 28, 44], implies that:

Lemma 2.2. Assume that (H0)-(H1) hold, and τ = 0. Then the trivial equilibrium 0 = (0, · · · , 0)T of
(1.2) is globally asymptotically stable for d ≥ d∗, and for d< d∗, system (1.2) admits a unique positive
equilibrium ud = (

ud
1, · · · , ud

n

)T  0, which is globally asymptotically stable.

It follows directly from the Perron–Frobenius theorem that s(d∗A + diag(mj))(=0) is a simple eigen-
value of d∗A + diag(mj) with corresponding eigenvector η 0 (or respectively, a simple eigenvalue of
d∗AT + diag(mj) with corresponding eigenvector ς  0), where

η= (η1, · · · , ηn)
T where ηj > 0 for all j = 1, 2, · · · , n, and

n∑
j=1

ηj = 1,

ς = (ς1, · · · , ςn)T , where ςj > 0 for all j = 1, 2, · · · , n, and
n∑

j=1

ςj = 1. (2.1)

Then, we have the following decomposition:

R
n = span{η} ⊕ X1 = span{ς} ⊕ X̃1, (2.2)

where

X1 := {x ∈R
n : 〈ς , x〉 = 0} = {[

d∗A + diag(mj)
]

y : y ∈R
n
}

,

X̃1 := {x ∈R
n : 〈η, x〉 = 0} = {[

d∗AT + diag(mj)
]

y : y ∈R
n
}

. (2.3)
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To show the existence of Hopf bifurcation, we describe the profile of the unique positive equilibrium ud

as d → 0 or d → d∗. Clearly, ud = (ud
1, · · · , ud

n)T satisfies

d
n∑

k=1

αjkuk + ujfj

(
uj, uj

)= 0, j = 1, · · · , n. (2.4)

Lemma 2.3. Assume that (H0)-(H1) hold. Let ud be the unique positive equilibrium of (1.2) obtained
in Lemma 2.2 for d ∈ (0, d∗), and denote

ã :=
n∑

j=1

ajη
2
j ςj, b̃ :=

n∑
j=1

bjη
2
j ςj, (2.5)

where η= (η1, · · · , ηn)T and ς = (ς1, · · · , ςn)T are defined in (2.1), and

aj := ∂fj(0, 0)

∂x
, bj := ∂fj(0, 0)

∂y
for j = 1, 2, · · · , n. (2.6)

Then the following statements hold.

(i) Let ud = (
u0

1, · · · , u0
n

)T for d = 0, where u0
j is the unique positive solution of fj(x, x) = 0 for j =

1, · · · , n. Then ud is continuously differentiable for d ∈ [0, d∗).
(ii) There exists a continuously differentiable mapping d �→ (

βd, ξ d) from (0, d∗] to R
+ × X1 such that,

for any d ∈ (0, d∗), the unique positive equilibrium of (1.2) can be represented as the following form:

ud = βd(d∗ − d)
[
η+ (d∗ − d) ξ d] . (2.7)

Moreover,

βd∗ =
∑n

j=1 mjηjςj

−d∗
(

ã + b̃
) > 0, (2.8)

and ξ d∗ = (
ξ

d∗
1 , · · · , ξ d∗

n

)T ∈ X1 is the unique solution of the following equation:

d∗

(
d∗

n∑
k=1

αjkξk + mjξj

)
+ ηj

[
mj + d∗β

d∗
(
aj + bj

)
ηj

]= 0, j = 1, · · · , n. (2.9)

Proof. We first prove (i). It follows from assumption (H1) that fj(x, x) = 0 admits a unique positive
solution, denoted by u0

j . Define

G(d, u) =

⎛⎜⎜⎜⎜⎜⎝
d
∑n

k=1 α1kuk + u1f1(u1, u1)

d
∑n

k=1 α2kuk + u2f2(u2, u2)

...

d
∑n

k=1 αnkuk + unfn(un, un)

⎞⎟⎟⎟⎟⎟⎠ .

Clearly, G
(
0, u0

)= 0 and DuG
(
0, u0

)= diag
(
u0

j

(
a0

j + b0
j

))
, where DuG

(
0, u0

)
is the Fréchet derivative

of G(d, u) with respect to u at
(
0, u0

)
, and

a0
j = ∂fj

∂x

∣∣∣∣
(u0

j ,u0
j )

, b0
j = ∂fj

∂y

∣∣∣∣
(u0

j ,u0
j )

, j = 1, · · · , n. (2.10)

By assumption (H1), we see that

a0
j + b0

j < 0 for all j = 1, · · · , n, (2.11)
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which implies that DuG
(
0, u0

)
is invertible. It follows from the implicit function theorem that there exist

d1 > 0 and a continuously differentiable mapping

d ∈ [0, d1] �→ u(d) = (u1(d), · · · , un(d))T  0

such that G(d, u(d)) = 0 and u(0) = u0. Therefore, ud = u(d), and ud is continuously differentiable for
d ∈ [0, d1]. Note that G(d, ud) = 0 for d ∈ (0, d∗), and ud is stable. Then, by the implicit function theorem,
we obtain that ud is continuously differentiable for d ∈ (0, d∗). Here, we omit the proof for simplicity.

Now, we prove (ii). It follows from (2.2) that ud can be represented as (2.7). Since ud is continuously
differentiable for d ∈ (0, d∗), we see that βd and ξ d are also continuously differentiable for d ∈ (0, d∗).
Then, we will show that βd and ξ d are continuously differentiable for d = d∗.

It follows from (2.11) that

ã + b̃< 0, (2.12)

which implies that βd∗ is positive. Since
n∑

j=1

mjηjςj + d∗β
d∗
(

ã + b̃
)

= 0,

we see that (
η1

[
m1 + d∗β

d∗ (a1 + b1)η1

]
, · · · , ηn

[
mn + d∗β

d∗ (an + bn)ηn

])T ∈ X1,

and consequently ξ d∗ ∈ X1 is uniquely defined.
Multiplying (2.4) by d∗, we have

d

[
d∗

n∑
k=1

αjkuk + mjuj

]
+ (d∗ − d)ujmj + d∗uj

[
fj

(
uj, uj

)− mj

]= 0, j = 1, · · · , n. (2.13)

Substituting

u = β(d∗ − d)
[
η+ (d∗ − d)ξ

]
into (2.13), where η is defined in (2.1) and ξ = (ξ1, · · · , ξn)T ∈ X1, we see that (β, ξ ) satisfies, for all
j = 1, · · · , n,

pj(d, β, ξ ) := d

(
d∗

n∑
k=1

αjkξk + mjξj

)
+ [ηj + (d∗ − d)ξj]

(
mj + d∗qj(d, β, ξ )

)= 0,

where

qj(d, β, ξ ) =

⎧⎪⎨⎪⎩
fj

(
uj, uj

)− mj

d∗ − d
, d �= d∗

β
(
aj + bj

)
ηj, d = d∗

(2.14)

with uj = β(d∗ − d)[ηj + (d∗ − d)ξj]. Define p(d, β, ξ ) : R×R× X1 �→R
n by

p(d, β, ξ ) = (p1(d, β, ξ ), · · · , pn(d, β, ξ ))T .

Then (d, u) solves (2.4) if and only if p(d, β, ξ ) = 0 for (β, ξ ) ∈R× X1. Clearly, p
(
d∗, βd∗ , ξ d∗)= 0, and

the Fréchet derivative of p with respect to (β, ξ ) at
(
d∗, βd∗ , ξ d∗) is

D(β,ξ )p
(
d∗, βd∗ , ξ d∗) [ε, v] = d∗

⎛⎜⎜⎜⎜⎝
d∗

∑n
k=1 α1kvk + m1v1 + (a1 + b1)η2

1ε

d∗
∑n

k=1 α2kvk + m2v2 + (a2 + b2)η2
2ε

...
d∗

∑n
k=1 αnkvk + mnvn + (an + bn)η2

nε

⎞⎟⎟⎟⎟⎠ ,

where ε ∈R and v = (v1, · · · , vn)T ∈ X1. Since ã + b̃< 0 from (2.12), we see that D(β,ξ )p
(
d∗, βd∗ , ξ d∗) is

bijective from R× X1 to R
n. It follows from the implicit function theorem that there exist d1 < d∗ and a
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continuously differentiable mapping d ∈ [d1, d∗] �→
(
β̃d, ξ̃

d
)

∈R× X1 such that p
(

d, β̃d, ξ̃
d
)

= 0, and

β̃d = βd∗ and ξ̃
d = ξ

d∗ for d = d∗. The uniqueness of the positive equilibrium of (1.2) implies that βd = β̃d

and ξ d = ξ̃
d

for d ∈ [d1, d∗). Therefore, βd and ξ d are continuously differentiable for d ∈ (0, d∗].

3. Stability and Hopf bifurcation

In this section, we consider the stability of the unique positive equilibrium ud and show the exis-
tence/nonexistence of a Hopf bifurcation for model (1.2). Linearizing (1.2) at ud, we have

dv
dt

= dAv + diag
(
fj

(
ud

j , ud
j

))
v + diag

(
ud

j ad
j

)
v + diag

(
ud

j bd
j

)
v(t − τ ), (3.1)

where

ad
j = ∂fj

∂x

∣∣∣∣
(ud

j ,ud
j )

, bd
j = ∂fj

∂y

∣∣∣∣
(ud

j ,ud
j )

. (3.2)

It follows from [40] that the solution semigroup of (3.1) has the infinitesimal generator Aτ (d)
satisfying

Aτ (d)� = �̇,

and the domain of Aτ (d) is

D(Aτ (d)) = {
� ∈ CC ∩ C1

C
:�(0) ∈C

n, �̇(0) = dA�(0) + diag
(
fj(u

d
j , ud

j )
)
�(0)

+diag(ud
j ad

j )�(0) + diag(ud
j bd

j )�(−τ )
}

,

where CC = C([−τ , 0], Cn) and C1
C

= C1([−τ , 0], Cn). Then, we see thatμ ∈C is an eigenvalue of Aτ (d),
if and only if there exists ϕ = (ϕ1, · · · , ϕn)T( �=0) ∈C

n such that

�(d,μ, τ )ϕ := dAϕ + diag
(
fj

(
ud

j , ud
j

))
ϕ + diag

(
ud

j ad
j

)
ϕ

+ e−μτdiag
(
ud

j bd
j

)
ϕ −μϕ = 0. (3.3)

Here, the dispersion matrix A may be asymmetric, and the environment can also be spatially hetero-
geneous. Therefore, one cannot obtain the explicit expression of ud. By Lemma 2.3, we obtain the
asymptotic profile of ud as d → 0 or d → d∗. Then, the following discussion is divided into two cases:
(I) 0< d∗ − d � 1 and (II) 0< d � 1.

3.1. The case of 0< d∗ − d � 1

In this section, we will consider the existence of a Hopf bifurcation for (1.2) with 0< d∗ − d � 1. First,
we obtain a priori estimates for solutions of (3.3).

Lemma 3.1. Assume that (μd, τd,ψd) solves (3.3) for d ∈ (0, d∗), where Reμd, τd ≥ 0, and ψ d =
(ψd,1, · · · ,ψd,n)T( �=0) ∈C

n. Then there exists d1 ∈ (0, d∗) such that
∣∣∣∣ μd

d∗ − d

∣∣∣∣ is bounded for d ∈ [d1, d∗).

Moreover, ignoring a scalar factor, ψd can be represented as follows:⎧⎨⎩ψ d = rdη+ wd, wd ∈ (X1)C , rd ≥ 0,

‖ψ d‖2
2 = ‖η‖2

2,
(3.4)

where η is defined in (2.1), and rd, wd and ψd satisfy

lim
d→d∗

rd = 1, lim
d→d∗

wd = 0, lim
d→d∗

ψ d = η.
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Proof. We first show that |μd| is bounded for d ∈ (0, d∗). Substituting (μd, τd,ψ d) into (3.3), we have

d
n∑

k=1

αjkψd,k + fj

(
ud

j , ud
j

)
ψd,j + ud

j ad
jψd,j + ud

j bd
jψd,je

−μdτd −μdψd,j = 0, j = 1, · · · , n. (3.5)

Multiplying (3.5) by ψ d,j and summing the result over all j yield

d
n∑

j=1

n∑
k=1

αjkψ d,jψd,k +
n∑

j=1

fj(u
d
j , ud

j )|ψd,j|2 +
n∑

j=1

ud
j ad

j |ψd,j|2 + e−μdτd

n∑
j=1

ud
j bd

j |ψd,j|2 −μd

n∑
j=1

|ψd,j|2 = 0.

Since ‖ψ d‖2
2 = ‖η‖2

2, we see that, for d ∈ (0, d∗),

|μd| ≤ max
d∈[0,d∗],1≤j≤n

|fj

(
ud

j , ud
j

) | + max
d∈[0,d∗],1≤j≤n

|ud
j ad

j | + max
d∈[0,d∗],1≤j≤n

|ud
j bd

j | + nd∗ max
1≤j,k≤n

|αjk|,
which implies that |μd| is bounded for d ∈ (0, d∗).

Clearly, ignoring a scalar factor, ψd can be represented as (3.4). Note from (3.4) that ‖ψ d‖2
2 = ‖η‖2

2.
Then, up to a subsequence, we can assume that

lim
d→d∗

μd = γ , lim
d→d∗

ψ d = lim
d→d∗

(rdη+ wd)=ψ
∗ (3.6)

with Reγ ≥ 0 and ‖ψ∗‖2
2 = ‖η‖2

2. This, combined with (3.3), implies that

(d∗A + diag(mj))ψ
∗ − γψ

∗ = 0,

and consequently, γ is an eigenvalue of d∗A + diag(mj). Then, by [35, Corollary 4.3.2], we have γ =
s(d∗A + diag(mj)) = 0. This, combined with (3.4) and (3.6), implies that ψ∗ = η, and consequently,

lim
d→d∗

rd = 1, lim
d→d∗

wd = 0. (3.7)

Then multiplying (3.5) by d∗, we have

0 = d

[
d∗

n∑
k=1

αjkψd,k + mjψd,j

]
+ (d∗ − d)mjψd,j + d∗

[
fj

(
ud

j , ud
j

)− mj

]
ψd,j

+ d∗u
d
j ad

jψd,j + d∗ud
j bd

jψd,je
−μdτd − d∗μdψd,j, j = 1, · · · , n. (3.8)

Plugging (2.7) and (3.4) into (3.8), we have, for j = 1, · · · , n,

0 = d

(
d∗

n∑
k=1

αjkwd,k + mjwd,j

)
+ (d∗ − d)

[
mj + d∗qj

(
d, βd, ξ d)] (rdηj + wd,j

)
− d∗μd

(
rdηj + wd,j

)+ d∗(d∗ − d)βd
(
ad

j + bd
j e−μdτd

) [
ηj + (d∗ − d)ξ d

j

] (
rdηj + wd,j

)
, (3.9)

where qj(d, β, ξ ) is defined in (2.14). Note that ς is the eigenvector of d∗AT + diag(mj) with respect to
eigenvalue 0. This, combined with (2.3), implies that

n∑
j=1

(
d∗

n∑
k=1

αjkwd,k + mjwd,j

)
ςj = 0,

n∑
j=1

wd,jςj = 0.

Then multiplying (3.9) by ςj and summing the result over all j yield

μd

d∗ − d
= βd

∑n
j=1 ςj

(
ad

j + bd
j e−μdτd

) (
rdηj + wd,j

) [
ηj + (d∗ − d)ξ d

j

]
rd

∑n
j=1 ηjςj

+
∑n

j=1 ςj

[
mj + d∗qj

(
d, βd, ξ d)] (rdηj + wd,j

)
d∗rd

∑n
j=1 ηjςj

. (3.10)

This, combined with (3.7), implies that there exists d1 ∈ (0, d∗) such that
∣∣∣∣ μd

d∗ − d

∣∣∣∣ is bounded for d ∈
[d1, d∗).
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By Lemma 3.1, we have the following result.

Theorem 3.2. Assume that (H0)-(H1) hold, and ã − b̃< 0, where ã and b̃ are defined in (2.5). Then
there exists d2 ∈ [d1, d∗), such that

σ (Aτ (d))⊂ {x + iy : x, y ∈R, x< 0} for d ∈ [d2, d∗) and τ ≥ 0.

Proof. If the conclusion is not true, then there exists a positive sequence {dl}∞
l=1 such that liml→∞ dl = d∗,

and, for l ≥ 1,�(dl,μ, τ )ψ = 0 is solvable for some value of (μdl , τdl ,ψ dl
) with Reμdl , Imμdl ≥ 0, τdl ≥

0 and 0 �=ψdl
∈C

n. Note from the proof of Lemma 3.1 that
{∣∣∣ μdl

d∗−dl

∣∣∣}∞

l=1
and {|μdl |}∞

l=1 are bounded. Then,
we see that there exists a subsequence {dlk}∞

k=1 (we still use {dl}∞
l=1 for convenience) such that

lim
l→∞

μdl

d∗ − d
=μ∗, lim

l→∞

(
e−τdl (Reμdl ), e−iτdl(Imμdl)

)
= (
σ ∗, e−iθ∗)

, (3.11)

where

σ ∗ ∈ [0, 1], θ ∗ ∈ [0, 2π ), μ∗ ∈C (Reμ∗, Imμ∗ ≥ 0) .

It follows from Lemma 3.1 that liml→∞ rdl = 1, liml→∞ wdl = 0. By (2.7) and (3.2), we have ad
j = aj

and bd
j = bj for d = d∗, where aj and bj are defined in (2.6). Then, substituting d = dl, μd =μdl , rd = rdl

and wd = wdl into (3.10) and taking l → ∞, we see from (2.14) and (3.11) that

μ∗ =
∑n

j=1 ηjςj

{
[mj + d∗βd∗ηj

(
aj + bj

)
] + d∗βd∗ηj

(
aj + bjσ

∗e−iθ∗) }
d∗

∑n
j=1 ηjςj

. (3.12)

By (2.8), we have
n∑

j=1

ηjςj

{ [
mj + d∗β

d∗ηj

(
aj + bj

)]= 0.

This, combined with (2.5) and (3.12), yields⎧⎪⎨⎪⎩β
d∗
(

ã + σ ∗b̃ cos θ ∗
)

=Reμ∗
n∑

j=1

ηjςj ≥ 0,

Imμ∗ ∑n
j=1 ηjςj + βd∗σ ∗b̃ sin θ ∗ = 0.

(3.13)

It follows from (H1) (see also (2.12)) that ã + b̃< 0. Then if ã − b̃< 0, we have

ã<min
{

b̃, −b̃
}

≤ 0 and − 1<− b̃

ã
< 1.

This, combined with the first equation of (3.13), yields

− b̃

ã
σ ∗ cos θ ∗ ≥ 1,

which is a contradiction. This completes the proof.

From Theorem 3.2, we see that if ã − b̃< 0, then the positive equilibrium ud is locally asymptotically
stable for 0< d∗ − d � 1, and Hopf bifurcations cannot occur. Next, we show the existence of a Hopf
bifurcation for ã − b̃> 0. Clearly, Aτ (d) has a purely imaginary eigenvalueμ= iν(ν > 0) for some τ ≥ 0,
if and only if

H(d, ν, θ , ϕ) := dAϕ + diag
(
fj

(
ud

j , ud
j

))
ϕ + diag

(
ud

j ad
j

)
ϕ

+ e−iθdiag
(
ud

j bd
j

)
ϕ − iνϕ = 0 (3.14)
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is solvable for some value of ν > 0, θ ∈ [0, 2π ) and ϕ( �=0) ∈C
n. Ignoring a scalar factor, ψ( �=0) ∈C

n

in (3.14) can be represented as follows:

ψ = rη+ w, w ∈ (X1)C , r ≥ 0,

‖ψ‖2
2 = r2‖η‖2

2 + r
n∑

j=1

ηj

(
wj + wj

)+ ‖w‖2
2 = ‖η‖2

2. (3.15)

Then, we obtain an equivalent problem of (3.14) as follows.

Lemma 3.3. Assume that d ∈ (0, d∗). Then (ν, θ ,ψ) is a solution of (3.14), where ν = (d∗ − d)h> 0,
θ ∈ [0, 2π ) and ψ satisfies (3.15), if and only if (w, r, h, θ ) solves the following system:{

F(w, r, h, θ , d) = (F1,1, · · · , F1,n, F2, F3)T = 0,

w ∈ (X1)C, r ≥ 0, h> 0, θ ∈ [0, 2π ).
(3.16)

Here, F(w, r, h, θ , d) : (X1)C ×R
4 �→ (X1)C ×C×R is continuously differentiable, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1,j(w, r, h, θ , d) := d

(
d∗

n∑
k=1

αjkwk + mjwj

)
− (d∗ − d)F2(w, r, h, θ , d)

+ (d∗ − d)
[
mj + d∗qj

(
d, βd, ξ d)− id∗h

] (
rηj + wj

)
+ d∗(d∗ − d)βd

[
ηj + (d∗ − d)ξ d

j

] (
ad

j + bd
j e−iθ) (rηj + wj

)
,

F2(w, r, h, θ , d) :=
n∑

j=1

ςj

[
mj + d∗qj

(
d, βd, ξ d)− id∗h

] (
rηj + wj

)
+

n∑
j=1

ςjd∗β
d[ηj + (d∗ − d)ξ d

j ]
(
ad

j + bd
j e−iθ) (rηj + wj

)
,

F3(w, r, h, θ , d) := (r2 − 1)‖η‖2
2 + r

n∑
j=1

ηj

(
wj + wj

)+ ‖w‖2
2,

(3.17)

where qj(d, β, ξ ) and ad
j , bd

j are defined in (2.14) and (3.2), respectively.

Proof. Multiplying (3.14) by d∗, we have

0 = d

[
d∗

n∑
k=1

αjkϕk + mjϕj

]
+ (d∗ − d)mjϕj + d∗

[
fj

(
ud

j , ud
j

)− mj

]
ϕj

+ d∗ud
j ad

j ϕj + d∗u
d
j bd

j ϕje
−iθ − id∗νϕj, j = 1, · · · , n. (3.18)

Then plugging (2.7), the first equation of (3.15), and ν = (d∗ − d)h into (3.18), we have y =
(y1, · · · , yn)T = 0, where

yjs := d

(
d∗

n∑
k=1

αjkwk + mjwj

)
+ (d∗ − d)

[
mj + d∗qj

(
d, βd, ξ d)− id∗h

] (
rηj + wj

)
+ d∗(d∗ − d)βd

[
ηj + (d∗ − d)ξ d

j

] (
ad

j + bd
j e−iθ) (rηj + wj

)
. (3.19)

Since

C
n = span{ρ} ⊕ (X1)C with ρ = (1, · · · , 1)T ,

https://doi.org/10.1017/S0956792523000049 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000049


European Journal of Applied Mathematics 879

we see that

y = (d∗ − d)F2(w, r, h, θ , d)ρ + (
F1,1(w, r, h, θ , d), · · · , F1,n(w, r, h, θ , d)

)T
.

Therefore, y = 0 if and only if F2(w, r, h, θ , d) = 0 and F1,j(w, r, h, θ , d) = 0 for all j = 1, · · · , n. Clearly,
the second equation of (3.15) is equivalent to F3(w, r, h, θ , d) = 0. This completes the proof.

We first show that F(w, r, h, θ , d) = 0 has a unique solution for d = d∗.

Lemma 3.4. Assume that (H0)-(H1) hold, and ã − b̃> 0, where ã and b̃ are defined in (2.5). Then the
following equation: {

F(w, r, h, θ , d∗) = 0

w ∈ (X1)C, r ≥ 0, h ≥ 0, θ ∈ [0, 2π ]
(3.20)

has a unique solution (wd∗ , rd∗ , hd∗ , θd∗ ), where

wd∗ = 0, rd∗ = 1, hd∗ = βd∗
√

b̃2 − ã2∑n
j=1 ηjςj

, θd∗ = arccos
(
−ã/b̃

)
, (3.21)

and βd∗ is defined in (2.8).

Proof. Set F1 = (F1,1, · · · , F1,n)T , and F1(w, r, h, θ , d∗) = 0 if and only if w = wd∗ = 0. This, together
with F3(w, r, h, θ , d∗) = 0, implies r = rd∗ = 1. Note from (2.7) and (3.2) that ad

j = aj and bd
j = bj for d =

d∗, where aj and bj are defined in (2.6). Then, substituting w = wd∗ and r = rd∗ into F2(w, r, h, θ , d∗) = 0,
we see from (2.5) and (2.8) that

d∗β
d∗
(

ã + b̃e−iθ
)

− id∗h
n∑

j=1

ηjςj = 0, (3.22)

which implies that ⎧⎨⎩ã + b̃ cos θ = 0,

βd∗ b̃ sin θ + h
∑n

j=1 ηjςj = 0.
(3.23)

It follows from (H1) (see also (2.12)) that ã + b̃< 0. Then if ã − b̃> 0, we have

b̃<min {ã, −ã} ≤ 0 and − 1<−ã/b̃< 1. (3.24)

This, combined with (3.23), yields

θ = θd∗ = arccos
(
−ã/b̃

)
, h = hd∗ = βd∗

√
b̃2 − ã2∑n

j=1 ηjςj

.

This completes the proof.

Then we solve F(w, r, h, θ , d) = 0 for 0< d∗ − d � 1.

Theorem 3.5. Assume that (H0)-(H1) hold, and ã − b̃> 0, where ã and b̃ are defined in (2.5). Then
there exists d̃2 (0< d∗ − d̃2 � 1) and a continuously differentiable mapping d �→ (wd, rd, hd, θd) from[
d̃2, d∗

]
to (X1)C ×R

3 such that (wd, rd, hd, θd) is the unique solution of the following problem:⎧⎨⎩F(w, r, h, θ , d) = 0

w ∈ (X1)C, r ≥ 0, h> 0, θ ∈ [0, 2π )
(3.25)

for d ∈ [
d̃2, d∗

)
.
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Proof. Let T(χ , κ , ε, ϑ) = (T1,1, · · · , T1,n, T2, T3)T : (X1)C ×R
3 �→ (X1)C ×C×R be the Fréchet deriva-

tive of F(w, r, h, θ , d) with respect to (w, r, h, θ ) at (wd∗ , rd∗ , hd∗ , θd∗ , d∗). A direct computation yields

T1j(χ , κ , ε, ϑ) = d∗

(
d∗

n∑
k=1

αjkχk + mjχj

)
, j = 1, · · · , n,

T2(χ , κ , ε, ϑ) =
n∑

j=1

ςj(κηj + χj)
{
mj + d∗β

d∗
(
aj + bj

)
ηj + d∗β

d∗ (aj + bje
−iθd∗ )ηj − id∗hd∗

}
− iεd∗

n∑
j=1

ςjηj − iϑd∗β
d∗ b̃e−iθd∗ ,

T3(χ , κ , ε, ϑ) =
n∑

j=1

ηj

(
χj + χ j

)+ 2κ‖η‖2
2,

where we have used (2.5) and (2.14) to obtain T2.
Now, we show that T is a bijection and only need to show that T is an injective mapping. By (2.1)–

(2.3), we see that d∗A + diag(mj) is a bijection from (X1)C to (X1)C. Then if T1j(χ , κ , ε, ϑ) = 0 for all
j = 1, · · · , n, we have χ = 0. Substituting χ = 0 into T3(χ , κ , ε, ϑ) = 0, we have κ = 0. Then plugging
χ = 0 and κ = 0 into T2(χ , κ , ε, ϑ) = 0, we see from (3.21) that ε = ϑ = 0. Therefore, T is an injection. It
follows from the implicit function theorem that there exists d̃2 ∈ [d2, d∗) and a continuously differentiable
mapping d �→ (wd, rd, hd, θd) from [d̃2, d∗] to (X1)C ×R

3 such that (wd, rd, hd, θd) satisfies (3.25).
Then, we prove the uniqueness of the solution of (3.25). Actually, we only need to verify that

if
(
wd, rd, hd, θ d

)
satisfies (3.25), then

(
wd, rd, hd, θ d

)→ (
wd∗ , rd∗ , hd∗ , θd∗

)= (
0, 1, hd∗ , θd∗

)
as d → d∗.

It follows from Lemma 3.1 that hd is bounded for d ∈ [d̃2, d∗). Then, up to a subsequence, we can
assume that limd→d∗ θ

d = θ d∗ and limd→d∗ hd = hd∗ . It follows from Lemma 3.1 that limd→d∗ rd = rd∗ = 1,
limd→d∗ wd = wd∗ = 0. Taking the limits of F

(
wd, rd, hd, θ d, d

)= 0 as d → d∗, we have
F
(
wd∗ , rd∗ , hd∗ , θ d∗ , d∗

)= 0.

This, combined with Lemma 3.4, implies that θ d∗ = θd∗ and hd∗ = hd∗ , Therefore,
(
wd, rd, hd, θ d

)→(
wd∗ , rd∗ , hd∗ , θd∗

)
as d → d∗. This completes the proof.

By Theorem 3.5, we obtain the following result.

Theorem 3.6. Assume that (H0)-(H1) hold, and ã − b̃> 0, where ã and b̃ are defined in (2.5). Then for
each d ∈ [d̃2, d∗), where 0< d∗ − d̃2 � 1, the following equation:{

�(d, iν, τ )ψ = 0

ν > 0, τ ≥ 0, ψ( �= 0) ∈C
n

has a solution (ν, τ ,ψ), if and only if

ν = νd = (d∗ − d)hd, ψ = cψ d, τ = τd,l = θd + 2lπ

νd

, l = 0, 1, 2, · · · , (3.26)

where ψ d = rdη+ wd, c is a nonzero constant, and wd, rd, θd, hd are defined in Theorem 3.5.

For further application, we consider the adjoint eigenvalue problem of (3.3). Forψ , ψ̃ ∈C
n, we have〈

ψ̃ ,�(d, iνd, τd,l)ψ
〉= 〈

�̃(d, iνd, τd,l)ψ̃ ,ψ
〉
,

where
�̃(d, iνd, τd,l)ψ̃ =dATψ̃ + diag

(
fj

(
ud

j , ud
j

))
ψ̃ + diag

(
ud

j ad
j

)
ψ̃

+ diag
(
ud

j bd
j

)
ψ̃eiνdτd,l + iνdψ̃ . (3.27)

Here, �̃(d, iνd, τd,l) is the conjugate transpose matrix of �(d, iνd, τd,l). Clearly, 0 is also an eigenvalue
of �̃(d, iνd, τd,l).
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Proposition 3.7. Let ψ̃d be the corresponding eigenvector of �̃(d, iνd, τd,l) with respect to eigenvalue 0.
Then, ignoring a scalar factor, ψ̃ d can be represented as follows:⎧⎨⎩ψ̃ d = r̃dς + w̃d, w̃d ∈ (

X̃1

)
C

, r̃d ≥ 0,

‖ψ̃ d‖2
2 = ‖ς‖2

2,
(3.28)

and satisfies

lim
d→d∗

ψ̃d = ς , (3.29)

where ς is defined in (2.1).

Proof. It follows from (3.28) that ψ̃ d is bounded. Then, up to a subsequence, we can assume that
limd→d∗ ψ̃ d = ψ̃

∗. Substituting ψ̃ = ψ̃ d into (3.27), and taking d → d∗, we have(
d∗AT + diag(mj)

)
ψ̃

∗ = 0, (3.30)

Noticing that (d∗AT + diag(mj))ς = 0, we see from (3.28) and (3.30) that ψ̃∗ = ς . This completes the
proof.

For simplicity, we will always assume d ∈ [d̃2, d∗) in the following Theorems 3.8–3.10, where 0<
d∗ − d̃2 � 1. Actually, d̃2 may be chosen bigger than the one in Theorem 3.5 since further perturbation
arguments are used. Next, we show that iνd (obtained in Theorem 3.6) is simple, and the transversality
condition holds.

Theorem 3.8. Assume that (H0)-(H1) hold, ã − b̃> 0, and d ∈ [d̃2, d∗), where 0< d∗ − d̃2 � 1. Then
μ= iνd is a simple eigenvalue of Aτd,l (d) for l = 0, 1, 2, · · · .

Proof. It follows from Theorem 3.6 that N[Aτd,l (d) − iνd] = span[eiνdθψ d], where θ ∈ [−τd,l, 0] and ψd

is defined in Theorem 3.6. Then, we show that

N
[
Aτd,l (d) − iνd

]2 = N
[
Aτd,l (d) − iνd

]
.

If φ ∈ N[Aτd,l (d) − iνd]2, then[
Aτd,l (d) − iνd

]
φ ∈ N

[
Aτd,l (d) − iνd

]= span
[
eiνdθψ d

]
,

and consequently, there exists a constant γ such that[
Aτd,l (d) − iνd

]
φ = γ eiνdθψd,

which yields

φ̇(θ ) = iνdφ(θ ) + γ eiνdθψ d, θ ∈ [−τd,l, 0
]

,

φ̇(0) = dAφ(0) + diag
(
fj

(
ud

j , ud
j

))
φ(0) + diag

(
ud

j ad
j

)
φ(0) + diag

(
ud

j bd
j

)
φ(−τd,l). (3.31)

By the first equation of equation (3.31), we obtain that

φ(θ ) = φ(0)eiνdθ + γ θeiνdθψd,

φ̇(0) = iνdφ(0) + γψ d. (3.32)

This, together with the second equation of (3.31), yields

�
(
d, iνd, τd,l

)
φ(0) = dAφ(0) + diag

(
fj

(
ud

j , ud
j

))
φ(0) + diag

(
ud

j ad
j

)
φ(0)

+ e−iθd diag
(
ud

j bd
j

)
φ(0) − iνdφ(0)

= γ
(
ψ d + τd,le

−iθd diag
(
ud

j bd
j

)
ψ d

)
. (3.33)
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Multiplying both sides of (3.33) by
(
ψ̃ d,1, · · · , ψ̃ d,n

)
to the left, we have

0 = 〈
�̃

(
d, iνd, τd,l

)
ψ̃d, φ(0)

〉= 〈
ψ̃d,�

(
d, iνd, τd,l

)
φ(0)

〉
= γ

(
n∑

j=1

ψ̃ d,jψd,j + τd,le
−iθd

n∑
j=1

ud
j bd

j ψ̃ d,jψd,j

)
.

Define

Sl(d) :=
n∑

j=1

ψ̃ d,jψd,j + τd,le
−iθd

n∑
j=1

ud
j bd

j ψ̃ d,jψd,j. (3.34)

By Theorems 3.5, 3.6 and (3.29), we haveψd → η, ψ̃d → ς , θd → θd∗ , (d∗ − d)τd,l → θd∗ +2lπ

hd∗
and bd

j → bj

for j = 1, · · · , n as d → d∗, where θd∗ and hd∗ are defined in (3.21). Then we see from (2.7) and (3.21)
that

lim
d→d∗

Sl(d) =
n∑

j=1

ςjηj

[
1 + (

θd∗ + 2lπ
) ( −ã√

b̃2 − ã2
+ i

)]
�= 0,

which implies that γ = 0 for d ∈ [d̃2, d∗), where 0< d∗ − d̃2 � 1. Therefore, for any l = 0, 1, 2, · · · ,

N[Aτd,l (d) − iνd]j = N[Aτd,l (d) − iνd], j = 2, 3, · · · ,

and consequently, iνd is a simple eigenvalue of Aτd,l (d) for l = 0, 1, 2, · · · .

By Theorem 3.8, we see that μ= iνd is a simple eigenvalue of Aτd,l (d). Then, it follows from
the implicit function theorem, for each l = 0, 1, · · · , there exists a neighbourhood Ol × Dl × Hl

of (τd,l, iνd,ψ d) and a continuously differentiable function (μ(τ ),ψ(τ )) : Oq,l → Dq,l × Hq,l such that
μ(τd,l) = iνd, ψ(τd,l) =ψd, and for each τ ∈ Ol, the only eigenvalue of Aτ (d) in Dl is μ(τ ), and

�(d,μ(τ ), τ )ψ(τ ) = dAψ(τ ) + diag
(
fj

(
ud

j , ud
j

))
ψ(τ ) + diag

(
ud

j ad
j

)
ψ(τ )

+ e−μ(τ )τdiag
(
ud

j bd
j

)
ψ(τ ) −μ(τ )ψ(τ ) = 0. (3.35)

Then, we prove that the following transversality condition holds.

Theorem 3.9. Assume that (H0)-(H1) hold, ã − b̃> 0, and d ∈ [d̃2, d∗), where 0< d∗ − d̃2 � 1. Then

dRe
[
μ
(
τd,l

)]
dτ

> 0, l = 0, 1, 2, · · · .

Proof. Differentiating equation (3.35) with respect to τ at τ = τd,l, we have

−dμ
(
τd,l

)
dτ

(
τd,ldiag

(
ud

j bd
j

)
ψde−iθd +ψ d

)+�
(
d, iνd, τd,l

) ψ (
τd,l

)
dτ

− iνddiag
(
ud

j bd
j

)
ψde−iθd = 0. (3.36)

Clearly, 〈
ψ̃d,�

(
d, iνd, τd,l

) dψ
(
τd,l

)
dτ

〉
=

〈
�̃

(
d, iνd, τd,l

)
ψ̃ d,

dψ
(
τd,l

)
dτ

〉
= 0.
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Then, multiplying both sides of equation (3.36) by (ψ̃ d,1, · · · , ψ̃ d,n) to the left, we have

dμ
(
τd,l

)
dτ

= −iνd

∑n
j=1 ud

j bd
j ψ̃ d,jψd,je−iθd∑n

j=1 ψ̃ d,jψd,j + τd,l

∑n
j=1 ud

j bd
j ψ̃ d,jψd,je−iθd

= 1

|Sl(d)|2

[
−iνde−iθd

(
n∑

j=1

ψ̃d,jψ d,j

)
n∑

j=1

ud
j bd

j ψ̃d,jψd,j

−iνdτd,l

(
n∑

j=1

ud
j bd

j ψ̃ d,jψd,j

)(
n∑

j=1

ud
j bd

j ψ̃d,jψ d,j

)]
.

It follows from Theorems 3.5, 3.6 and (3.29) that ψd → η, ψ̃d → ς , θd → θd∗ ,
νd

d∗ − d
= hd → hd∗ and

bd
j → bj for j = 1, · · · , n as d → d∗, where θd∗ and hd∗ are defined in (3.21). Then we see that

lim
d→d∗

1

(d∗ − d)2

dRe
[
μ
(
τd,l

)]
dτ

=
(
βd∗

)2
(

b̃2 − ã2
)

limd→d∗ |Sl(d)|2 > 0,

where we have used (3.24) in the last step. This completes the proof.

By Theorems 3.6, 3.8 and 3.9, we obtain the main result for this subsection.

Theorem 3.10. Assume that (H0)-(H1) hold and d ∈ [d̃2, d∗), where 0< d∗ − d̃2 � 1. Let ud be the
positive equilibrium of model (1.2) obtained in Lemma 2.2. Then the following statements hold.

(i) If ã − b̃< 0, where ã and b̃ are defined in (2.5), then ud is locally asymptotically stable for τ ∈
[0, ∞).

(ii) If ã − b̃> 0, then there exists τd,0 > 0 such that ud of (1.2) is locally asymptotically stable for τ ∈
[0, τd,0), and unstable for τ ∈ (τd,0, ∞). Moreover, when τ = τd,0, system (1.2) undergoes a Hopf
bifurcation at ud.

3.2. The case of 0< d � 1

In this section, we will consider the case of 0< d � 1. First, we give a priori estimates for solutions of
(3.3).

Lemma 3.11. Assume that
(
μd, τ d, ϕd

)
solves (3.3), where Reμd, τ d ≥ 0, and ϕd =(

ϕd
1 , · · · , ϕd

n

)T
( �=0) ∈C

n. Then for any d̃> 0, |μd| is bounded for d ∈ (0, d̃].

Proof. Without loss of generality, we assume that ‖ϕd‖2
2 = 1. Substituting

(
μd, τ d, ϕd

)
into (3.3) and

multiplying both sides of (3.3) by (ϕd
1 , · · · , ϕd

n ) to the left, we obtain that(
ϕd

1 , · · · , ϕd
n

)[
dAϕd + diag

(
fj

(
ud

j , ud
j

))
ϕd + diag

(
ud

j ad
j

)
ϕd

+e−μdτd diag
(
ud

j bd
j

)
ϕd −μdϕd

]
= 0.

Then, for d ∈ (0, d̃], we have∣∣μd
∣∣≤ max

d∈[0,d̃],1≤j≤n
|fj

(
ud

j , ud
j

) | + max
d∈[0,d̃],1≤j≤n

|ud
j ad

j | + max
d∈[0,d̃],1≤j≤n

|ud
j bd

j | + d̃n max
1≤j,k≤n

|αjk|,

and consequently, |μd| is bounded for d ∈ (0, d̃].
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Using similar arguments as in the proof of Theorem 3.2, we can obtain the following result, and here
we omit the proof for simplicity.

Theorem 3.12. Assume that (H0)-(H1) hold, and a0
j − b0

j < 0 for all j = 1, · · · , n, where a0
j and b0

j are
defined in (2.10). Then there exists d̂1 ∈ (0, d∗], such that

σ (Aτ (d))⊂ {x + iy : x, y ∈R, x< 0} for d ∈ (0, d̂1] and τ ≥ 0.

It follows from Theorem 3.12 that if a0
j − b0

j < 0 for all j = 1, · · · , n, then Hopf bifurcations cannot
occur for 0< d � 1. Then we define

M= {
j ∈ 1, · · · , n : a0

j − b0
j > 0

}
, (3.37)

and show that Hopf bifurcations can occur when M �= ∅. For simplicity, we impose the following
assumption:

(H2) a0
j − b0

j > 0 for j = 1, · · · , p, and a0
j − b0

j < 0 for j = p + 1, · · · , n, where 1 ≤ p ≤ n.

In fact, if the patches are independent of each other (d = 0), we have

u′
j = ujfj

(
uj, uj(t − τ )

)
, t> 0, j = 1, · · · , n. (3.38)

A direct computation implies the following result.

Lemma 3.13. Assume that (H1)-(H2) hold. Then for each 1 ≤ j ≤ n, model (3.38) admits a unique
positive equilibrium u0

j , where u0
j (defined in Lemma 2.3) is the unique positive solution of fj(x, x) = 0.

Moreover, the following statements hold.

(i) For each 1 ≤ j ≤ p, the unique positive equilibrium u0
j of model (3.38) is locally asymptotically

stable when τ ∈ [0, τ 0
j ), and unstable when τ ∈ (τ 0

j , ∞). Moreover, when τ = τ 0
j , model (3.38)

undergoes a Hopf bifurcation, where

τ 0
j = θ 0

j

ν0
j

with θ 0
j = arccos

(−a0
j /b

0
j

) ∈ (0, π ) and ν0
j = u0

j

√(
b0

j

)2 − (
a0

j

)2
> 0. (3.39)

(ii) For each p + 1 ≤ j ≤ n, the unique positive equilibrium u0
j of model (3.38) is locally asymptotically

stable for τ ≥ 0.

Now, we consider the solution of (3.14) for d = 0.

Lemma 3.14. Assume that (H1)-(H2) hold, d = 0, and(
ν0

j , θ 0
j

) �= (
ν0

k , θ 0
k

)
for any j �= k and 1 ≤ j, k ≤ p, (3.40)

where θ 0
j and ν0

j are defined in (3.39) for j = 1, · · · , p. Then{
(ν, θ ) : ν ≥ 0, θ ∈ [0, 2π ], S0(ν, θ ) �= {0}}= {(

ν0
q , θ 0

q

)}p

q=1
, (3.41)

where
(
ν0

q , θ 0
q

) ∈ (0, ∞) × (0, π ), and

S0(ν, θ ) := {ϕ : H(0, ν, θ , ϕ) = 0}
with H(d, ν, θ , ϕ) defined in (3.14). Moreover, denoting Sq = S0

(
ν0

q , θ 0
q

)
for any q = 1, · · · , p, we have

Sq = {
cϕ0

q : c ∈C
}
, where ϕ0

q = (
ϕ0

q,1, · · · , ϕ0
q,n

)
, ϕ0

q,q = 1 and ϕ0
q,j = 0 for j �= q.

Proof. It follows from Lemma 2.3 that u0
j satisfies fj

(
u0

j , u0
j

)= 0 for j = 1, · · · , n. Therefore, if there
exists ϕ �= 0 such that H(0, ν, θ , ϕ) = 0, then

n∏
i=1

(
u0

j a0
j + u0

j b0
j e−iθ − iν

)= 0,
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and consequently, for j = 1, · · · , n, {
a0

j + b0
j cos θ = 0,

u0
j b0

j sin θ + ν = 0.

It follows from (H1) and (H2) that a0
j + b0

j < 0 for j = 1, · · · , n and a0
j − b0

j > 0 for j = 1, · · · , p. Then,
for j = 1, · · · , p,

b0
j <min

{
a0

j , −a0
j

}≤ 0 and − 1<−a0
j /b

0
j < 1, (3.42)

which leads to ν = ν0
q , θ = θ 0

q for q = 1, · · · , p, where ν0
q and θ 0

q are defined in (3.39). Since (ν0
j , θ 0

j ) �=
(ν0

k , θ 0
k ) for any j �= k and 1 ≤ j, k ≤ p, it follows that S0

q = {cϕ0
q : c ∈C}. This completes the proof.

Remark 3.15. We remark that if
θ 0

j

ν0
j

�= θ 0
k

ν0
k

for any j �= k and 1 ≤ j, k ≤ p, (3.43)

then (3.40) in Lemma 3.14 hold. By Lemma 3.13, we see that (3.43) implies that the first Hopf bifurcation
values of model (3.38) for 1 ≤ j ≤ p are not identical. That is, the first Hopf bifurcation values of each
isolated patch j for 1 ≤ j ≤ p are not identical.

Then we consider the solution of (3.14) for 0< d � 1.

Lemma 3.16. Assume that (H0)-(H2) and (3.40) hold, and d ∈ (0, d̃) with 0< d̃ � 1. Then there exists
p pairs of

(
νd

q , θ d
q

) ∈ (0, ∞) × (0, π ) such that{
(ν, θ ) : ν ≥ 0, θ ∈ [0, 2π ), Sd(ν, θ ) �= {0}}= {(

νd
q , θ d

q

)}p

q=1
, (3.44)

where

Sd(ν, θ ) := {ϕ : H(d, ν, θ , ϕ) = 0}
with H(d, ν, θ , ϕ) defined in (3.14). Moreover, denoting Sd

q = Sd
(
νd

q , θ d
q

)
for any q = 1, · · · , p, we have

Sd
q = {

cϕd
q : c ∈C

}
, and

lim
d→0

νd
q = ν0

q = u0
q

√(
b0

q

)2 − (
a0

q

)2
, lim

d→0
θ d

q = θ 0
q = arccos

(−a0
q/b

0
q

)
and lim

d→0
ϕd

q = ϕ0
q,

where ν0
q , θ 0

q and ϕ0
q are defined in Lemma 3.14.

Proof. First, we show the existence. Here, we will only show the existence of (νd
1 , θ d

1 ), and the others
could be obtained similarly. Let

Y1 := {x = (x1, · · · , xn)T ∈C
n : x1 = 0},

and consequently C
n = span{ϕ0

1} ⊕ Y1. Let

H1

(
d, ν, θ , ξ 1

)
:= H

(
d, ν, θ , ϕ0

1 + ξ 1

)
: R3 × Y1 →C

n.

Clearly, we have H1

(
0, ν0

1 , θ 0
1 , 0

)= 0, and the Fréchet derivative of H1 with respect to (ν, θ , ξ 1) at(
0, ν0

1 , θ 0
1 , 0

)
is

D(ν,θ ,ξ1)H1

(
0, ν0

1 , θ 0
1 , 0

)
[ϑ , ε, χ] =

⎛⎜⎜⎜⎜⎜⎜⎝
−ie−iθ0

1 b0
1u0

1ε − iϑ(
a0

2u0
2 + b0

2u
0
2e−iθ0

1 − iν0
1

)
χ2

...(
a0

nu0
n + b0

nu
0
ne−iθ0

1 − iν0
1

)
χn

⎞⎟⎟⎟⎟⎟⎟⎠ ,

https://doi.org/10.1017/S0956792523000049 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000049


886 D. Huang and S. Chen

where ϑ , ε ∈R and χ = (χ1, · · · , χn) ∈ Y1. Note from (3.40) that D(ν,θ ,ξ )H1

(
0, ν0

1 , θ 0
1 , 0

)
is a bijection.

Then from the implicit function theorem, there exists a constant δ > 0, a neighbourhood N1 of
(
ν0

1 , θ 0
1 , 0

)
and a continuously differentiable function(

νd
1 , θ d

1 , ξ d
1

)
: [0, δ) �→ N1

such that for any d ∈ [0, δ), the unique solution of H1(d, ν, θ , ξ 1) = 0 in the neighbourhood N1 is(
νd

1 , θ d
1 , ξ d

1

)
. Letting ϕd

1 = ϕ0
1 + ξ

d
1, we see that

span
(
ϕd

1

)⊂ Sd
1 for any d ∈ [0, δ). (3.45)

Since the dimension of Sd
1 is upper semicontinuous, then there exists δ1 < δ such that dim Sd

1 ≤ 1 for any
d ∈ [0, δ1). This, together with (3.45), implies that Sd

1 = {cϕd
1 : c ∈C}. By (3.39), we see that

(
ν0

q , θ 0
q

) ∈
(0, ∞) × (0, 2π ), which yields

(
νd

q , θ d
q

) ∈ (0, ∞) × (0, 2π ) for 0< d � 1. This completes the part of
existence.

Now we show that (3.44) holds. If it is not true, then there exist sequences {dj}∞
j=1 and {(νdj , θ dj , ϕdj )}∞

j=1

such that limj→∞ dj = 0, and for each j = 1, 2, · · · , (νdj , θ dj ) �= (ν
dj
q , θ

dj
q )(q = 1, · · · , p), ‖ϕdj‖2 = 1, νdj >

0, θ dj ∈ [0, 2π ), and

H
(
dj, ν

dj , θ dj , ϕdj
)= 0.

By Lemma 3.11, we see that {νdj} is bounded. Using similar arguments as in the proof of [7, Lemma
3.4], we show that there exists 1 ≤ q0 ≤ p such that (νdj , θ dj ) = (ν

dj
q0 , θ

dj
q0 ) for sufficiently large j. This is a

contradiction. Therefore, (3.44) holds.

From Lemma 3.16, we obtain the following result.

Theorem 3.17. Assume that (H0)-(H2) and (3.40) hold, and d ∈ (0, d̃), where 0< d̃ � 1. Then (ν, τ , ϕ)
solves {

�(d, iν, τ )ϕ = 0,

ν > 0, τ ≥ 0, ϕ( �=0) ∈C
n,

if and only if there exists 1 ≤ q ≤ p such that

ν = νd
q , ϕ = cϕd

q, τ = τ d
q,l =

θ d
q + 2lπ

νd
q

, l = 0, 1, 2, · · · , (3.46)

where νd
q , θ d

q , and ϕd
q are defined in Lemma 3.16.

Then we show that the purely imaginary eigenvalue is simple.

Theorem 3.18. Assume that (H0)-(H2) and (3.40) hold. Then, for each d ∈ (0, d̃), where 0< d̃ � 1,
μ= iνd

q is a simple eigenvalue of Aτd
q,l

(d) for q = 1, · · · , p and l = 0, 1, 2, · · · .

Proof. It follows from Theorem 3.17 that

N
[
Aτd

q,l
(d) − iνd

q

]
= span

[
eiνd

q θϕd
q

]
,

where θ ∈ [−τ d
q,l, 0], and ϕd

q is defined in Theorem 3.17. Then, we will show that

N
[
Aτd

q,l
(d) − iνd

q

]2 = N
[
Aτd

q,l
(d) − iνd

q

]
.

If φ ∈ N[Aτd
q,l

(d) − iνd
q ]2, then[

Aτd
q,l

(d) − iνd
q

]
φ ∈ N

[
Aτd

q,l
(d) − iνd

q

]
= span

[
eiνd

q θϕd
q

]
,

and consequently, there exists a constant γ such that[
Aτd

q,l
(d) − iνd

q

]
φ = γ eiνd

q θϕd
q,
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which yields

φ̇(θ ) =iνd
qφ(θ ) + γ eiνd

q θϕd
q, θ ∈ [−τ d

q,l, 0
]

,

φ̇(0) =dAφ(0) + diag
(
fj

(
ud

j , ud
j

))
φ(0) + diag

(
ud

j ad
j

)
φ(0)

+ diag
(
ud

j bd
j

)
φ
(−τ d

q,l

)
. (3.47)

From the first equation of equation (3.47), we have

φ(θ ) = φ(0)eiνd
q θ + γ θeiνd

q θϕd
q,

φ̇(0) = iνd
qφ(0) + γϕd

q. (3.48)

Then it follows from equations (3.47) and (3.48) that

�
(
d, iνd

q , τ d
q,l

)
φ(0) = dAφ(0) + diag

(
fj

(
ud

j , ud
j

))
φ(0) + diag

(
ud

j ad
j

)
φ(0)

+ e−iθd
q diag

(
ud

j bd
j

)
φ(0) − iνd

qφ(0)

= γ
(
ϕd

q + τ d
q,le

−iθd
q diag

(
ud

j bd
j

)
ϕd

q

)
. (3.49)

Let �̃
(
d, iνd

q , τ d
q,l

)
be the conjugate transpose matrix of �(d, iνd

q , τ d
q,l), and let ϕ̃d

q = (
ϕ̃d

q,1, · · · , ϕ̃d
q,n

)T

be the the corresponding eigenvector of �̃
(
d, iνd

q , τ d
q,l

)
with respect to eigenvalue 0. Then, using similar

arguments as in the proof of Proposition 3.7, we see that, ignoring a scalar factor, ϕ̃d
q satisfies

lim
d→0

ϕ̃d
q = ϕ0

q, (3.50)

where ϕ0
q is defined in Lemma 3.14. Multiplying both sides of (3.49) by (ϕ̃

d

q,1, · · · , ϕ̃
d

q,n) to the left, we
have

0 = 〈
�̃

(
d, iνd

q , τ d
q,l

)
ϕ̃d

q, φ(0)
〉= 〈̃

ϕd
q,�

(
d, iνd

q , τ d
q,l

)
φ(0)

〉
= γ

(
n∑

j=1

ϕ̃
d

q,jϕ
d
q,j + τ d

q,le
−iθd

q

n∑
j=1

ud
j bd

j ϕ̃
d

q,jϕ
d
q,j

)
:= γ Sq(d).

It follows from Lemma 3.16, Theorem 3.17 and equation (3.50) that

lim
d→0

Sq(d) �= 0.

which implies that γ = 0 for d ∈ (0, d̃), where 0< d̃ � 1, and consequently, iνd
q is a simple eigenvalue

of Aτd
q,l

(d) for q = 1, · · · , p and l = 0, 1, 2, · · · .

By Theorem 3.18 and the implicit function theorem, we see that, for each q = 1, · · · , p and l =
0, 1, 2, · · · , there exists a neighbourhood Oq,l × Dq,l × Hq,l of

(
τ d

q,l, iνd
q , ϕd

q

)
and a continuously differ-

entiable function (μ(τ ), ϕ(τ )) : Oq,l → Dq,l × Hq,l such that μ
(
τ d

q,l

)= iνd
q , ϕ

(
τ d

q,l

)= ϕd
q, and for each

τ ∈ Oq,l, the only eigenvalue of Aτ (d) in Dq,l is μ(τ ), and

�(d,μ(τ ), τ )ϕ(τ ) = dAϕ(τ ) + diag
(
fj

(
ud

j , ud
j

))
ϕ(τ ) + diag

(
ud

j ad
j

)
ϕ(τ )

+ e−μ(τ )τdiag
(
ud

j bd
j

)
ϕ(τ ) −μ(τ )ϕ(τ ) = 0. (3.51)

Then, using similar arguments as Theorem 3.9, we obtain the following transversality condition.

Theorem 3.19. Assume that (H0)-(H2) and (3.40) hold. Then

dRe
[
μ
(
τ d

q,l

)]
dτ

> 0, q = 1, · · · , p, l = 0, 1, 2, · · · .

By Theorems 3.12 and 3.17–3.19, we obtain the following result.
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Theorem 3.20. Assume that (H0)-(H1) hold, and d ∈ (0, d̃), where 0< d̃ � 1. Let ud be the unique
positive equilibrium obtained in Lemma 2.2. Then the following statements hold.

(i) If a0
j − b0

j < 0 for all j = 1, · · · , n, then ud is locally asymptotically stable for τ ∈ [0, ∞)

(ii) If (H2) and (3.43) holds, then ud is locally asymptotically stable for τ ∈ [
0, τ d

q̂,0

)
, and unstable

for τ ∈ (
τ d

q̂,0, ∞)
, where τ d

q̂,0 = min
1≤q≤p

τ d
q,0. Moreover, when τ = τ d

q̂,0, system (1.2) undergoes a Hopf
bifurcation.

4. An example

In this section, we apply the obtained results in Section 3 to a concrete example and discuss the effect
of network topology on Hopf bifurcations. Choose the growth rate per capita as follows:

fj(uj, uj(t − τ )) = mj − âjuj(t) − b̂juj(t − τ ) for j = 1, · · · , n.

Then model (1.2) takes the following form:⎧⎪⎪⎨⎪⎪⎩
duj

dt
= d

n∑
k=1

αjkuk + uj

(
mj − âjuj(t) − b̂juj(t − τ )

)
, t> 0, j = 1, · · · , n,

u(t) =ψ(t) ≥ 0, t ∈ [−τ , 0],

(4.1)

where (αjk) satisfies assumption (H0), mj represents the intrinsic growth rate in patch j and âj, b̂j > 0
represent the instantaneous and delayed dependence of the growth rate in patch j, respectively. Clearly,
assumption (H1) holds. We remark that the continuous space version of model (4.1) with spatially
homogeneous environments has been investigated in [38].

4.1. Stability and Hopf bifurcations

For case (I) (0< d∗ − d � 1), the quantities ã and b̃ take the following form:

ã = −
n∑

j=1

âjη
2
j ςj, b̃ = −

n∑
j=1

b̂jη
2
j ςj, (4.2)

where η and ς are defined in (2.1). Then, by Theorem 3.10, we obtain the following result.

Proposition 4.1. Let ud be the unique positive equilibrium of (4.1) obtained in Lemma 2.2 for d ∈ (0, d∗).
Then, for d ∈ [d̃2, d∗) with 0< d∗ − d̃2 � 1, the following statements hold.

(i) If
∑n

j=1

(
âj − b̂j

)
η2

j ςj > 0, then ud of model (4.1) is locally asymptotically stable for τ ∈ [0, ∞).

(ii) If
∑n

j=1

(
âj − b̂j

)
η2

j ςj < 0, then ud is locally asymptotically stable for τ ∈ [0, τd,0), and unstable for
τ ∈ (τd,0, ∞), where τd,0 is defined in Theorem 3.6. Moreover, when τ = τd,0, system (4.1) undergoes
a Hopf bifurcation at ud.

Now we consider case (II) ((0< d � 1). The quantities for this case take the following form:

a0
j = −âj, b0

j = −b̂j, ν
0
j =

mj

√(
b̂j

)2 − (
âj

)2

âj + b̂j

, θ 0
j = arccos

(
− âj

b̂j

)
. (4.3)

Moreover, (H2) is reduced as follows:

(H̃2) âj − b̂j < 0 for j = 1, · · · , p, and âj − b̂j > 0 for j = p + 1, · · · , n, where 1 ≤ p ≤ n.
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Then, by Theorem 3.20, we have the following result.

Proposition 4.2. Let ud be the unique positive equilibrium of (1.2) obtained in Lemma 2.2 for d ∈ (0, d∗).
Then, for d ∈ (0, d̃) with 0< d̃ � 1, the following statements hold.

(i) If âj − b̂j > 0 for all j = 1, · · · , n, then ud is locally asymptotically stable for τ ∈ [0, ∞).

(ii) If (H̃2) holds and
θ 0

j

ν0
j

�= θ 0
k

ν0
k

for any j �= k and 1 ≤ j, k ≤ p, then ud is locally asymptotically stable for

τ ∈ [
0, τ d

q̂,0

)
, and unstable for τ ∈ (

τ d
q̂,0, ∞

)
, where τ d

q̂,0 is defined in Theorem 3.20. Moreover, when
τ = τ d

q̂,0, system (1.2) undergoes a Hopf bifurcation at ud.

Remark 4.3. We remark that Proposition 4.2 (ii) also holds if (H̃2) is replaced by the following
assumption:

(Ã2) {âj − b̂j}n
j=1 changes sign and âj − b̂j �= 0 for all j = 1, · · · , n.

The proof is similar, and here we omit the details for simplicity.

4.2. The effect of network topologies

In this subsection, we discuss the effect of network topologies on Hopf bifurcations values for 0< d � 1.
Since the computation is tedious, we only consider a special case for simplicity. Letting âj = 0 and b̂j = 1
for j = 1, · · · , n, model (4.1) is reduced to the following system:⎧⎪⎪⎨⎪⎪⎩

duj

dt
= d

n∑
k=1

αjkuk + uj

(
mj − uj(t − τ )

)
, t> 0, j = 1, · · · , n,

u(t) =ψ(t) ≥ 0, t ∈ [−τ , 0],

(4.4)

where (αjk) satisfies assumption (H0), and mj > 0 for j = 1, · · · , n. Clearly, (H1)-(H2) hold. By
Proposition 4.2 (ii) and a direct computation, we see that, if

mj �= mk for any j �= k, (4.5)

then model (4.4) undergoes a Hopf bifurcation for 0< d � 1 with the first Hopf bifurcation value τ =
τ d

q̂,0, where q̂ satisfies mq̂ = max
1≤j≤n

mj. By Lemma 3.16 and Theorem 3.17, we see that

τ d
q̂,0 = θ d

q̂

νd
q̂

and lim
d→0

τ d
q̂,0 = π

2mq̂

. (4.6)

Therefore, to obtain the effect of network topologies, we need to compute the first derivative of τ d
q̂,0 with

respect to d in the following.

Proposition 4.4. Let τ d
q̂,0 be defined in (4.6), where q̂ satisfies mq̂ = max1≤j≤n mj. Then

(
τ d

q̂,0

)′ ∣∣
d=0

= T (A)

m2
q̂

, (4.7)

where

T (A) := −π
2
αq̂q̂ +

(
1 − π

2

) 1

mq̂

∑
k �=q̂

αq̂kmk. (4.8)
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Proof. By (4.6), we have

(
τ d

q̂,0

)′ =
(
θ d

q̂

νd
q̂

)′

=
(
θ d

q̂

)′
νd

q̂ − θ d
q̂

(
νd

q̂

)′(
νd

q̂

)2 , (4.9)

where ′ is the derivative with respect to d. Substituting ν = νd
q̂ , θ = θ d

q̂ and ϕ = ϕd
q̂ into (3.14), we have

dAϕd
q̂ + diag

(
mj − ud

j

)
ϕd

q̂ − e−iθd
q̂ diag

(
ud

j

)
ϕd

q̂ − iνd
q̂ϕ

d
q̂ = 0. (4.10)

Differentiating (4.10) with respect to d, we have

−� (
d, iνd

q̂ , τ d
q̂,0

) (
ϕd

q̂

)′ =Aϕd
q̂ − diag

(
(ud

j )′) ϕd
q̂ + i

(
θ d

q̂

)′
e−iθd

q̂ diag
(
ud

j

)
ϕd

q̂

− e−iθd
q̂ diag

(
(ud

j )′) ϕd
q̂ − i

(
νd

q̂

)′
ϕd

q̂, (4.11)

where �(d,μ, τ ) is defined in (3.3). Let ϕ̃d
q̂ = (

ϕ̃d
q̂,1, · · · , ϕ̃d

q̂,n

)T be the corresponding eigenvector of
�̃(d, iνd

q̂ , τ d
q̂,0) with respect to eigenvalue 0, where �̃

(
d, iνd

q̂ , τ d
q̂,0

)
is the conjugate transpose matrix of

�
(
d, iνd

q̂ , τ d
q̂,0

)
. Using similar arguments as in the proof of Proposition 3.7, we see that, ignoring a scalar

factor, ϕ̃d
q̂ satisfies

lim
d→0

ϕ̃d
q̂ = ϕ0

q̂, (4.12)

where ϕ0
q is defined in Lemma 3.14. Note that

0 =
〈
�̃

(
d, iνd

q̂ , τ d
q̂,0

)
ϕ̃d

q̂,
(
ϕd

q̂

)′〉=
〈
ϕ̃d

q̂,�
(
d, iνd

q̂ , τ d
q̂,0

) (
ϕd

q̂

)′〉
.

Then, multiplying both sides of (4.11) by (ϕ̃
d

q̂,1, · · · , ϕ̃
d

q̂,n) to the left, we have

0 = −
〈
ϕ̃d

q̂,�
(
d, iνd

q̂ , τ d
q̂,0

) (
ϕd

q̂

)′〉
= 〈̃
ϕd

q̂, Aϕd
q̂

〉− 〈̃
ϕd

q̂, diag
(
(ud

j )′) ϕd
q̂

〉+ i
(
θ d

q̂

)′
e−iθd

q̂
〈̃
ϕd

q̂, diag
(
ud

j

)
ϕd

q̂

〉
− e−iθd

q̂

〈
ϕ̃d

q̂, diag
((

ud
j

)′)
ϕd

q̂

〉
− i

(
νd

q̂

)′ 〈̃
ϕd

q̂, ϕd
q̂

〉
. (4.13)

It follows from Lemma 2.3 that ud is continuously differentiable for d ∈ [0, d∗), if we define u0
j = mj

for j = 1, · · · , n. A direct computation yields(
ud

j

)′ ∣∣
d=0

= 1

mj

n∑
k=1

αjkmk. (4.14)

By (4.12) and Lemma 3.16, we have

ϕd
q̂, ϕ̃d

q̂ → ϕ0
q̂, ν

d
q̂ → mq̂, and θ d

q̂ → θ 0
q̂ = π

2
as d → 0, (4.15)

where ϕ0
q̂ satisfies ϕ0

q̂,q̂ = 1 and ϕ0
q̂,k = 0 for k �= q̂. This, combined with (4.13) and (4.14), implies that

(
θ d

q̂

)′ ∣∣
d=0

= 1

m2
q̂

∑
k �=q̂

αq̂kmk and
(
νd

q̂

)′ ∣∣
d=0

= 1

mq̂

n∑
k=1

αq̂kmk. (4.16)

Substituting (4.16) into (4.9), we obtain that (4.7) holds. This completes the proof.

Therefore, for 0< d � 1 and a given dispersal matrix A, we obtain from (4.6) and (4.7) that

τ d
q̂,0 = π

2mq̂

+ d

m2
q̂

T (A) +O(d2), (4.17)

where T (A) is defined in (4.8).
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Figure 2. Two different network topologies. (Left): A = A1; (right): A = A2.

Then, by Proposition 4.4, we obtain the effect of network topologies as follows.

Proposition 4.5. Let τ d
q̂,0(Ai) be the first Hopf bifurcation of model (4.4) for A = Ai, where Ai =

(
α

(i)
jk

)
(i =

1, 2) satisfies (H0). If T (A1)> T (A2), then there is d̂> 0, depending on A1 and A2, such that τ d
q̂,0(A1)>

τ d
q̂,0(A2) for d ∈ (0, d̂].

Remark 4.6. We remark that if α(1)
q̂k <α

(2)
q̂k for all k = 1, · · · , n, then T (A1)> T (A2).

By Proposition 4.4, we can also show the monotonicity of τ d
q̂,0 for 0< d � 1.

Proposition 4.7. Let τ d
q̂,0 be the first Hopf bifurcation of model (4.4), where q̂ satisfies mq̂ = max1≤j≤n mj.

Then the following statements hold.

(i) If T (A)> 0, then (τ d
q̂,0)′ > 0 for 0< d � 1.

(ii) If T (A)< 0, then (τ d
q̂,0)′ < 0 for 0< d � 1.

Therefore, network topologies also affect the monotonicity of τ d
q̂,0 for 0< d � 1.

4.3. Numerical simulations

Now, we give some numerical simulations to illustrate our theoretical results for model (4.4). Let n = 4
and (mj) = (7.5, 7, 6.5, 6) and choose the following two dispersal matrices:

A1 = (
α

(1)
jk

)=

⎛⎜⎜⎜⎜⎝
−1 0.2 0.5 0.6

0.5 −1.2 0.2 0.1

0 0.1 −0.9 0.1

0 0.1 0.2 −1.2

⎞⎟⎟⎟⎟⎠ ,

and

A2 = (
α

(2)
jk

)=

⎛⎜⎜⎜⎜⎝
−2 0.2 0.5 0

0.5 −1.2 0.2 0.1

0 0.1 −0.9 0.1

0 0.1 0.2 −1.2

⎞⎟⎟⎟⎟⎠ .

Then, corresponding network topologies with respect to A1 and A2 are different, see Figure 2.
We first choose A = A1 and numerically show that delay τ can induce a Hopf bifurcation, and periodic

solutions can occur when 0< d � 1 or 0< d∗ − d ≤ 1, see Figure 3.
Then, we discuss the effects of network topologies. Clearly, q̂ = 1 and T (A1)> T (A2), where T (A)

is defined in (4.8). This, combined with Proposition 4.4, implies that τ d
1,0(A1)> τ d

1,0(A2). To confirm this,
we fix τ1(=0.2144) and numerically show that the positive equilibrium of model (4.4) is stable with
A = A1, while model (4.4) admits a positive periodic solution with A = A2, see Figure 4. Therefore,
τ d

1,0(A1)> τ d
1,0(A2).
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Figure 3. Periodic solutions induced by a Hopf bifurcation for model (4.4) with A = A1. (Left) The
small dispersal case: d = 0.3 and τ = 0.5. (Right) The large dispersal case: d = 10 and τ = 1.2.
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Figure 4. The effect of network topologies. We only plot two patches for simplicity. Here τ1 = 0.2144.
(Left): A = A1; (right): A = A2.

Moreover, an interesting question is whether Hopf bifurcation can occur when d is intermediate.
It is a challenge if n ≥ 3. For the two-patch model, one can compute the Hopf bifurcation value τ d

q̂,0

for d ∈ (0, d∗), see [27] with a symmetric dispersal matrix. Now we consider the asymmetric case. Let
(m1, m2) = (1, 2) and choose the following two dispersal matrices:

A3 =
(−2 1

0.9 −1

)
, A4 =

(−20 1

15 −1

)
.

For A = Ai with i = 3, 4, we numerically obtain a Hopf bifurcation curve τ d
q̂,0(Ai), respectively. Here

limd→0 τ
d
q̂,0(Ai) = π/4 and limd→d(i)∗ τ

d
q̂,0(Ai) = ∞ with d(i)

∗ satisfies s(d(i)
∗ Ai + diag(mj)) = 0 for i = 3, 4. By

Proposition 4.7, we see that network topologies also affect the monotonicity of τ d
q̂,0 for 0< d � 1. As is

shown in Figure 5, τ d
q̂,0(A3) is monotone increasing for 0< d � 1 with T (A3) = 1.3139> 0, and τ d

q̂,0(A4)
is monotone decreasing for 0< d � 1 with T (A4) = −2.7102< 0.

5. Discussion

Due to the limits of the method, we only show the existence of a Hopf bifurcation for two cases: (I)
0< d∗ − d � 1 and (II) 0< d � 1.
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Figure 5. The Hopf bifurcation curve. (Left): A = A3; (right): A = A4.

For case (I), ã − b̃ is critical to determine the existence of a Hopf bifurcation. We remark that ã and b̃
are usually negative (see model (4.1) for example), where −ã> 0 and −b̃> 0 represent the instantaneous
and delayed dependence of the growth rate, respectively. Therefore, ã − b̃< 0 means that the instanta-
neous term is dominant, and consequently, delay-induced Hopf bifurcations cannot occur; ã − b̃> 0
means that the delay term is dominant, and consequently, delay-induced Hopf bifurcations can occur.
By (2.7), we conjecture that v(t) in (3.1) can be represented as follows:

v(t) = (d∗ − d) [c(t)η+ (d∗ − d)z(t)] , where c(t) ∈R and z(t) ∈ X1. (5.1)

Substituting (2.7) into (3.1), we rewrite (3.1) as follows:

v′(t) =
[

d

d∗

(
d∗A + diag(mj)

)]
v(t) + (d∗ − d)diag

(
mj

d∗
+ qj

(
d, βd, ξ d)) v(t)

+ (d∗ − d)diag
(
ad

j β
d
(
ηj + (d∗ − d)ξ d

j

))
v(t)

+ (d∗ − d)diag
(
bd

j β
d
(
ηj + (d∗ − d)ξ d

j

))
v(t − τ ), (5.2)

where qj(d, β, ξ ) and ad
j , bd

j are defined in (2.14) and (3.2), respectively. Note that ad
j = aj and bd

j = bj for
d = d∗, where aj and bj are defined in (2.6). Then, plugging (5.1) into (5.2) and removing higher order
terms O(d∗ − d)2, we see that c(t) satisfies

c′(t)ηj =
(

mj

d∗
+ qj

(
d∗, β

d∗ , ξ d∗)) ηjc(t) + βd∗ajη
2
j c(t) + βd∗bjη

2
j c(t − τ ), j = 1, 2, · · · , (5.3)

where qj

(
d∗, βd∗ , ξ d∗)= βd∗

(
aj + bj

)
ηj by (2.14). Multiplying (5.3) by ςj and summing these over all j,

we see that

c′(t)
n∑

j=1

ςjηj =
[

1

d∗

n∑
j=1

mjςjηj + βd∗
(

ã + b̃
)]

c(t) + βd∗ ãc(t) + βd∗ b̃c(t − τ )

=βd∗ ãc(t) + βd∗ b̃c(t − τ ), (5.4)

where we have used (2.8) in the first step. Therefore, removing higher order terms O(d∗ − d)2, the
linearized system (3.1) can be approximated by (5.4). This also explains why ã − b̃ is crucial for the
existence of a Hopf bifurcation.

For case (II), we also show the existence of a Hopf bifurcation and discuss the effect of network
topology on Hopf bifurcation values for a concrete model. Our method can only apply to the case of
spatial heterogeneity, since it is based on the fact that Sq is one dimensional (see Lemma 3.16). For
example, we need to impose assumption (4.5) on model (4.4) to guarantee the existence of a Hopf
bifurcation. The case of spatial homogeneity awaits further investigation.
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