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A QUASI-PERMUTATION GROUP of degree N was defined in [3] to be a finite 
group with a faithful representation of degree N whose character has only 
non-negative rational integral values. If G is such a group, then the fol­
lowing simple properties of permutation groups of degree N were proved 
to hold also for G: 

(i) the order of G is a divisor of the order of the symmetric group S„ 
of degree N; and 

(ii) if G is a />-group and N < P 2 , then G has exponent at most P and 
derived length at most 1 (i.e. G is elementary Abelian). 

We now generalise (ii) by showing that, if N < P A + 1 , then G has ex­
ponent at most P" and derived length at most A. As a corollary we have the 
result (i) with the word "order" replaced by the word "exponent". These 
results are deduced from more general results on the derived length and 
exponent of a finite />-group with a faithful representation of given degree. 

NOTE. Except in the final corollary, we deal only with finite /(-groups. 
All representations will be over a field of characteristic 0, which may be 
taken without loss of generality to be the complex field, and the term 
"irreducible" is to be taken as meaning "absolutely irreducible". Of course 
our results will be valid also for representations over fields of finite charac­
teristic other than P. 

Our original proof of the following result was somewhat complicated. 
The present simple argument is due to Dr. G. E. Wall. 

THEOREM 1. IF A P-GROUP G HAS A FAITHFUL REPRESENTATION 2C OF DEGREE LESS 

THAN P", THEN THE DERIVED LENGTH OF G IS AT MOST A. 

PROOF. We proceed by induction on A. If the irreducible components 
of SC are SB~X, • • &K, then DEGSFT = PA', AT < A. Since G is isomorphic 
with a subgroup of the direct product of the %i{G), it will suffice to show 
that the &i(G) have derived length at jnost A. In other words, we may 
assume that 3T is irreducible, of degree P A ~ X . In particular, this proves the 
result when A = 1. 

Since G is a />-group, 2C(G) may be written as a group of monomial 
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transformations [2]. This implies that G has a normal Abelian subgroup 
N (consisting of the elements of G represented by diagonal transformations), 
such that GjN has a faithful representation as a permutation group of 
degree P""1, and thus has a faithful representation of degree pa~l—1. By 
the induction hypothesis, the derived length of GjN is at most a—I, so 
that the derived length of G is at most a. 

THEOREM 2. Suppose that 2£ is a faithful representation of a p-group G, 
of degree n, and that the values of the character £ of 2£ lie in the field K. If 
n < pat, where t is the degree over K of a primitive p-th root of 1, then G has 
derived length at most a. Moreover, if the derived length of G is exactly a, then 
C has an irreducible component % of degree pa~x whose values generate the field 
of p-th roots of 1 over K. 

PROOF. If & can be decomposed into representations 3?lt ••• •, 3tk, 
whose characters have values in K, then G is isomorphic to a subgroup 
of the direct product of the groups i2\(G), and it will suffice to prove that 
these have derived length at most a. In other words we may assume that 

cannot be decomposed into representations whose characters have 
values in K. 

Let x be an irreducible component of £ and suppose that the distinct 
characters algebraically conjugate to*x over K are %i> ''', Xr- We have 

(1) r=[K(x):K], 
where K(%) is the field generated by the values of x over K. By the or­
thogonality relations, each of the Xi occurs in £ and so we may write 

C = zH htr+fi-
A s Xi+ '' '+Xr a n d £ both have values in K, we must have £ = 0, for 
else 2£ would be decomposable into parts whose characters have values in K. 
Taking degrees, we obtain 

(2) n = rf, 
where / = deg x- The representation HE corresponding to % is faithful, 
for if x(x) = f, then x,(%) = f for all i, so that f (a;) = n, and x lies in the 
kernel of 3£'. 

Now if x is an element of order p in the centre of G, then, because 
f is irreducible, SP(x) is of the form ml, where OJ is a primitive p-th root 
of 1 and I is the identity transformation. Thus /(x) = fco, and so 

(3) K(X)2K(w). 
By (1), this shows that r ^ [K(co) : K] = t. Since n < pat by assumption, 
(2) shows that / < p". By Theorem 1, the derived length of G is at most a. 
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If the derived length is precisely a, then Theorem 1 shows that / = p"-1. 
If \G\ = p*, then K(X) is a subfield of K(n), where n is a primitive '̂-th 
root of 1. Since [K(TI) :K(a))] is a power of p, it follows that if equality 
does not hold in (3), then [K(%) : K(a>)] ^ p, and so, by (1), r ^ pt. But 
then (2) gives the contradiction n S: p"t. Hence K(X) = K(a>), as required. 

If p is an odd prime, or if p = 2 and the field K contains a square 
root of —1, we shall say that K is of finite p-index if there exists a number 
s such that K does not contain all the ps-th. roots of 1, and define the p-index 
m = mv(K) of such a field to be the largest integer such that the field of 
the p-th. roots of 1 over K contains all the pm-th roots of 1. If p = 2 and 
K does not contain \/ — 1, K is defined to be of finite 2-index if and only 
if K( V—1) is °f finite 2-index, and then we define m2 (K) = m2(K(\/^1)) — 1. 
With these definitions, if a is a non-negative integer then the degree over 
K of a primitive />"+m-th root of 1 is p"t, where t is the degree over K of a 
primitive p-th root of 1, except in the case when p = 2, a = 0 and K does 
not contain We remark that an algebraic number field is of finite 
/-index for every p. 

THEOREM 3. With the hypotheses of Theorem 2, if K is of finite p-index 
m, then the exponent of G is at most p"*™-1 

PROOF. Since the exponent of G is the maximum of the exponents of 
the cyclic subgroups of G, we may assume that G is cyclic. 

Suppose that 2? is decomposed as much as possible into representations 
3£I whose characters have values in K . Since 2£ is faithful, at least one 
of the must be faithful, for else the kernel of 2t would contain the sub­
group of G of order p. Thus it suffices to prove the result in the case when 
2£ cannot be decomposed. As in the proof of Theorem 2, we find an ir­
reducible character % such that f = %I+ ' '' +£r> the sum of the algebraic 
conjugates of % o v e r K. If x were an element of order pa+m in G, then con­
sideration of %(x) shows that K(%) contains the field of the pa+m-th roots 
of 1 over K. This field has degree p"t over K. (The exceptional case p = 2, 
a = 0 cannot arise since the hypothesis implies that p"t > 1.) Hence 
r 22 p"t. As the degree of f is less than pat, this is impossible, and so the 
exponent of G is at most p a + m ~ x . 

If G is a />-group with a faithful permutation representation of degree 
less than pa+1, then the derived length of G is at most a, as can be seen by 
Kaloujnine's construction of the />-Sylow subgroups of the symmetric 
groups by means of wreath products [1]. (We remark that this fact may 
be used in place of induction in the proof of Theorem 1 to show that GjN 
has derived length at most a—1). Also, the exponent of G is at most p". 
We now show that the corresponding results are valid for quasi-permutation 
groups. 
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THEOREM 4. If G is a quasi-permutation p-group of degree less than 
pa+1, then the derived length of G is at most a. 

PROOF. Let 2£ be a faithful representation of G of degree n less than 
pa+1, whose character £ has only non-negative rational integral values. We 
apply Theorem 2, with K the field of rational numbers. Then, t = p—l. 
Since n < pa+1(p—l), G has derived length at most a+1. 

Suppose that G has derived length exactly a+l. Then, by Theorem 2, 
£ has an irreducible component % of degree p" whose values generate the 
field of p-th roots of 1 over K. If the p—l conjugates of % over K are 
Zi>'-; Xv-i- then we nave 

C = ZiH \-XP-I+CI, 

where deg fj = n—p"(p—1) < p". G has an element x for which x(x) — P"0*, 
where co is a primitive p-th root of 1. Then we have 

£(*) = -p+Mx), 
so that Ci{x) ^ pa- But this is impossible, since degd < p". Hence the 
derived length of G is at most a. 

THEOREM 5. / / G is a quasi-permutation p-group of degree less than 
ptt+1, then the exponent of G is at most p". 

PROOF. By Theorem 3, since m — 1 for the rational field K, the ex­
ponent of G is at most pa+1. Suppose that G has a cyclic subgroup H of 
order pa+1. The restriction f to H of the character £ of the quasi-per­
mutation representation 2S of G splits into components of degree 1. At least 
one of these, say x> is faithful, since the restriction of ^ to H is faithful. 
Then, x has pa[p—1) conjugates X\> ' ' '• XVHV~D>

 o v e r
 K>

 a n d we have 

£' = Xi+ ' " ' +Zj .«<p- i>+£ i . 

where deg f t = n—pa(p— 1) < pa. If x is an element of order p in 7f, 
then x(x) = co, a primitive />-th root of 1, and so Ç(x) = Ç'(x) = —pa-{-Ç1(x), 
giving a contradiction. Thus the exponent of G is at most p". 

COROLLARY. If G is a quasi-permutation group of degree n, then the 
exponent of G is a divisor of the exponent of the symmetric group Sn of 
degree n. 

PROOF. Theorem 5 shows that the exponent of a Sylow subgroup of 
G is a divisor of the exponent of the corresponding Sylow subgroup of 
S„. Since the exponent of a finite group is the product of the exponents 
of its Sylow subgroups, the result follows. 

https://doi.org/10.1017/S1446788700023375 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023375


178 W . J. W o n g [6] 

References 
[1] L . Kaloujnine, L a structure des ^-groupes de Sylow des groupes symétriques finis, Ann. 

sci. École norm. sup. (3) 65, 239—276 (1948). 
[2] G. A . Miller. H . F. BlicMeldt and L . E. Dickson, Theory and Applications of Finite Groups 

(New York, 1938). 
[3] W . J. Wong , Linear groups analogous to permutation groups, Jour. Australian Math. 

Soc. 3, 180—184 (1963). 

University of Otago 

https://doi.org/10.1017/S1446788700023375 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023375

