
GREEN'S FUNCTIONS FOR SINGULAR ORDINARY 
DIFFERENTIAL OPERATORS 

F R E D BRAUER 

1. There are several ways to approach the eigenfunction expansion problem 
for ordinary differential operators via the spectral theorem for self-ad joint 
linear operators in Hilbert space. One can examine the resolvent, which re­
quires a detailed study of the Green's function (4, 5, 7), or one can use the 
spectral theorem for unbounded operators (2, 3, 9). Since the eigenf unction 
expansion theorem also requires some multiplicity theory, unless one is pre­
pared to use a rather powerful form of the spectral theorem for unbounded 
operators, as in (2, 9), the proof requires a good deal of work in addition to 
the spectral theorem. 

This suggests that even though the natural setting of the problem is in 
terms of linear operators in Hilbert space, the most natural approach to the 
problem is the elementary one used in (8, 10, 11). This approach, requiring 
only the elementary properties of Hilbert space, clarifies the relationship 
between the spectral theorem and the eigenf unction expansion theorem. The 
treatment in (11) lays the groundwork for the study of Green's function, but 
does not go into this aspect of the problem. The purpose of this paper is to 
complete the approach of (11) by establishing the properties of the Green's 
function and its relation to the spectral matrix, without going back to the 
beginning of the problem as was necessary in (4). We also show the relation 
between self-adjoint boundary conditions and self-adjoint problems in the 
sense of (8, Chapter 7), and establish an integral expansion for the Green's 
function. 

There should be no difficulty in extending this approach to the maximal 
symmetric case studied using a generalized spectral theorem (1, p. 127) 
as in (6, 7). 

2. Let L denote the formal ordinary differential operator 

L = p0-dTn + P1-^î+---+Pa, 

where pk is a complex-valued function having n — k continuous derivatives on 
an open interval a < t < b (k = 0, 1, . . . , n) and p0 ^ 0 on a < t < b. The 
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cases a = — &, b = oo ,o r both , are allowed. We assume t h a t L is formally 

self-adjoint, i.e. t h a t L coincides with its formal adjoint 

L + = ( _ 1 ) B ^^ + ( _ i r i | K _ !^ + . . . + ^ 

We define the set D, consisting of all functions / G L2(a, b) having con­
t inuous derivatives up to order n — 1 on (a, b), with f(n~v absolutely con­
t inuous on (a, b), so t h a t / ( n ) exists almost everywhere on (a, b), and such t h a t 
Lf G L2(a, b). According to Green's formula (7, p . 86) , for every compact 
subinterval ô = [a, /3] of (a, b) and every pair of functions u,v G D, we have 

r [Lu(t)v(t) - u(t)Lv(t)]dt = [uv](&) - [uv](a). 

Here [uv] (t) is a bilinear form given by 

M M = Ê E (-iyua)(t)[an-m(tyV(t)}(». 
m=l j+k=m—l 

We define 
{uv)h = [uv](fi) — [uv](a). 

I t follows from Green's formula t h a t 

[uv](a) = lim [uv](a) and [uv](b) = lim [wv](j3) 
a^a+ C o ­

exist. T h u s we may also define 

(uv) = [uv](b) — [uv](a). 

By a homogeneous boundary condition on the open interval (a, b) we mean 
a condition of the form (ua) = 0 for a given a G D. We say t h a t a set of £ 
boundary conditions (uaj) = 0 (j = 1, . . . , p) is linearly independent if and 
only if 

v 
Z yAuoij) = o 

for every u G -D implies t h a t 3>i = . . . = yp = 0. We also say t h a t such a set 
of boundary conditions is self-ad joint if and only if 

(i) <<W = o (j,k = i , . . . , ^ ) . 
We say t h a t two sets of boundary conditions are equivalent if they are satisfied 
by the same set of functions. 

Now we define the set DQ C D, consisting of all functions / G D such t h a t 
(fa) = 0 for every a G D. Corresponding to the sets D and Do we define two 
linear operators in the Hilber t space L2(a, b). We define the maximal operator 
T associated with the formal differential operator L as having domain D and 
being given by Tu = Lu for u G D. We define the minimal operator T0 

associated with the formal differential operator L as having domain D0 and 
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being given by T0u = Lu for u Ç DQ. Obviously T0 is a restriction of T 
To £ T, Also, 

( r 0 w, v) — (u, Tv) = (uv) = 0 (u 6 .Do, v £ D), 

which implies that 7̂  £ 7̂ 0 *. Here ( , ) denotes the usual inner product in 
L2(af b), and T0 * is the adjoint operator, in the Hilbert space sense, of T0. 
In fact T = To * and 2"* = 7"0 (3), but we shall not need this more precise 
information. 

Let S(i) denote the set of solutions of T0*u = iu in D, and let @( — i) 
denote the set of solutions of T0*u = — iu in 7). Then it is known (1, p. 98) 
that the domain of T0* is the direct sum of D0, @(i), and (§( — i). Thus, since 
r £ 7"o*, we have 

(2) DQDo® <g(i) 0 (g( - i ) . 

It is also known (1, p. 97) that T0 has a self-adjoint extension if and only if 
the vector spaces ®(i) and @( —i) have the same dimension. Our approach 
will not depend on the theory of self-adjoint operators in Hilbert space, and 
we shall make no use of this fact. However, we shall always make the obviously 
related assumption that the differential equations Lu = iu and Lu = —iu 
each have exactly co linearly independent solutions in D. Clearly 0 < co < n, 
and for a non-singular differential operator on a compact interval co = n. 

We can now define what is meant by a self-adjoint boundary value problem 
on (a, b). We use the approach introduced in (5). Let yif y2, . . . , y^ be an 
orthonormal set of solutions of Lu = iu in D, and let zi, z2, . . . , zu be an 
orthonormal set of solutions of Lu = —iu in D. Let V = (vjk) be an co X co 
unitary matrix and let 

CO 

OLj = Jj — ] C V3k Zk (j = 1 , • • • , CO)-

A self-adjoint boundary value problem associated with L on (a, b) consists of 
the differential equation 

(3) Lu = \u 

together with the boundary conditions 

(4) (uaj) = 0 (j = l , . . . , c o ) . 

THEOREM 1. The boundary conditions (4) are self-adjoint, and the boundary 
value problem (3), (4) is self-adjoint in the sense of (8, p. 189), i.e. if DA is the 
set of functions in D which satisfy the boundary conditions (4), then (fg) = 0 for 
every pair of functions f, g G DA. 

https://doi.org/10.4153/CJM-1967-050-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-050-5


574 FRED BRAUER 

Proof. The proof that the boundary conditions (4) are self-adjoint is given in 
(3, Theorem 3). I t is also shown in (3) that if / , g G DA, we can write 

(5) 

(a I œ \ 

,•=1 \ A;=l / 
(6) g = go 

where/ , g G ̂ o, and where bk, ck are complex constants (k = 1, . . . , co). The 
relation (fg) = 0 now follows immediately from (5), (6), and (1). 

I t is not difficult to see that the problem (3), (4) corresponds to a self-adjoint 
operator in the Hilbert space sense. We define DA to be the set of functions 
in D which satisfy the boundary conditions (4). Then there is a self-ad joint 
operator A with domain DA defined by Au = Lu for u G DA. We shall make 
no explicit use of this fact, but it is the link between our approach and the 
approach via spectral theory to the eigenfunction expansion problem. 

Having defined a self-adjoint boundary value problem on the interval 
(a, b), we can use the argument of (8, Chapter 10), which treated the case 
co = 0, to establish the existence of a spectral matrix and the expansion 
theorem. It has been pointed out (11) that no change is needed to treat the 
more general problem considered here. As our notation differs slightly from that 
used in (4, 5, 7, 8, 10, 11), we begin with an outline of the known results. 

We treat the singular boundary value problem on (a, b) by defining a self-
adjoint boundary value problem in a set of compact subintervals 5 = [a, 0] 
of (a, b) as in (5) and then letting 8 —» (a, b). For functions u,v(z L2(d) we 
define the inner product (u, v)& = J s u(t)v{t) dt and the norm ||#||a = (u, u)f. 
We choose the subintervals 5 so that each contains a point c, and we define a 
fundamental set of solutions <t>i(t, X), . . . , <t>n{t, X) of (3) by the initial 
conditions 

(7) « / ^ f o X ) = àjk (j,k = 1 , . . . , » ) . 

Then the following results are known (8, Chapter 7) for the non-singular 
boundary value problem on the subinterval <5. 

THEOREM 2. There exists a unique Hermitian matrix p& = (pôjk) whose 
elements are step functions with discontinuities at the eigenvalues of the self-adjoint 
boundary value problem on 6. If A = (Xi, X2], where X2 > Xi, the matrix 
P«(A) = PÔ(X2) — ps(Xi) is positive semi-definite. The total variation of psjk on 
every finite interval is finite. If we define the transform gs of f G L2(ô) by 

gui*) = JVco^e, x)& (j = i , . . . , »), 
then 

J»œ n 
gijQ>)gik(X)dp6jkQ<). 

-co j,k=l 
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Also 

« ' - c o j,k=l 

with the integral converging to f in the norm of L2(5). 

Using the results of Theorem 2 and proceeding as in (8, Chapter 10), we 
prove the existence of a limiting matrix p, called a spectral matrix, for the 
singular boundary value problem on (a, b). 

THEOREM 3. Let {8} be a set of compact subintervals of (a, b) tending to (a, b). 
Then {8} contains a sequence {5r} tending to (a, b) as r —-> oo such that 

p(X) = limP3r(X) 
r->oo 

exists on — co < X < oo. The limit matrix p is Hermitian; p(A) = p(X) — p(/x) 
is positive semi-definite if A = (Xi, X2], Xi < X2; and the total variation of p on 
every finite interval is finite. 

For any limiting matrix p, we define L2(p) to be the Hilbert space of vectors 
gM = (gi(M> • • • 1 gw(X)) measurable with respect to p and such that 

(8) ||g||2= P Ê «j(X)g.(A)dP/*(X)< ». 

The inner product in L2(p) is given by 

(ga>,g(2,)= r t «AA&^X^OO. 

Now, proceeding as in (8, Chapter 10), as indicated for our more general 
problem in (11), we obtain the following results. 

THEOREM 4. Let p be any limiting matrix given by Theorem S.'Iff £ L2(a, b), 
then there exists g £ L2(p) such that if 

gij(X) = f*f(t)$À*, *)d* (5 C (a, b);j = 1, . . . , n), 

then \\g — gs\\ —*0 as 5 —> (a, #). /w /^ms 0/ / t o transform g, we have the 
Parseval equality 

(9) ll/ll = ||«||, 
aw^ £/ze expansion 

(io) /(*) = f î i,Wfc(a^w, 
« ' - c o j,fC=l 

where the integral converges to f in the norm of L2(a, b). We represent the trans­
form g by 

(ID g, (X) = ( f(t)$}{t,\)dt ( / = I . - • - . » ) • 
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The inverse transform theorem and the uniqueness of the spectral matrix 
are derived from the following theorem (11). The main point of this paper is 
to show that the properties of the Green's function can be established from 
this theorem without the need to return to the study of the subintervals ô as 
in (8, Chapter 10). 

THEOREM 5. Iff G L2(a, b) is expressed in terms of g G L2(p) as in Theorem 4 
and if I m X ̂  0, then there exists a unique solution u of the non-homogeneous 
equation 

(12) Lu = \u+f 

which satisfies the boundary conditions (4). This solution is given by 

J
»œ n 

—oo j,k=l 

In the course of proving Theorem 5, we define 

J» n 

A j,k=l 

(* n 

as) MAW = E fa-xr1g>(<o**c,«o<w(<o, 
«/A i,A;=l 

where A = (Xi, X2], and we show that 

| | / — /A||—>0, \\u — WA|| —>0 as A —> (— oo, oo ). 

Also, we show that 

Lu& = \UA -\- /A, 

and that UA satisfies the boundary conditions (4). 
We shall make use of these facts in the next section. 

3. As we know from the theory of non-singular boundary value problems 
(8, Chapter 7), we can construct a Green's function for a self-adjoint boundary 
value problem on a compact subinterval of (a, b). I t is possible (8, Chapter 10) 
to find a sequence of compact subintervals and a corresponding sequence of 
Green's functions which converges to a limit function. This limit function is a 
Green's function for the singular boundary value problem on (a, b). We shall 
use a different approach to study the Green's function for the singular boundary 
value problem by using Theorem 5. 

We define 

(16) GA(*, T, X) = f £ (* " X ) - 1 ^ ^ , eO&fo a)dpjk(a), 
«/A j,k=l 
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for a < t, T < b, Im X 9^ 0, A = (Xi, X2]. Then we have 

E («• - x r ^ o o & c . <r)dP/»(«r) 

= ( È (<r- X)"1 f / ( r ) & ( r . <r)dr &(*, <r)ip«(cr) 
«/A ./,£=1 L «/a J 

= I I Z ) (o- - ^)~1^j(rJa)(l)k(t,a)dpjk(a) \f{r)dr 

= f GA(t,r,\)f(r)dr. 

For Im X 7^ 0, a < /, r < Z>, we now define 

5 k f t T, X) = GA(f, r, X) - GA(/, T, X), 
(18) fli+k-2 

PAJJCW = d^-id k-iHuic, c, X) (j, * = 1, . . . , w). 

T H E O R E M 6. The matrix PA(X) is related to the spectral matrix p(X) by 

(19) PAjk = 2iIm\ X | 7 = ^ ' 

1 P 2 

(20) py*0*2) - pjkfai) = 7T~- lim I P A # ( M + *>)djLt ( j , k = 1, . 
7̂T2 r_v04- «̂ ui 

Pi* 

provided ph M2 G A. 

Proof. If X = ju + ir, then 

w) 

i7A(/, r, X) = I ^ ( = ) (J>P(T, <T)<t>q(t, a)dppg(a) 
•/A p,q=l \& — A °" — A/ 

t/A p,ff=l (0" — M) ~T ^ 
If we differentiate j — 1 times with respect to t and k — 1 times with respect 
to r, then sett ing t = T = c, and using (7) and (18), we obtain 

PAjk(\) = 2ir 

which is equivalent to (19). 
T o obtain (20), we write 

J'* dpjk((r 

A (0- — M) 

) 

r^ . l im C P ^ + ir)d» = ± llm P [ f — ^ GO 
\2 . 2 1 

) + r J 

rd/jL 

provided /xi, /x2 G A. 

= - lim I I 7 , 2 , 2 
7T r_̂ o+ J A L */M1 (C — JJL) -+- r 

= ±lim f [tan-1 (^-=-^) 

- , a „ - ( ^ ) 

dpjk((r) = p^(M2) — Pi* (MI) 1 
MI 

dp, 

dpjk(a) 

dpjk(°) 
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It can be shown (1, pp. 177-181), that there exists a Green's function 
G(t, T, X) for a < t, r < b, Im X ̂  0 which is in the class L2(a, b) as a function 
of t for each fixed r and Im \ ^ 0, and also as a function of r for each fixed t 
and Im À ̂  0. This function has partial derivatives up to order n — 1 with 
respect to t, which also belong to L2(a, b) as functions of t, and 

d^Git, Ty\)/dtn~l 

is continuous except for a simple discontinuity at t = r. The function 
G{t, r, X) has the symmetry property 

(21) G(t,r,\) = G ( T , * , X ) 

for a C t, T C &, Im X ̂  0. The unique solution u of the non-homogeneous 
equation (12), for any g iven / G L2(a, b), which satisfies the boundary con­
ditions (4) can be written 

(22) U(t) = f G(t,T,\)f{T)dT. 

The proofs of these statements depend on the variation of constants formula 
for linear differential equations and on elementary properties of Hilbert space, 
but not on any facts concerning linear operators. In particular, they do not 
depend on the spectral theorem. 

Because of the symmetry relation (21), not only the partial derivatives 
dp~lG{t, r, X)/'dtv~~l belong to L2(a, b) as functions of t for fixed (r, X), but also 
the partial derivatives âp-1G(/, r, X)/'drv~1 with respect to the second variable. 

In order to relate the Green's function G(t, r, X) to the function G^(t, r, X) 
defined by (16), we need the following lemmas. 

LEMMA 1. Let f G L2(a, b) have transform g G L2(p), and let u be the unique 
solution of (12) which satisfies the boundary conditions (4), i.e. 

u{t) = f G(f,T,\)f(r)dT. 
"a 

If v G L2(p) is the transform of u, then 

(23) Vj(a) = gj(a)/(a - X) (J = 1, . . . , n). 

Proof. For any function hit) G L2(af b) which vanishes outside a compact 
subinterval of (a, 6), Green's formula shows that 

J*& /»& 

Lh (/) fa (t, a)dt = I h {t)L <j>j (/, a)dt 
a J a 

= er J h(f)$s(!,*)dt 0 = 1, . . . , » ) . 

Thus the transform in L2(p) of Lh is the product of the transform of h and 
the independent variable in L2(p). This can be extended to all h G D which 
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satisfy the boundary conditions (4) by a standard density argument. Using 
this fact we may now take transforms in the equation 

Lu — \u + / 
to obtain 

aVj(a) = \Vj(cr) + gj(a) (j = 1, . . . , »), 

from which (23) follows immediately. 

LEMMA 2. The transform in L2(p) of dp~1G(tt r, X)/drp-1, considered as a 
function of t for fixed (r, X), is given by 

(a-Xyifiv-Vir,*) (j,p = l , . . . , n ) . 

Also, for j , k = 1, . . . , w, and Im X = 0, 

(24) r ^ ^ -79 < 0 0 , 

X 2 v 

Proof. L e t / be the function in L2(a, b) with the value 1/s on the interval 
(r, r + 5) and the value zero elsewhere. Its transform g is given by 

1 CT+S 

gii?) = - J tfA <0* y = 1» • • • i »)• 
Let 

J
»b 1 /»T+S 

G(f, x, X)f(x)dx = - G(/, x, X)d*. 
a S */ T 

By Lemma 1, the transform y of u is given by 

(26) Vj(a) = J & [ j J " * ' G(/, x, X)JxJ *,(*, a)dt = ^ ^ (j = 1, • • • , »)• 

We observe that (25), (26) imply that 

(27) lim gj(a) = 0,(r, cr), lim «(/) = G(t, r, X), lim Vj(a) = ^ ^ ^ . 

Since G(/, r, X), considered as a function of /, belongs to L2(a, b), Theorem 4 
shows that the integral 

I G(t,T, X)0,(/, <r)dt 
•)a 

converges for j = 1, . . . , n. Thus, using (27), 

G(t, T, \)$j(t, a)dt = lim u(t)$j(t, <j)dt 

= lim I u(t)<j>j(t, a)dt 

= lim » » = ̂ ^ (j = 1, • • • , »). 
s_>0+ cr — A 
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Since the partial derivatives of G with respect to r of order up to n — 1 belong 
to L2(a, b), Theorem 4 shows that the integrals 

J ^ F Ï G ^ T , \)^{t,fr)dt ( £ = 1 , . . . , » ) 

converge. Therefore we may differentiate (28) with respect to r, obtaining 

(29) J " £p=ïG(t, T, A)ft(*, «r)<ft = *' ^ _(T^ J ) 0 ' . ^ = 1 , • • • ,» ) • 

If/1 and / 2 are two functions in L2(a, 6) with transforms g1 and g2 in L2(p) 
respectively, then it is an easy consequence of the Parseval equality (9) that 

J»& / » œ n 

f\t)f\t)dt = £ g?{c)gk\<T)dPik{*). 
We apply (30) to the functions 

/ ( / ) = £~i G(t, r, X), f(t) = J ^ T G(t, r, X) 

whose transforms we have just calculated. We obtain 

^ J P I Git, r, X) — j=r G(f, r, X)d* 

J»oo W 

I k - X r ^ ^ ^ T , <r)^(4-1)(r, a)dPjk(a) 
- co M ' = l 

(£, g = 1, . . . ,n). 
Now we set r = c and use (7) to obtain 

as desired. This completes the proof of Lemma 2. 

THEOREM 7. 77£e Green1 s function G(t, r, X) is gwew 63/ 

J«oo n 

- 0 0 i , A ; = l 

= lim GA(/, T, X), 
A^(-oo,oo) 

for 0 < / , r < 5 , I m X ^ 0 , w//^ £&e integral converging in the norm of L2(a, b) 
as a function of t for fixed (r, X), and also in the norm of L2(a, b) as a function 
of T for fixed (t, X). The equation (31) may be differentiated n — \ times with 
respect to either t or r. 

Proof. By Lemma 2 the function dv~lG(t, r, \)/dTp~l has the transform 

(<r - X)"1<?^-1)(r, cr) ( £ = ! , . . . , « ) . 
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We may now apply Theorem 4 to give the expansion of this function, namely 

(32) ~ T G ( / , T , A ) = P £ {«-\Tl4>?-l)(j}a)<t>k(T,<T)dpjk{<j) 
VT J - o o j,k=l 

(p = 1, . . . ,n), 
with the integral converging in the norm of L2(a, b) as a function of t. The 
convergence in the norm of L2(a, b) as a function of r and the possibility of 
differentiating G(t, r, X) under the integral sign with respect to t are immediate 
consequences of the symmetry relation (21). 

For a non-singular self-adjoint boundary value problem on a finite interval 
with a sequence of eigenvalues {A*} and corresponding orthonormal eigenfunc­
tions {uk(t)\, we have 

oo 

(33) G(t, T, X) = £ (X* - X)-Vt(0«*(T) (Im X * 0), 
k=0 

with the series converging to G(t, r, A) in the norm of L2[(a, b) X (a, b)] 
(8, p. 202). When expressed in terms of the spectral matrix, (33) takes the 
form (31). Thus Theorem 6 is the natural generalization of (33) to the singular 
case. The expansion (31) cannot be expected to converge in the norm of 
L2L[(a, b) X (a, b)] in general, however, because this would imply that 
G(t, r, A) G L2[(a, b) X (a, b)], from which it would follow that the boundary 
value problem (3), (4) has a pure point spectrum just as in the non-singular 
case. 

The convergence of the integral 

f°° dpjk(<r) 

J-Ja-W2 

demonstrated in Lemma 2 shows that we may let A —* (— oo , oo ) in (19). We 
see that PA (A) converges to a matrix P(A) as A —» (— °°, °° ), and 

(34) P,*(X) = 2* Im X £ J7Z^J2 (j,k = l,..., n). 

Then we may let A —> (— oo, œ ) in (20), obtaining 

1 f2 

(35) P;*(M2) - pjk(v>i) = 7T-. lim P^(/x + *r)<fy* (j, k = 1, . . . , n). 

The convergence of Gà(t, r, A) to G(t, r, A) shows that P^(A) is given by 

if( / , r , A) = G(*, r, A) - G(/, r, X), 

P#(A) = ~tJ-id^-iH(c, c, A) (j, * = 1, . . . , n). 

analogous to (18). The formulae (34), (35) are known as the Titchmarsh-
Kodaira formulae (8, p. 280), relating the Green's function to the spectral 
matrix. 
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