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§(1).
After a summary of the results of previous writers § (2), it is

shown in §(3) that if Dirac's equation holds, then div D vanishes,
where D is Whittaker's Euclidean vector.1 D may be written in the
form tp' F tf>, the product of three matrices. In five-dimensional
Riemannian geometry Flint's form of Dirac's equation2 may be

rewritten as tfi* y* ~ = 0. These modifications of the forms of

Whittaker and Flint are later linked through the geometry of Distant
Parallelism,3 necessary results in which are given in § (4). The
postulates of § (5) show the relativistic manner of linkage and the
broadening of the Riemannian geometry proposed for this purpose.
In § (6) the effect of this broadening on metrical quantities is examined
while in § (7) the suggested quantum, equation is seen to be Dirac's.
The dependence of the Dirac 0's on space-structure and the inter-
pretation of the coordinate transformations of x5 are given in § § (8 and
9) respectively.

§ (2). Summary of known results used later.

With a slight change of notation, Whittaker's vector D has com-
ponents

-D1 = 01 04 + 03 02. D2 = I (01 04 — 03 <M> # 3 = 0103 ~ 02 04.
Z>4 = I (0j ̂ 3 + 02 t(,4) (la)

i E. T. Whittaker, Proe. Royal Soc. (A) (15S) (1937), 38-46.
» H. T. Flint, Phil. Mag., 7[(29) (1940), 417-433 (429).

H. T. Flint, Proc. Royal Soc. (A) (150) (1935), 421-441.
3 A. Einstein, Berliner Sitzungberichte (1928), 217-221, 224-227.

A. Einstein, Berliner Sitzungberichte (1929), 2-7, 156159.
A. Einstein, Berliner Sitzungberichte (1930), 18-23, 401-402.
A. Einstein. W. Mayer, Berliner Sitzungberichte (1931), 257-265.
R. Weitzenbock, Berliner Sitzungberichte (1928), 466-474.

. H. T. Flint, Proc. Royal Soc. (A) (121) (1928), 676-681.
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where (ifilt ip2) and (08, ^4) are spinors transforming according to

i/j'1 = aif,1+ pfa: 02 = y^ i + Si/r2 (2a) where a 8 - f t / = l , (3a)
the metric being given by dsz = (dz1)2 + (da;2)2 + (da;3)2 + (dx*)z. The
vector D is self-perpendicular so that

(Z*1)2 + (Z>2)2 + (Z>3)2 + (Z)4)2 = 0. (4a)

The Riemannian interval da is given by

da2 = y^dx^dx" (5a) where /x, v = 1, 2, 3, 4, 5.

Greek scripts relate to a five-dimensional world. Kaluza1 and Klein*
take this to be cylindrical. Hence

y^, is independent of xb. (6a)

The three-index symbol is written as T*y (= T*3). The Tetrode,
matrices, y", are connected with the y"' by the equations

y^y + y-y-=:2y^l. (7a)

The covariant derivative of a tensor T°^ with respect to â  is denoted
by T*.x. Schroedinger* writes

rl:x = r A - y l - r i r , . . (8a)

The permissible transformations of coordinates in this cylindrical
world are governed by

x5=x5+f5(x\ x\ xs, x*) (9a)

xm=fm(x\x2
!x

s,xi). (10a)

To include electromagnetism with gravitation in this world, Klein
takes

k4 ymn —gmn = {r5m-y5n)/w
2

)/w, 7 5 5 = ( P <t>m4>m + l)/<*>*,

where m, n = 1, 2, 3, 4, k is a constant connecting gravitational and
electromagnetic units, gmn is the metrical tensor of General Relativity
corresponding to y^ and the constant w is given by

<o2 = y65. (12a)
Further, the expressions

d6 = (Yll6dx-)lw (13a) ymn-(ym5-y«5)/^2 (14a)

1 Th. Kaluza, Berliner Sitzungberichte (1921), 966-972.
2 O. Klein, Zeischrift fur Phys. (37) (1926), 895-906.
3 H. Tetrode, Zeitschrift fur Phys. (50) (1928), 336-346.

* E. Schroedinger, Berliner Sitzungberichte (11) (1932), 105-128 (109).

https://doi.org/10.1017/S0013091500008592 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008592


176

and

H. W. HASHED

fym5 (15a)8xn \ o) J dx
are invariant under (9a) and (10a).

The immediate vicinity of every point of a Riemannian
continuum is the seat of the embedded world of Einstein's Distant
Parallelism, determined by tensors h*, ha/x, in which components
relating to the embedded geometry are denoted by the first subscrip
after the h, while Riemannian components are indicated by the
ensuing super- or subscript.
We have y ^ = ha>l. hat, (16a)

V" = K - K (17a)
L>i=KLa (18a>

where If and La are corresponding components of the same vector in
the two geometries. The three-index symbol appropriate to Distant
Parallelism is denoted by A^ and

a dxK (19a)

while the covariant derivative of T£ with respect to xK in this geometry
is written as Ta

B.x. I t follows that

Ke;* = ° a Q d ^ . A = 0. (20a)
The quantity A^ — A£a is a tensor which vanishes if the continuum is
Euclidean everywhere and we write

AjJ, = A*, — A£a (21a) and A£ = Aa. (22a)

The connection between Ffx and Af̂  is given by

2 T- = A- + A£ + y - ylj3 AfA + yAp y - Af, (23a)

and the simplest connection between y" and h% is given by

y- = h»Ea, a= 1,2, 3,4, 5 (24a)

where Ea are five Dirac matrices forming a pentad of which the one
used later is

. 1. . 1 .
. . . 1
I . . .
. 1 . .

. . - 1

. —1
1

1

. - 1 .

. . - 1
where a dot indicates a zero element. The E's are Hermitean.

(25a)
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Hip = (tply ifi2, ip3, >Pi) is a row vector in cylindrical five-dimensional
geometry in which w is a constant, Flint obtains Dirac's equation in
the form

r | £ = 0 (26a) where ^ = 2 w ^ ^ (27a)

and i/i is a scale-factor after the manner of Weyl.

§(3).
From now on new equations are numbered (1), (2), etc., the

known results of §(2) are quoted as (la), (2a), etc.
From (la) the equation div D = 0 becomes

where bh = 2 TTimQc.

In (1) certain terms containing b have been added but the sum of
such terms is zero and the equation takes the form

</rrQr = O r = 1,2, 3,4, (2)
where Qr = 0 (3)

are Dirac's equations. Hence (1) holds when Dirac's equations hold.
Since the coefficients of the cifi/dxm and of b>ft in (3) are elements

of ^/-matrices, the vector D may be written as
2Dm = ip'Fm>p m = 1,2,3,4
2 D5 = ifi' F51/< = 0, (4)

where the .F's form a set of five four-point matrices, and I/J' is the
transposed of iji.

The vector character of D has thus been made dependent on the
vector character of the four-point matrices F, the ^'s being regarded
as invariants. This procedure seems justified by the remarks of
Laporte and Uhlenbeck1 who give alternatively the F's as constants
and the i/r's transformables.

1 Laporte and Uhlenbeck, Phys. Rev. 2nd Series (37) (2) (1931), 1380-1397.
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Flint's1 equation (26a) may l>e written as

where 0* is the complex conjugate of ip, and be linked with
Whittaker's work by passing from Euclidean to Riemannian Geometry
via Distant Parallelism.

§ (4). Some properties of Distant Parallelism.

From (21a), (22a) it follows that

and, by differentiating the equation h° . haa = 8* with manipulation of
dummy suffixes, we have

Ka-K.^0, (7)
which, with (6), gives

AM = A'.A^:a (8)

Using (25a), (20a) and (24a) and t,aporte's second alternative §(3) it
follows that

7% = 0. (11)
Also (24a) yields

2 Ag = trace (y* Ea + Ea •/••) . (12)

so that 2 Ag: M = trace (y^ i?a + ^B y^J. (13)

Hence by (9), 2 Ao = - trace (y^y* + yx y»:J (14)

and, by (10) and (24a),

I t is found that

2 y.s* = (yx. A ; 4- y»A^ + yMO A»x) y ,̂ (16)

by use of (23a) and (24a), and this leads to the value of I \ in (8a)
namely

- 8 I \ = (yKa A ^ + y ^ A v - YraAU *•* + tK.l, (17)

where 2 s*" = y*yv — y* y^ and <x is an arbitrary vector.

i H. T. Flint, Phil. Mag. (7) (29) (1940), 417-433 (429).
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§(5). Postulates.

A. The vector ifi* y* <\t, where the four non-vanishing components
of tft* and 1/1 are invariants in a cylindrical Riemannian five-world, is
the generalised Whittaker vector, ifi* is the complex conjugate of <fi.

B. The generalised Whittaker vector is identified with the basic
vector of Distant Parallelism by the equation

A" = iji*y*ip. (18)

C. The fundamental law of atomic mechanics is given by

A.V=0

in a cylindrical world more general in character than that of Klein.

D. The generalisation in C is obtained by setting

E. When atomic phenomena are considered co is given by D and
gravitation is neglected so that gmn = 1 or 0 according as m, n are the
same or different.

F. The dependence of tfi in A cfti xh is given by

ML = 2 7 r t m o c t " J, (20)
8x5 h V'

G. The constant k in (Ila) loses its meaning when gravitation
is neglected, in which case we set

(21)

§(6).

Postulates A, B, C are suggested by § (3). The generalisation D
does not affect the invariance of (12a), (13a) and (14a) under trans-
formations (9a) and (10a), but the expression (15a), still to be regarded
as the electromagnetic intensity, will be invariant only if

8f5 8co _ 8fb 8CD

dx~™ ' 8xn ~ 8xn' 8xm>

that is, if w and /5 are functions of each other. We then have u>
invariant and (9a) becomes

) . (22)
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Using E, it is found that one set of values of h? which satisfy
(lla) is

htm — k<f>m, h66 = co, hb
m = - (tym)/co, h\ =l/to (23)

where m = 1, 2, 3, 4 and k is given in G. With these values the only
components of A^ which do not vanish are

Kn = (**•».)/« ' (24)

Q lOf f CO
A B ^^ A _ _ A tn ___ o / O *I \

in which î mft = ~^ — is the electromagnetic intensity.
ozcn ox

With (24a), (23) gives

ym _ $m a n (J yS^ = _ tym flm _|_ ;̂5_ (26)

§ (7). The suggested Quantum Equation.

From (18), (19), (11) we hav«

£ * • , * * - o .
which, with (26), (21) and (20) yields

H 8Jtl E m + - 1 <f>m I/J* Em - moc ip*

HE™p^-^-^E^ + mocE*+) = (), (28)
oxm c )

where 2 -m H = h. Writing Q = HEm - ^ — — <j>m Em $ + mocE5tfs,

and remembering that Em, E* are Hermitean, (28) assumes the form

trace (Q* 0 + ^ * Q) = 0, (29)

in which Q* denotes the complex conjugate of Q. Setting
Dg = Rq exp (i09) and 0, = r9 exp<ia?), (29) becomes J??r-gcos (Sj—aq)=0.

Since, in general, 6q — aq differs from (2?i + \)TT and, by A, rq

differs from zero, it is concluded that Rq vanishes and that

Qg = 0. (30)
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It then appears that the ^'s in (30) are Dirac Wave-functions and
that the equation

A%=-0 (19)

is Dirac's equation when B is used.

§(8).

The step from classical to quantum mechanics involves (1) the
promotion of a> from a constant to an invariant and (2) the transition
from the Riemannian continuum to that of the embedded world of
Distant Parallelism. The relationship between the Dirac ^'s and the
metrical tensor A^ is, by (18) and (25a),

A j = ip? ip3 + <A* 4>i + # f <Ai +• >A* «Aa

and four similar components, the last of which is zero. From these
it follows that

A*AM= [trace </<*0]2 (31)

so that the length of A^ is proportional to the probability of occur-
rence of the electron.

From (15), (25), (26) we have

y* = Em ^ | ^ (32) and trace y* = 0. (33)

Using (25a) with (32) it is found that

- W«=-(^i+*Ji ) log co (34)

and three other similar results. Thus, apart from their dependence
on x5, the Dirac ip's are more truly part of the geometric stage than
actors on it and this is a sine qua non of a relativistic theory.

§(9). The Coordinate Transformation of x6.

The unidentified fifth coordinate, x6, transforming according to
(22), behaves differently from the others. It is a cyclic coordinate
and its role, to use Whittaker's metaphor, is that of a catalytic agent.
By postulate A the ^'s are Riemannian invariants and will be
unchanged in value by the transformation (22) which yields

m0co)f(co)=nh, (35)
so that (22) becomes

xb =x* +nh/(m0cio) (36)
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where n is an integer. Hence at any point, P, of the continuum xb

can be changed only by an integral multiple of h/(m0c<o), that is,
of an invariant at P. This restriction, and the freedom to ascribe a
meaning to x5, suggests that the permissible change in it is a measure
of the uncertainty of position of the electron and that m0 c u> is
associated with the uncertainty of the (conjugate) momentum.

If a is the angle between the vectors with components Â  and
dxM we have, by (31),

4,* 4>m . cos a . da = A^ dx"- (37)

so that, by (25),

to = co0exp( — J <p*$m cos a. da). (38)

§(10). Conclusion.

It must be confessed that in the foregoing a heavy burden has
been placed on the invariant co, that the interpretation of (36) is
speculative and that perhaps the ^'s have been overdetermined by
equations (34) and (30).

It has been said that some of the entities appearing in quantum
theory have "slipped through the tensor net." Prof. Whittaker's
paper on the relations between the spinor and tensor calculus shows
how this has happened and has introduced the important vector D
on which this paper is founded.

Summary.

The generalised Whittaker vector is AM which is prevented from
vanishing by rejection of the constancy of a>, previously assumed by
all writers. It is shown that (1) the null divergence of A" is
equivalent to Dirac's equation, (2) the length of A* measures the
probability of occurrence of the electron (3) components of A11 are
connected with the Dirac wave functions and.possible transformations
of x* are probably related to the Uncertainty Principle.
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