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G(n; I) will denote a graph of n vertices and / edges. Let fo(n, k) be
the smallest integer such that there is a G(n; fo(n, k)) in which for every set
of k vertices there is a vertex joined to each of these. Thus for example
/0(3, 2) = 3 since in a triangle each pair of vertices is joined to a third.
It can readily be checked that /0(4, 2) = 5 (the extremal graph consists of
a complete 4-gon with one edge removed). In general we will prove: Let
n > k, and

(1) /(«, *) = (k-l)n- (*) + p=^j +1;

then/0(», k) = f(n,k).
It will be convenient to say that the vertices xlt . . ., xk of G are visible

from xk+1, if all the edges (xt, xk+1), i = 1, • • •, k occur in G. A graph is said
to have property Pk if every set of k of its vertices is visible from another
vertex. Gn will denote a graph of n vertices (the number of edges being
unspecified) and G{m) denotes a graph having m edges. Let Gj,0> = {Gn;
f(n;k)) be defined as follows: the vertices of G^] are x1,---,xn. The
vertices xiti = 1, • • •, k—l are joined to every other vertex and our Gj,0)

has [n—k-\-2j2] further edges which are as disjoint as possible. In other
words if n—k-\-\ is even G^0) has the further edges (xk+2j, ^*+2,+i), / = 0, • • •,
[n—k—l/2], if n—k+\ is odd the edges are (xk, xk+1), {xk,xk+2), (xk+j+1,
xk+j+2), j = 1, • • •, [n—k—2/2]. It is easy to see that Gj,Q) has property Ph.
Now we prove

THEOREM 1. A graph G(n;f{n,k)) has property Pk if and only if it is
our graph Gl®\

Theorem 1 is vacuous for n 5S k and it is trivial for n = k-\-\, thus we
can assume n 2: k-\-2. Clearly Theorem 1 implies (1). To see this it suffices
to observe that if a G(n; f(n, k) — 1) would have property Pk we could add
to it a new edge so that the resulting G(n; f(n, k)) would not be a
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Since G^0) has pioperty Pk we only have to prove that a G{n; f(n, k))
has property Ph then it must be our G^\ Before we give the somewhat
complicated proof we outline a simple proof of (1) for k = 2.

LEMMA. Let Gn have property Pk then every pair of its vertices is visible
from at least k—l vertices.

Assume that the Lemma is false. Then say xl and x2 are visible
from only ylt . . .,ylt I tst k—2. But then the set of 1+2 <S k vertices
xi> X2> V\> • • •> Vi would not be visible from any vertex of Gn, which contra-
dicts our assumption.

Let now xit i = 1, . . ., n be the vertices of Gn and assume that vt is
the valency of x( (i.e. xi is joined to vt vertices of G). Our Lemma implies

(2) i

since the number of pairs of vertices visible from xi is (VA.
From (2) it is easy to deduce (1) for k = 2. To see this observe that the

number of edges of a graph is \ 2?=i vt •

By (2) 2i~i (2) = (2) an<^ ^ n u s b v a simple argument \ 2"-i vi w ^ b e

at least as large as in the case that one vt say vx is as large as possible i.e.
v1 = «—1, and v2, . . ., vn are as small as is consistent with (2). Now it is
easy to see that P2 implies vt S: 2 for all i. Hence

which agrees with (1) for k = 2 if n is odd. If n is even a similar but some-
what more complicated argument proves (1).

It does not seem easy to deduce (1) from (2) for k > 2. One could
easily obtain

f{n,k) = (/fe-i

but a more precise estimation seems difficult. Hence to prove (1) and
Theorem 1 we shall use a different method.

We say that G(m) has property 6t if it contains a set S of 1 vertices
xlt . . ., xt each of which is joined to some vertex of G(m) not in S. 0 is the
complementary graph of G i.e. two vertices are joined in G if and only if
they are not joined in G.

Put n = k+t—1. Then

n = n - P—
w L 2

1w L 2 J
Now a simple argument shows that the fact that G(n; f(n, k)) does not have
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property Pk is equivalent to G(n; f(n, k)) = G^-[{t+l)l2fj having
property dt_x. Thus Theorem 1 is equivalent to the following

THEOREM 2. Every G((£\ — [(t-\-l)l2]\ has property 0t_x except if it
is a G{°\

Clearly our 0^ is a G(t, (2) —[(2+1)/2]) where the missing [(2+l)/2]
edges are as disjoint as possible.

Theorem 2 is vacuous for t < 2 and trivial for t 5S 3. Henceforth as-
sume t S: 4.

To prove Theorem 2 let G ( ( 2 ) ~~ [( i—1)/2]) = G be any graphs which
does not have property Bt^. We will show that it must be a Q^\ First of
all we can assume that all vertices of our G have valency ^ t—2. For if not
then say x1 is joined to yx, . . ., yt_x which shows that G has property dt_x

which contradicts our assumption.
Assume next that G has a vertex x of valency t—2 (this will be the

critical case). Denote by ylt . . ., yt_2 the vertices joined to x and let Zj, . . .
be the other vertices of G. Clearly no two z's can be joined. For if (zx, z2)
would be an edge of G then z1,y1, . . ., yt_2 are t— 1 veitices each of them
are joined to a vertex not in the set, or G has property Qt^. Also no y
can be joined to two z's. For if yx is joined to zx and z2 then the t— 1 vertices
zi> Z2:2/2 > • • •» Vt-2 would show that G has property 0t_x.

Next we show that at least t—3 y's are joined to some z (as we know
each y can be joined to at most one z). Assume that u y's axe joined to
some z(u < £—3). Clearly (v(G) denotes the number of edges of G)

w •<*>-GH-r1]-+ (V)-""-"-El-'-
where iV is the number of the edges of the complete graph spanned by
Vi< • • •> Vt-i which do not occur in G. Now clearly

since a y joined to a z cannot be joined to all the other y's (since otherwise
Its valency would be /—1), hence a missing edge (i.e. an edge not in G)
is incident to every y which is joined to a z and this proves (5). From (4)
and (5) we have

(6) clearly implies u 22 t—3 as stated.
Hence either u = t—3 or u = 2—2. (4) and u ^ 2—2 implies that we

must have equality in (5) i.e. iV = [(«-)-1)/2].

https://doi.org/10.1017/S1446788700005954 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005954


[4] An extremal problem in graph theory 45

First we prove Theorem 2 if u = £—3. (6) implies that if u = t—3, t is
odd and since N = [(«+l)/2] + [w/2] = [(t—2)/2] and every y which is
joined t o a z must be adjacent to a missing edge we obtain that the [w/2]
missing edges must be isolated. In other words we can assume that our G
contains all the edges of the complete graph spanned, by x, y1, . . ., yt_2

with the exception of the edges (y2i, 2/2»+i)> *=!»•••» [(<—2)/2]. Further
every yit i = 2, . . ., 2—2 is joined to exactly one z. If all these z's coincide
then G is spanned by x, ylt . . ., yt^2, z and is clearly our 0^ and Theorem 2
is proved in this case.

To complete our proof of the case u = t—3 assume that y1 is joined
to zt and yf to zjt (z{ ^ Zj), 2 ^ i < / rg £—2. But then the 2—1 vertices
a;, zi; zt, {yt} 1 5S / ^ t—2,1 ^ i, I ^ j show that our G has property dt^1

(x and zi are joined to j / , - , zt is joined to ?/,• and every other ytl ^ i, I ^ /
is joined to y{ or y3 [since the missing edges were isolated]). This contradic-
tion completes the proof of Theorem 2 if u = t—3.

Assume next u = t—2. Then each y is incident to at least one missing
edge and since the number of missing edges is [(«+l)/2] = [{t—1)/2] we
obtain that for even t there are [t—2)/2 isolated missing edges. Just as in
the case u = t—3 we see that all the t^2 y's must be joined to the same z.
But then we again obtain our O^K This disposes of the case u — t—2,
t even.

Assume next u = t—2, t odd. These are [(/—1)/2] missing edges and
since each y is incident to one of them we can assume without loss of
g e n e r a l i t y t h a t t h e m i s s i n g edges a r e (y1, y2), (ylt y 3 ) , (y2l, y 2 l + 1 ) , 1=2,...,
[(t—2)/2]. If all the y's are joined to the same z we again get our G^. Thus
we can assume that not all the y's are joined to the same z. Now to complete
our proof we have to distinguisn two cases. Assume first that there is a z
say z( which is joined to only one y say yt. This case can immediately be
disposed of since the set of t—\ vertices x, zit {yj, 1 5S I ^ t—2,1 ^ i
shows that our G has property 0t_j (x and z{ are joined to y{ and all other
y's are by our assumption joined to a z different from zt). This contradiction
proves Theorem 2 in this case.

Assume finally that every z is joined to more than one y and there
are at least two z's. Let, say, zx be joined to yt and y} and z2 to yr. Observe
now that either every y is joined in G to one of the two vertices yt and yr

or every y is joined to one of the two vertices yt and yr (this follows from
the fact that the missing edges are either isolated or have at most one vertex
of valency two). Assume thus that every y is joined either to yt or to yr.
But then the set of t—1 vertices x, zx, z2, {yt}, 1 ^ I ^ t—2,1 =£i,l ^r
show that our G has property dt_1 (x and zx are joined to yit y2 to yr and
every yx, I ^ i, I ^ r is joined either to yi or yr). This contradiction com-
pletes the proof of Theorem 2 if G has a vertex of valency ^it—2.

https://doi.org/10.1017/S1446788700005954 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005954


46 P. Erdos and L. Moser [5]

Assume now that all vertices of G = GHg) —[(^+1)/2]J have valency
< t—2. We will show by induction with respect to i that then our G must
have property 0(_, and this will complete the proof of Theorems 2 and 1
and also of (1).

Assume that the maximum valency of a vertex of our G is r < t—2.
Let x be joined to ylt . . ., yr. Denote as before by zt, . . . the other vertices
of G and let u be the largest number of z's joined to a y. Assume that yr is
joined to zlt . . ., zu. We evidently have

(7) u fS, min (t—r— 1, r— 1).

To prove (7) observe that u ^ r would imply v{yx) > r and u 5: t—r
would imply that G satisfies dt_, (consider the vertices y2, . . ., yr, zl,...,zu).

Denote by ut the number of z's joined to y( {ux = u) and by wt the
number of y's joined to yt. By (7) v(yt) = \-i

rui-\-wi ^ r— 1. Thus by (7)
the number E of edges incident to the vertices x,y1, . . ., yr equals

(8) E = r+i (

(8) follows from the fact that E is evidently maximal if all the ut are u = r— 1
(i.e. they are all as large as possible) and if wi = r—u—l = 0. From (7)
we have (Gj is the graph spanned by the z's)

Assume first r ^ </2. Then we obtain from (9)

•«* > f 7) - [^]
Hence by our induction assumption G1 has property 0t_r_1 i.e. it con-

tains a set of vertices zlt . . ., ^<_r_1 each of which is joined to some zjt

j > t—r—I. But then the t— 1 vertices Zj, . . ., zt_r_x, yx, . • -,yr show that
G has property 04_,, which proves Theorem 2 if r ^ t/2.

Assume next t/2 < r ^ i—3. Fiom (7) we have Mi <S ^—r—1 and by (8)
£ is maximal if all the u{ are i—r—1 and wt = r—l—ui = 2r—t. But then

by (8)

(11) E ^ r + r ( t - r l ) + ( 2 t )

From (11) we have
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Thus the proof can be completed as in the previous case, and the proof of
Theorem 2 is complete.

Denote by fo(n, k, r) the smallest integer for which there is a
G(n; fo(n, k, r)) in which every set of k vertices are visible from at least r
vertices. We say that a graph has property Pk T if every set of k of its
vertices is visible from at least r vertices. Just as in our Lemma we can show
that if Gn has property P i r then every pair of its vertices is visible from at
least k-\-r—2 vertices (our old property Pk is Pfc>1).

Thus we obtain as in (2) that if Gn has property Pk r then if k > 1

<*> IG1) *<•+--•>©•
From (2') we ca.n deduce that if n < nn(k, r) then

(12) /„(«, k, r) = /„(», k+r-1) = f(n, k+r-1).

(12) certainly does not hold for every n, k and r. It is easy to see that
/0(10, 2, 6) = 40 but /(10, 7) = 41. Our Theorem 1 states that (12) always
holds for r = 1 and perhaps it always holds for r = 2 also if k > 1. For
k = 1 every Gn each vertex of which has valency ^ r clearly has property
Plr, thus fo(n, l,r) = [(r»+l)/2], in other words if k = 1, r > 1 then (12)
is not true. We hope to return to these auestions on another occasion.

Finally we can ask the following question: Denote by F(n, k) the smal-
lest integer for which there exists a directed graph G(n; F(n, k)) so that to
every k vertices xlt . . ., xk of our G there is a vertex y of G so that all the
edges (y, x{) i = 1, . . ., k occur in G and are directed away from y. It is
easy to see that for n 5: 3, F(n, 1) = n (for n :g 2 there clearly is no
solution). It is not hard to show that for n S: 7, F(n, 2) = Zn and forn < 7
there is no solution. For k ^ 3, we only have crude inequalities for F(n, k).
We say that Gn has property S* (after Schiitte who posed the problem) if
for every set of k nodes (xlt . . ., xk) there is at least one node y in Gn so
that all the edges (y, xf), i = 1, . . ., k occur in G and are directed away
from y. Denote by f(k) the smallest value of n for which an S^-graph of n
vertices exists. We have

(13) (£_l)2*+3 ^ /(*) < ck22*.

(13) is due to P. Erdos, E. Szekeres and G. Szekeres (Math. Gazette 47 p. 220
and 49 p. 290). We can show that for n > no(k)

(14) f(k-l)-n^F{n,k)
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