AN EXTREMAL PROBLEM IN GRAPH THEORY

P. ERDÖS and L. MOSER
To Bernhard Hermann Neumann on his 60th birthday

(Received 6 January 1969)
Communicated by G. B. Preston
$G(n ; l)$ will denote a graph of n vertices and l edges. Let $f_{0}(n, k)$ be the smallest integer such that there is a $G\left(n ; f_{0}(n, k)\right)$ in which for every set of k vertices there is a vertex joined to each of these. Thus for example $f_{0}(3,2)=3$ since in a triangle each pair of vertices is joined to a third. It can readily be checked that $t_{0}(4,2)=5$ (the extremal graph consists of a complete 4 -gon with one edge removed). In general we will prove: Let $n>k$, and

$$
\begin{equation*}
f(n, k)=(k-1) n-\binom{k}{2}+\left[\frac{n-k}{2}\right]+1 ; \tag{1}
\end{equation*}
$$

then $f_{0}(n, k)=f(n, k)$.
It will be convenient to say that the vertices x_{1}, \ldots, x_{k} of G are visible from x_{k+1}, if all the edges $\left(x_{i}, x_{k+1}\right), i=1, \cdots, k$ occur in G. A graph is said to have property P_{k} if every set of k of its vertices is visible from another vertex. G_{n} will denote a graph of n vertices (the number of edges being unspecified) and $G(m)$ denotes a graph having m edges. Let $G_{n}^{(0)}=(G n$; $f(n ; k))$ be defined as follows: the vertices of $G_{n}^{(0)}$ are x_{1}, \cdots, x_{n}. The vertices $x_{i}, i=1, \cdots, k-1$ are joined to every other vertex and our $G_{n}^{(0)}$ has $[n-k+2 / 2]$ further edges which are as disjoint as possible. In other words if $n-k+1$ is even $G_{n}^{(0)}$ has the further edges $\left(x_{k+2 j}, x_{k+2 j+1}\right), j=0, \cdots$, $[n-k-1 / 2]$, if $n-k+1$ is odd the edges are $\left(x_{k}, x_{k+1}\right),\left(x_{k}, x_{k+2}\right),\left(x_{k+3+1}\right.$, $\left.x_{k+j+2}\right), j=1, \cdots,[n-k-2 / 2]$. It is easy to see that $G_{n}^{(0)}$ has property P_{k}. Now we prove

Theorem 1. A graph $G(n ; f(n, k))$ has property P_{k} if and only if it is our graph $G_{n}^{(0)}$.

Theorem 1 is vacuous for $n \leqq k$ and it is trivial for $n=k+1$, thus we can assume $n \geqq k+2$. Clearly Theorem 1 implies (1). To see this it suffices to observe that if a $G(n ; f(n, k)-1)$ would have property P_{k} we could add to it a new edge so that the resulting $G(n ; f(n, k))$ would not be a $G_{n}^{(0)}$.

Since $G_{n}^{(0)}$ has property P_{k} we only have to prove that a $G(n ; f(n, k))$ has property P_{k} then it must be our $G_{n}^{(0)}$. Before we give the somewhat complicated proof we outline a simple proof of (1) for $k=2$.

Lemma. Let G_{n} have property P_{k} then every pair of its verices is visible from at least $k-1$ vertices.

Assume that the Lemma is false. Then say x_{1} and x_{2} are visible from only $y_{1}, \ldots, y_{l}, l \leqq k-2$. But then the set of $l+2 \leqq k$ vertices $x_{1}, x_{2}, y_{1}, \ldots, y_{l}$ would not be visible from any vertex of G_{n}, which contradicts our assumption.

Let now $x_{i}, i=1, \ldots, n$ be the vertices of G_{n} and assume that v_{i} is the valency of x_{i} (i.e. x_{i} is joined to v_{i} vertices of G). Our Lemma implies

$$
\begin{equation*}
\sum_{i=1}^{n}\binom{v_{i}}{2} \geqq(k-1)\binom{n}{2} \tag{2}
\end{equation*}
$$

since the number of pairs of vertices visible from x_{i} is $\binom{v_{i}}{2}$.
From (2) it is easy to deduce (1) for $k=2$. To see this observe that the number of edges of a graph is $\frac{1}{2} \sum_{i=1}^{n} v_{i}$.

By (2) $\sum_{i=1}^{n}\binom{v_{i}}{2} \geqq\binom{ n}{2}$ and thus by a simple argument $\frac{1}{2} \sum_{i=1}^{n} v_{i}$ will be at least as large as in the case that one v_{i} say v_{1} is as large as possible i.e. $v_{1}=n-1$, and v_{2}, \ldots, v_{n} are as small as is consistent with (2). Now it is easy to see that P_{2} implies $v_{i} \geqq 2$ for all i. Hence

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{n} v_{i} \geqq \frac{1}{2}(n-1+2(n-1))=\frac{3}{2}(n-1) \tag{3}
\end{equation*}
$$

which agrees with (1) for $k=2$ if n is odd. If n is even a similar but somewhat more complicated argument proves (1).

It does not seem easy to deduce (1) from (2) for $k>2$. One could easily obtain

$$
f(n, k)=\left(k-\frac{1}{2}\right) n+O(1)
$$

but a more precise estimation seems difficult. Hence to prove (1) and Theorem 1 we shall use a different method.

We say that $G(m)$ has property θ_{t} if it contains a set S of t vertices x_{1}, \ldots, x_{t} each of which is joined to some vertex of $G(m)$ not in $S . \bar{G}$ is the complementary graph of G i.e. two vertices are joined in \bar{G} if and only if they are not joined in G.

Put $n=k+t-1$. Then

$$
\binom{n}{2}-t(n, k)=\binom{t}{2}-\left[\frac{t+1}{2}\right] .
$$

Now a simple argument shows that the fact that $G(n ; f(n, k))$ does not have
property P_{k} is equivalent to $\bar{G}(n ; f(n, k))=G\left(\binom{t}{2}-[(t+1) / 2]\right)$ having property θ_{t-1}. Thus Theorem 1 is equivalent to the following

Theorem 2. Every $G\left(\binom{t}{2}-[(t+1) / 2]\right)$ has property θ_{t-1} except if it is $\mathfrak{a} \bar{G}_{n}^{(0)}$.

Clearly our $\bar{G}_{n}^{(0)}$ is a $G\left(t,\binom{t}{2}-[(t+1) / 2]\right)$ where the missing $[(t+1) / 2]$ edges are as disjoint as possible.

Theorem 2 is vacuous for $t<2$ and trivial for $t \leqq 3$. Henceforth assume $t \geqq 4$.

To prove Theorem 2 let $G\left(\binom{t}{2}-[(t-1) / 2]\right)=G$ be any graphs which does not have property θ_{t-1}. We will show that it must be a $\bar{G}_{n}^{(0)}$. First of all we can assume that all vertices of our G have valency $\leqq t-2$. For if not then say x_{1} is joined to y_{1}, \ldots, y_{t-1} which shows that G has property θ_{t-1} which contradicts our assumption.

Assume next that G has a vertex x of valency $t-2$ (this will be the critical case). Denote by y_{1}, \ldots, y_{t-2} the vertices joined to x and let z_{1}, \ldots be the other vertices of G. Clearly no two z 's can be joined. For if $\left(z_{1}, z_{2}\right)$ would be an edge of G then $z_{1}, y_{1}, \ldots, y_{t-2}$ are $t-1$ vertices each of them are joined to a vertex not in the set, or G has property θ_{t-1}. Also no y can be joined to two z 's. For if y_{1} is joined to z_{1} and z_{2} then the $t-1$ vertices $z_{1}, z_{2}, y_{2}, \ldots, y_{t-2}$ would show that G has property θ_{t-1}.

Next we show that at least $t-3 y$'s are joined to some z (as we know each y can be joined to at most one z. Assume that $u y$'s are joined to some $z(u<t-3)$. Clearly $(v(G)$ denotes the number of edges of G)

$$
\begin{equation*}
v(G)=\binom{t}{2}-\left[\frac{t+1}{2}\right]=u+\binom{t-1}{2}-N \text { or } u-N=\left[\frac{t}{2}\right]-1 \tag{4}
\end{equation*}
$$

where N is the number of the edges of the complete graph spanned by y_{1}, \ldots, y_{t-2} which do not occur in G. Now clearly

$$
\begin{equation*}
N \geqq\left[\frac{u+1}{2}\right] \tag{5}
\end{equation*}
$$

since a y joined to a z cannot be joined to all the other y 's (since otherwise lts valency would be $t-1$), hence a missing edge (i.e. an edge not in G) is incident to every y which is joined to a z and this proves (5). From (4) and (5) we have

$$
\begin{equation*}
\left[\frac{u}{2}\right] \geqq\left[\frac{t}{2}\right]-1 \tag{6}
\end{equation*}
$$

(6) clearly implies $u \geqq t-3$ as stated.

Hence either $u=t-3$ or $u=t-2$. (4) and $u \leqq t-2$ implies that we must have equality in (5) i.e. $N=[(u+1) / 2]$.

First we prove Theorem 2 if $u=t-3$. (6) implies that if $u=t-3, t$ is odd and since $N=[(u+1) / 2]+[u / 2]=[(t-2) / 2]$ and every y which is joined to a z must be adjacent to a missing edge we obtain that the $[u / 2]$ missing edges must be isolated. In other words we can assume that our G contains all the edges of the complete graph spanned, by $x, y_{1}, \ldots, y_{t-2}$ with the exception of the edges $\left(y_{2 i}, y_{2 i+1}\right), i=1, \ldots,[(t-2) / 2]$. Further every $y_{i}, i=2, \ldots, t-2$ is joined to exactly one z. If all these z 's coincide then G is spanned by $x, y_{1}, \ldots, y_{t-2}, z$ and is clearly our $\bar{G}_{n}^{(0)}$ and Theorem 2 is proved in this case.

To complete our proof of the case $u=t-3$ assume that y_{1} is joined to z_{i} and $y_{\text {, }}$ to $z_{j},\left(z_{i} \neq z_{j}\right), 2 \leqq i<j \leqq t-2$. But then the $t-1$ vertices $x, z_{i}, z_{j},\left\{y_{l}\right\} 1 \leqq l \leqq t-2, l \neq i, l \neq j$ show that our G has property θ_{t-1} (x and z_{i} are joined to y_{i}, z_{j} is joined to y_{j} and every other $y_{i} l \neq i, l \neq j$ is joined to y_{i} or y_{j} [since the missing edges were isolated]). This contradiction completes the proof of Theorem 2 if $u=t-3$.

Assume next $u=t-2$. Then each y is incident to at least one missing edge and since the number of missing edges is $[(u+1) / 2]=[(t-1) / 2]$ we obtain that for even t there are ($t-\mathbf{2}) / \mathbf{2}$ isolated missing edges. Just as in the case $u=t-3$ we see that all the $t-2 y$'s must be joined to the same z. But then we again obtain our $\bar{G}_{n}^{(0)}$. This disposes of the case $u=t-2$, t even.

Assume next $u=t-2, t$ odd. These are $[(t-1) / 2]$ missing edges and since each y is incident to one of them we can assume without loss of generality that the missing edges are $\left(y_{1}, y_{2}\right),\left(y_{1}, y_{3}\right),\left(y_{2 l}, y_{2 l+1}\right), l=2, \ldots$, $[(t-2) / 2]$. If all the y 's are joined to the same z we again get our $\bar{G}_{n}^{(0)}$. Thus we can assume that not all the y 's are joined to the same z. Now to complete our proof we have to distinguisn two cases. Assume first that there is a z say z_{i} which is joined to only one y say y_{i}. This case can immediately be disposed of since the set of $t-1$ vertices $x, z_{i},\left\{y_{l}\right\}, 1 \leqq l \leqq t-2, l \neq i$ shows that our G has property $\theta_{t-1}\left(x\right.$ and z_{i} are joined to y_{i} and all other y 's are by our assumption joined to a z different from z_{i}). This contradiction proves Theorem 2 in this case.

Assume finally that every z is joined to more than one y and there are at least two z^{\prime}. Let, say, z_{1} be joined to y_{i} and y_{j} and z_{2} to y_{r}. Observe now that either every y is joined in G to one of the two vertices y_{i} and y_{r} or every \boldsymbol{y} is joined to one of the two vertices y_{j} and y_{r} (this follows from the fact that the missing edges are either isolated or have at most one vertex of valency two). Assume thus that every y is joined either to y_{i} or to y_{r}. But then the set of $t-1$ vertices $x, z_{1}, z_{2},\left\{y_{l}\right\}, 1 \leqq l \leqq t-2, l \neq i, l \neq r$ show that our G has property $\theta_{t-1}\left(x\right.$ and z_{1} are joined to y_{i}, y_{2} to y_{r} and every $y_{l}, l \neq i, l \neq r$ is joined either to y_{i} or $\left.y_{r}\right)$. This contradiction completes the proof of Theorem 2 if G has a vertex of valency $\geqq t-2$.

Assume now that all vertices of $G=G\left(\binom{t}{2}-[(t+1) / 2]\right)$ have valency $<t-2$. We will show by induction with respect to i that then our G must have property θ_{t-1} and this will complete the proof of Theorems 2 and 1 and also of (1).

Assume that the maximum valency of a vertex of our G is $r<t-2$. Let x be joined to y_{1}, \ldots, y_{r}. Denote as before by z_{1}, \ldots the other vertices of G and let u be the largest number of z 's joined to a y. Assume that y_{1} is joined to z_{1}, \ldots, z_{1}. We evidently have

$$
\begin{equation*}
u \leqq \min (t-r-1, r-1) \tag{7}
\end{equation*}
$$

To prove (7) observe that $u \geqq r$ would imply $v\left(y_{1}\right)>r$ and $u \geqq t-r$ would imply that G satisfies θ_{t-1} (consider the vertices $y_{2}, \ldots, y_{r}, z_{1}, \ldots, z_{u}$).

Denote by u_{i} the number of z 's joined to $y_{i}\left(u_{i}=u\right)$ and by w_{i} the number of y 's joined to y_{i}. By (7) $v\left(y_{i}\right)=1+u_{i}+w_{i} \leqq r-1$. Thus by (7) the number E of edges incident to the vertices x, y_{1}, \ldots, y_{r} equals

$$
\begin{equation*}
E=r+\sum_{i=1}^{r}\left(u_{i}+\frac{1}{2} w_{i}\right) \leqq r(u+1)+\frac{r(r-u-1)}{2}=\frac{r(r+u+1)}{2} \leqq r^{2} \tag{8}
\end{equation*}
$$

(8) follows from the fact that E is evidently maximal if all the u_{i} are $u=r-1$ (i.e. they are all as large as possible) and if $w_{i}=r-u-1=0$. From (7) we have (G_{1} is the graph spanned by the z 's)

$$
\begin{equation*}
v\left(G_{1}\right) \geqq\binom{ t}{2}-\left[\frac{t+1}{2}\right]-r^{2} \tag{9}
\end{equation*}
$$

Assume first $r \leqq t / 2$. Then we obtain from (9)

$$
\begin{equation*}
v\left(G_{1}\right)>\binom{t-r}{2}-\left[\frac{t-r+1}{2}\right] \tag{10}
\end{equation*}
$$

Hence by our induction assumption G_{1} has property θ_{t-r-1} i.e. it contains a set of vertices z_{1}, \ldots, z_{t-r-1} each of which is joined to some z_{j}, $j>t-r-1$. But then the $t-1$ vertices $z_{1}, \ldots, z_{t-r-1}, y_{1}, \ldots, y_{r}$ show that G has property θ_{t-1}, which proves Theorem 2 if $r \leqq t / 2$.

Assume next $t / 2<r \leqq t-3$. From (7) we have $u_{i} \leqq t-r-1$ and by (8) E is maximal if all the u_{i} are $t-r-1$ and $w_{i}=r-1-u_{i}=2 r-t$. But then by (8)

$$
\begin{equation*}
E \leqq r+r(t-r-1)+\frac{r}{2}(2 r-t)=\frac{r t}{2} \tag{11}
\end{equation*}
$$

From (11) we have

$$
v\left(G_{1}\right) \geqq\binom{ t}{2}-\left[\frac{t+1}{2}\right]-\frac{r t}{2}>\binom{t-r}{2}-\left[\frac{t-r+1}{2}\right]
$$

Thus the proof can be completed as in the previous case, and the proof of Theorem 2 is complete.

Denote by $f_{0}(n, k, r)$ the smallest integer for which there is a $G\left(n ; f_{0}(n, k, r)\right)$ in which every set of k vertices are visible from at least r vertices. We say that a graph has property $P_{k, r}$ if every set of k of its vertices is visible from at least r vertices. Just as in our Lemma we can show that if G_{n} has property $P_{k, r}$ then every pair of its vertices is visible from at least $k+r-2$ vertices (our old property P_{k} is $P_{k, 1}$).

Thus we obtain as in (2) that if G_{n} has property $P_{k, r}$ then if $k>1$

$$
\sum_{i=1}^{n}\binom{v_{i}}{2} \geqq(k+r-2)\binom{n}{2} .
$$

From (2') we can deduce that if $n<n_{0}(k, r)$ then

$$
\begin{equation*}
f_{0}(n, k, r)=f_{0}(n, k+r-1)=f(n, k+r-1) . \tag{12}
\end{equation*}
$$

(12) certainly does not hold for every n, k and r. It is easy to see that $f_{0}(10,2,6)=40$ but $f(10,7)=41$. Our Theorem 1 states that (12) always holds for $r=1$ and perhaps it always holds for $r=2$ also if $k>1$. For $k=1$ every G_{n} each vertex of which bas valency $\geqq r$ clearly has property $P_{1, r}$, thus $f_{0}(n, 1, r)=[(r n+1) / 2]$, in other words if $k=1, r>1$ then (12) is not true. We hope to return to these questions on another occasion.

Finally we can ask the following question: Denote by $F(n, k)$ the smallest integer for which there exists a directed graph $G(n ; F(n, k))$ so that to every k vertices x_{1}, \ldots, x_{k} of our G thete is a vertex y of G so that all the edges $\left(y, x_{i}\right) i=1, \ldots, k$ occur in G and are directed away from y. It is easy to see that for $n \geqq 3, F(n, 1)=n$ (for $n \leqq 2$ there clearly is no solution). It is not hard to show that for $n \geqq 7, F(n, 2)=3 n$ and for $n<7$ there is no solution. For $k \geqq 3$, we only have crude inequalities for $F(n, k)$. We say that G_{n} has property S_{k} (after Schütte who posed the problem) if for every set of k nodes $\left(x_{1}, \ldots, x_{k}\right)$ there is at least one node y in G_{n} so that all the edges $\left(y, x_{i}\right), i=1, \ldots, k$ occur in G and are directed away from y. Denote by $f(k)$ the smallest value of n for which an S_{k}-graph of n vertices exists. We have

$$
\begin{equation*}
(k-1) 2^{k}+3 \leqq f(k)<c k^{2} 2^{k} . \tag{13}
\end{equation*}
$$

(13) is due to P. Erdös, E. Szekeres and G. Szekeres (Math. Gazette 47 p. 220 and 49 p .290$)$. We can show that for $n>n_{0}(k)$

$$
\begin{equation*}
\dot{f(k-1)} \cdot n \leqq F(n, k) \leqq f(k) \cdot n \tag{14}
\end{equation*}
$$

University of New South Wales and
University of Hawaii

