ADDITIVE FUNCTIONALS ON L_{p} SPACES

N. FRIEDMAN AND M. KATZ

1. Introduction. In (1) a representation theorem was proved for a class of additive functionals defined on the continuous real-valued functions with domain $S=[0,1]$. The theorem was extended to the case where S is an arbitrary compact metric space in (3). Our present purpose is to consider the corresponding class of additive functionals defined on L_{p} spaces, $p>0$. In (4) Martin and Mizel have considered functionals defined on the class of bounded measurable functions which, however, satisfy a certain "stochastic" condition which we do not require.

In general, the class of linear functionals appears as a subclass of the class of additive functionals. However it has been shown by M. M. Day (2) that if the underlying measure space is non-atomic, then the class of non-trivial linear functionals defined on L_{p} is empty for $1>p>0$. It follows that an additive functional defined on $L_{p}, 1>p>0$, is not linear.

In §2 we state our preliminary definitions. In §3 we obtain a general representation for an additive functional defined on $L_{p}, p>0$, which reduces to the standard representation theorem for linear functionals when $p \geqslant 1$. The representation utilizes the concept of an additive transformation, which appears as a natural generalization of a linear transformation. In §4 we consider the adjoint of an additive transformation mapping L_{p} into $L_{p}, p \geqslant 1$. We recall that the adjoint of a linear transformation mapping L_{p} into $L_{p}, p \geqslant 1$, can be interpreted as a linear transformation mapping L_{q} into L_{q}, $q=p /(p-1)$. In $\S 4$ we show that the adjoint of an additive transformation mapping L_{p} into L_{p} may be interpreted as a class of linear transformations mapping L_{q} into L_{1}.

Our proofs utilize methods in (1) and in the standard proof for the representation of linear functionals on L_{p} spaces, $p \geqslant 1$.
2. Preliminaries. In general, we may consider a linear space N whose elements are real-valued functions defined on an underlying space S. For each $f \in N$ there is defined a number $\|f\| \geqslant 0$ which may be regarded as a generalized norm. We consider a corresponding space N^{\prime} and say a mapping T of N into N^{\prime} is an additive transformation if T satisfies the following three requirements:
(1) Continuity. For each $\epsilon>0$ and $b>0$, there exists $\delta=\delta(b, \epsilon)$ such that $\|f\| \leqslant b,\|g\| \leqslant b$, and $\|f-g\| \leqslant \delta$ imply $\|T(f)-T(g)\| \leqslant \epsilon$.

[^0](2) Boundedness. For each $b>0$, there exists $B=B(b)$ such that $\|f\| \leqslant b$ implies $\|T(f)\| \leqslant B$.
(3) Additivity. If f and g satisfy $f(s) g(s)=0, s \in S$, then
$$
T(f+g)=T(f)+T(g)
$$

Briefly, (1) implies uniform continuity on bounded sets, (2) implies that bounded sets are mapped into bounded sets, and (3) implies that T is additive on functions with disjoint support. When N^{\prime} is the set of real numbers (with $\|T(f)\|=|T(f)|)$ we refer to T as an additive functional, which we denote by ϕ.

In particular, we shall be concerned with the case when (S, \mathfrak{B}, μ) is a finite measure space and $N=L_{p}=L_{p}(S, \mathfrak{B}, \mu), p>0$, with $\|f\|_{p}=\left\{\int_{s} \mid f^{p} d \mu\right\}^{1 / p}$. If $1>p>0$, then $\|f\|_{p}$ does not satisfy the triangle inequality and consequently it is not a norm. However, it does satisfy the inequality

$$
\|f+g\|_{p} \leqslant 2^{q}\left[\|f\|_{p}+\|g\|_{p}\right],
$$

where $q=(1-p) / p$; hence L_{p} is a linear space, $p>0$.
3. Representation of additive functionals. In this section, we consider $p>0$ and $L_{p}=L_{p}(S, \mathfrak{B}, \mu)$, where $\mu(S)<\infty$. Our representation theorem may be stated as follows.

Theorem 1. ϕ is an additive functional in L_{p} if and only if

$$
\phi(f)=\int_{s} K(f(s), s) \alpha(s) d \mu, \quad f \in L_{p}
$$

where (i) $K(0, s) \equiv 0$, (ii) $K(x, s)$ is a measurable function of s for each x, (iii) $K(x, s)$ is a continuous function of x for $\alpha d \mu-$ a.a. s, (iv) for each $b>0$, there exists $H=H(b)$ such that $|x| \leqslant b$ implies $|K(x, s)| \leqslant H$ for $\alpha d \mu-$ a.a. s, (v) if $T f(s)=K(f(s), s) \alpha(s)$, then T is an additive transformation from L_{p} into L_{1}.

Condition (v) is essentially a compatibility relation between K and α. In general, there will be a class of α 's that will satisfy (v) for a given kernel K satisfying (i)-(iv). For example if $K(x, s)=\sin s x$, then we may choose any $\alpha \in L_{1}$ to satisfy (v).

Lemma 1. For each $h,-\infty<h<\infty$, there exists a function $K_{h}(s)$ which is a measurable function of s and is uniquely defined up to a μ-null set such that

$$
\begin{align*}
& K_{0}(s)=0, \quad s \in S, \tag{1.1}\\
& \phi\left(h \psi_{B}\right)=\int_{B} K_{h}(s) d \mu, \quad B \in \mathfrak{B} . \tag{1.2}
\end{align*}
$$

Proof. Let $\mu_{h}(B)=\phi\left(h \psi_{B}\right), B \in \mathfrak{B}$, where ψ_{B} denotes the characteristic function of the set B. Conditions (1)-(3) imply that μ_{h} is a signed measure of finite variation on \mathfrak{B} and μ_{h} is absolutely continuous with respect to μ. Therefore the Radon-Nikodym theorem implies that there exists a function K_{n} as above satisfying (1.1) and (1.2).

We note that if ϕ is linear, then $\mu_{h}(B)=h \mu_{1}(B), B \in \mathfrak{B}$; hence $K_{h}(s)=h K_{1}(s), s \in S$.

Lemma 2. There exists a kernel $K(x, s)$ and α satisfying (i)-(iv) of Theorem 1 such that for each $h,-\infty<h<\infty$, we have

$$
\begin{equation*}
\phi\left(h \psi_{B}\right)=\int_{S} K\left(h \psi_{B}(s), s\right) \alpha(s) d \mu, \quad B \in \mathfrak{B} \tag{2.1}
\end{equation*}
$$

Proof. We utilize the method of proof of (1, Lemma 11) to first show that $K_{h}(s)$ is continuous in h for $\mu-$ a.a. s. Fix an integer n and for notational convenience let

$$
K_{l}(s)=K_{n+l / 2^{j}}(s), \quad 1 \leqslant l \leqslant 2^{j} .
$$

Let $\delta>0$ and set
$A_{0}=\emptyset, \quad A_{l}=\left\{K_{l}-K_{l-1} \geqslant \delta\right\}-\bigcup_{i=0}^{l-1} A_{i}, \quad 1 \leqslant l \leqslant 2^{j}$,

$$
\text { and } A^{j}=\bigcup_{l=1}^{2 j} A_{l} .
$$

We shall show that $\lim _{j \rightarrow \infty} \mu\left(A^{j}\right)=0$.
Let
$y_{j, 1}=\sum_{l=1}^{2 j}\left(n+(l-1) / 2^{j}\right) \psi_{A l} \quad$ and $\quad y_{j, 2}=\sum_{l=1}^{2 j}\left(n+l / 2^{j}\right) \psi_{A_{l}}$.
It follows by our preceding notation and by (1.2) that
$\phi\left(y_{j, 1}\right)=\sum_{l=1}^{2 j} \int_{A_{l}} K_{l-1}(s) d \mu$ and $\phi\left(y_{j, 2}\right)=\sum_{l=1}^{2 j} \int_{A_{l}} K_{l}(s) d \mu$.
Therefore by the definition of A_{l} it follows that $\phi\left(y_{j, 2}\right)-\phi\left(y_{j, 1}\right) \geqslant \delta \mu\left(A^{j}\right)$. Since $y_{j, 2}(s)-y_{j, 1}(s) \leqslant 2^{-j}, s \in S$, and $\left\|y_{j, i}\right\| \leqslant\left\|(n+1) \psi_{s}\right\|, i=1,2$, it follows by Condition (1) that $\lim _{j}\left|\phi\left(y_{j, 2}\right)-\phi\left(y_{j, 1}\right)\right|=0$ and hence $\lim _{j \rightarrow \infty} \mu\left(A^{j}\right)=0$. Since $\delta>0$ was arbitrary, we have

$$
\lim \sup \left[K_{l}(s)-K_{l-1}(s)\right]=0 \quad \text { for } \mu-\text { a.a. } s .
$$

Similarly we show that

$$
\lim \inf \left[K_{l}(s)-K_{l-1}(s)\right]=0 \quad \text { for } \mu-\text { a.a. } s
$$

It follows that there exists a sequence $\left\{h_{i}\right\}$ dense in $[n, n+1]$ such that

$$
\begin{equation*}
\lim _{h i \rightarrow h i_{0}} K_{h i}(s)=K_{h i_{0}}(s), \quad \mu \text { - a.a. } s . \tag{2.2}
\end{equation*}
$$

Since

$$
(-\infty, \infty)=\bigcup_{-\infty}^{\infty}[n, n+1]
$$

it follows that there exists a sequence $\left\{h_{i}\right\}$ dense in $(-\infty, \infty)$ such that (2.2) holds.

If $h=h_{i}$, we set $K_{1}(h, s)=K_{h}(s)$. Otherwise we select $h_{i} \rightarrow h$ and set $K_{1}(h, s)=\lim _{h_{i \rightarrow h}} K_{h_{i}}(s)$. Clearly $K_{1}(h, s)$ is continuous in h for $\mu-$ a.a. s. Furthermore an argument similar to the above shows that for each h we have $K_{1}(h, s)=K_{h}(s)$ for $\mu-$ a.a.s.

Utilizing the method of proof of (1, Lemma 12), we can now obtain $K_{2}(h, s)$ and $\mu_{*} \sim \mu$ such that

$$
\begin{equation*}
\phi\left(h \psi_{B}\right)=\int_{B} K_{2}(h, s) d \mu_{*} \tag{2.3}
\end{equation*}
$$

where $K_{2}(h, s)$ satisfies conditions (i), (ii), and (iv) of Theorem 1. Moreover utilizing the previous argument we can show that $K_{2}(h, s)$ can be defined so that for each $h, K_{2}(h, s)$ is continuous for $\mu_{*}-$ a.a. s. We let α denote the Radon-Nikodym derivative $d \mu_{*} / d \mu$. Letting $K(h, s)=K_{2}(h, s)$, we see that $K(h, s)$ satisfies (i)-(iv) of Theorem 1 and (2.1).

Note that if ϕ is linear, then $K(x, s)=x$ and $\alpha(s)=K_{1}(s)$.
For each $f \in L_{p}$ we now define $\phi_{1}(f)$ as

$$
\begin{equation*}
\phi_{1}(f)=\int_{s} K(f(s), s) \alpha(s) d \mu \tag{2.4}
\end{equation*}
$$

Lemma 3. $\phi_{1}(f)=\phi(f), f \in L_{p}$.
Proof. Condition (3) and (2.1) imply that (2.4) holds if f is a simple function. Next assume that f is bounded, say $|f(s)| \leqslant b$. We can obtain a sequence of simple functions f_{n} such that $\left|f_{n}\right| \leqslant b, \lim _{n} f_{n}(s)=f(s)$, and $\lim _{n}\left\|f_{n}-f\right\|_{p}=0$. Condition (1) implies that $\lim _{n} \phi\left(f_{n}\right)=\phi(f)$ and (iii) implies that

$$
\lim _{n} K\left(f_{n}(s), s\right) \alpha(s)=K(f(s), s) \alpha(s) \quad \text { for } \mu-\text { a.a.s. }
$$

Therefore (iv) and the Lebesgue Bounded Convergence Theorem imply that

$$
\lim _{n} \phi_{1}\left(f_{n}\right)=\lim _{n} \int_{s} K\left(f_{n}(s), s\right) \alpha(s) d \mu=\int K(f(s), s) \alpha(s) d \mu
$$

Since $\phi_{1}\left(f_{n}\right)=\phi\left(f_{n}\right)$, it follows that $\phi_{1}(f)=\phi(f)$ for bounded f. Finally consider $f \in L_{p}$ and let

$$
E=\{s: K(f(s), s) \alpha(s)>0\} \quad \text { and } \quad F=\{s: K(f(s), s) \alpha(s)<0\} .
$$

Let $f_{n}(s)=f(s)$ if $|f(s)| \leqslant n$ and $f_{n}(0)=0$ if $|f(s)|>n$. It follows that $\lim _{n}\left\|f_{n}-f\right\|_{p}=0$; hence Condition (1) implies that $\lim _{n} \phi\left(f_{n}\right)=\phi(f)$. Since f_{n} is bounded, $\phi_{1}\left(f_{n}\right)=\phi\left(f_{n}\right)$. Now let

$$
\begin{gathered}
A_{n}=\{s:|f(s)| \leqslant n\}, \quad E_{n}=E \cap A_{n}, \quad F_{n}=F \cap A_{n}, \\
f_{n, 1}=\psi_{E_{n}} f_{n}, \quad \text { and } \quad f_{n, 2}=\psi_{F_{n}} f_{n} .
\end{gathered}
$$

We have $\left\|f_{n}\right\|_{p} \leqslant\|f\|_{p}$; hence $\left\|f_{n, i}\right\|_{p} \leqslant\|f\|_{p}, i=1,2$. Therefore Condition (2) implies that $\left|\phi\left(f_{n, i}\right)\right| \leqslant B\left(| | f \|_{p}\right), i=1,2$. Hence the following integrals are uniformly bounded in n :

$$
\phi\left(f_{n, i}\right)=\int_{S} K\left(f_{n, i}(s), s\right) \alpha(s) d \mu, \quad i=1,2
$$

Now we can write

$$
\phi\left(f_{n, 1}\right)=\int_{S} K\left(f_{n, 1}(s), s\right) \alpha(s) d \mu=\int_{E_{n}} K(f(s), s) \alpha(s) d \mu
$$

and therefore by the Lebesgue Monotone Convergence Theorem we have

$$
\lim _{n} \phi\left(f_{n, 1}\right)=\int_{E} K(f(s), s) \alpha(s) d \mu
$$

Similarly

$$
\lim _{n} \phi\left(f_{n, 2}\right)=\int_{F} K(f(s), s) \alpha(s) d \mu
$$

Therefore

$$
\phi(f)=\lim _{n} \phi\left(f_{n}\right)=\lim _{n}\left\{\phi\left(f_{n, 1}\right)+\phi\left(f_{n, 2}\right)\right\}=\phi_{1}(f)
$$

Proof of Theorem 1. Lemma 3 yields the desired representation for $\phi(f)$, $f \in L_{p}$. Utilizing Conditions (1) and (2) for ϕ, the validity of (v) follows in a straightforward manner. The converse follows immediately.
4. Adjoint transformations. In this section we define the adjoint transformation T^{*} of an additive transformation T. We shall then consider a suitable interpretation of T^{*} when T acts in an L_{p} space, $p \geqslant 1$. We now assume that N and N^{\prime} are Banach spaces whose elements are real-valued functions defined on underlying spaces S and S^{\prime} respectively.

Definition 1. Let T be an additive transformation from N into N^{\prime} and let λ be a norm-bounded linear functional on N^{\prime}. We define $T^{*} \lambda(x)=\lambda(T(x))$, $x \in N$.

Lemma 4. Let T and λ be as in Definition 1. Then $T^{*} \lambda$ is an additive functional on N.

Proof. Immediate.
Lemma 4 implies that in general the adjoint of an additive transformation maps linear functionals into additive functionals. Definition 1 reduces to the usual definition when T is a linear transformation. We shall now restrict our attention to the case $p \geqslant 1$ and $N=N^{\prime}=L_{p}$. We consider $q=p /(p-1)$ if $p>1$ and $q=\infty$ if $p=1$.

We recall that when T is a linear transformation in L_{p}, then T^{*} can be interpreted as a linear transformation in L_{q} such that

$$
\begin{equation*}
\int_{S} T f(s) g(s) d \mu=\int_{S} f(s) T^{*} g(s) d \mu, \quad f \in L_{p}, g \in L_{q} . \tag{4.1}
\end{equation*}
$$

If we write $T_{f}{ }^{*} g(s)=f(s) T^{*} g(s)$ and let $S(f)$ denote the support of f, then we have

$$
\begin{equation*}
\int_{S(g)} T f(s) g(s) d \mu=\int_{S(f)} T_{f}^{*} g(s) d \mu . \tag{4.2}
\end{equation*}
$$

We wish to extend (4.2) to additive transformations and we proceed by a series of lemmas.

Lemma 5. Let T be an additive transformation of L_{p} into L_{p} and let $g \in L_{q}$. Then for each $h,-\infty<h<\infty$, there exists a linear transformation $T_{h}{ }^{*}$ from L_{q} into L_{1} such that

$$
\begin{equation*}
\int_{S} T\left(h \psi_{B}(s) g(s) d \mu=\int_{B} T_{h}^{*} g(s) d \mu, \quad B \in \mathfrak{B}\right. \tag{5.1}
\end{equation*}
$$

Remark. If T is a linear transformation, then $T_{h}{ }^{*}=h T_{1}{ }^{*}$. However, in general $T_{h}{ }^{*} \neq h T_{1}{ }^{*}$ when T is an additive transformation.

Proof. If we set $\mu_{h}(B)$ equal to the left side of (5.1), then μ_{h} is easily verified to be a signed measure of finite variation on \mathfrak{B} which is absolutely continuous with respect to μ. Therefore by the Radon-Nikodym theorem there exists a measurable function which we denote by $T_{h}{ }^{*} g$ satisfying (5.1). Given u, $v \in L_{q}$, we then have

$$
\begin{equation*}
\int_{B} T_{h}^{*}(\alpha u+\beta v) d \mu=\int_{B}\left(\alpha T_{h}^{*} u+\beta T_{h}^{*} v\right) d \mu, \quad B \in \mathfrak{B} . \tag{5.2}
\end{equation*}
$$

Since B is arbitrary in (5.2), it follows that $T_{h}{ }^{*}(\alpha u+\beta v)=\alpha T_{h}{ }^{*} u+\beta T_{h}{ }^{*} v$. We next show that $T_{h}{ }^{*}$ is bounded. Let $g \in L_{q}, E=\left\{T_{h}{ }^{*} g>0\right\}$, and $F=\left\{T_{h}{ }^{*} g<0\right\}$. By Hölder's inequality and Condition (2) on T we have

$$
\begin{align*}
& \left|\int_{S} T\left(h \psi_{E}\right)(s) g(s) d \mu\right| \leqslant\left\|T\left(h \psi_{E}\right)\right\|_{p}\|g\|_{q} \leqslant B(|b|)\|g\|_{q}, \tag{5.3}\\
& \left|\int_{S} T\left(h \psi_{F}\right)(s) g(s) d \mu\right| \leqslant\left\|T\left(h \psi_{F}\right)\right\|_{p}\|g\|_{q} \leqslant B(|b|)\|g\|_{q}, \tag{5.4}
\end{align*}
$$

where $b=\left\|h \psi_{E}\right\|_{p}$.
It now follows from (5.1), (5.3), and (5.4) that $\left\|T_{h}{ }^{*} g\right\|_{1} \leqslant 2 B(|b|)\|g\|_{q}$; hence $\left\|T_{h}{ }^{*}\right\| \leqslant 2 B(|b|)$.

Definition 2. Let

$$
f=\sum_{i=1}^{n} h_{i} \psi_{B_{i}}
$$

where h_{1}, \ldots, h_{n} are the distinct values of f which are taken on the measurable sets B_{1}, \ldots, B_{n} respectively, and let $g \in L_{q}$. We define $T_{f}{ }^{*} g$ as

$$
T_{f}^{*} g(s)=\sum_{i=1}^{n} \psi_{B_{i}}(s) T_{h_{i}}^{*} g(s), \quad s \in S
$$

Lemma 6. Let f and g be as in Definition 2. Then $T_{f}{ }^{*}$ is a lineartransformation from L_{q} into L_{1} such that

$$
\int_{S(g)} T f(s) g(s) d \mu=\int_{S(f)} T_{f}^{*} g(s) d \mu
$$

Proof. The linearity follows by Lemma 5. Utilizing Condition (3) on T and a similar decomposition as in the proof of Lemma 5 , we obtain $\left\|T_{f}{ }^{*}\right\| \leqslant 2 \mathrm{~B}\left(\|f\|_{p}\right)$.

Lemma 7. Let $\epsilon>0, b>0$, and $g \in L_{q}$. Then there exists $\delta>0$ such that if u and v are simple functions for which $\|u\|_{p} \leqslant b,\|v\|_{p} \leqslant b$, and $\|u-v\|_{p} \leqslant \delta$, then $\left\|T_{u}{ }^{*} g-T_{v}{ }^{*} g\right\|_{1} \leqslant \epsilon$.

Proof. By Condition (1) on T, there exists $\delta>0$ such that $\|u-v\|_{p} \leqslant \delta$ implies $\|T u-T v\|_{p} \leqslant \epsilon / 2\|g\|_{q}$. Let $E=\left\{T_{u}{ }^{*} g-T_{v}{ }^{*} g>0\right\}$ and

$$
F=\left\{T_{u}{ }^{*} g-T_{v}{ }^{*} g<0\right\} .
$$

If $u_{E}=\psi_{E} u$ and $v_{E}=\psi_{E} v$, then $\left\|u_{E}\right\|_{p} \leqslant b,\left\|v_{E}\right\|_{p} \leqslant b,\left\|u_{E}-v_{E}\right\|_{p} \leqslant \delta$. We then have

$$
\int_{E}\left[T_{u}^{*} g-T_{v}^{*} g\right] d \mu=\int_{E}\left[T_{u_{E}}{ }^{*} g-T_{v_{E}}{ }^{*} g\right] d \mu=\int_{S(g)}\left[T u_{E}-T v_{E}\right] g d \mu ;
$$

hence by Hölder's inequality and the preceding estimate we have

$$
\int_{E}\left[T_{u}{ }^{*} g-T_{v}{ }^{*} g\right] d \mu \leqslant\left\|T u_{E}-T v_{E}\right\|_{p}\|g\|_{q} \leqslant \epsilon / 2 .
$$

An identical consideration of the integral over F yields the desired result.
Lemma 8. If f_{n} is a Cauchy sequence of simple functions in L_{p}, then $T_{f_{n}}{ }^{*} g$ is a Cauchy sequence in $L_{1}, g \in L_{q}$.

Proof. By Lemma 7.

Definition 3. Let $f \in L_{p}$ and let f_{n} be a sequence of simple functions in L_{p} such that $\left\|f_{n}\right\|_{p} \leqslant\|f\|_{p}$ and $\lim _{n}\left\|f_{n}-f\right\|_{p}=0$. We define $T_{f}{ }^{*} g$ for $g \in L_{q}$ as follows:

$$
\mathrm{T}_{f}{ }^{*} g(s)=L_{1} \lim _{n} T_{f_{n}}{ }^{*} g(s) .
$$

Theorem 2. Let $f \in L_{p}$ and $g \in L_{q}$. Then $T_{f}{ }^{*}$ in Definition 3 is a linear operator from L_{q} into L_{1} such that

$$
\int_{S(g)} T f(s) g(s) d \mu=\int_{S(f)} T_{f}^{*} g(s) d \mu
$$

Proof. Definition 3 implies that $T_{f}{ }^{*}$ is linear, and

$$
\left\|T_{f_{n}}{ }^{*}\right\| \leqslant 2 B\left(\left\|f_{n}\right\|_{p}\right) \leqslant 2 B\left(\|f\|_{p}\right)
$$

implies that $\left\|T_{f}{ }^{*}\right\| \leqslant 2 B\left(\|f\|_{p}\right)$. Now we may assume $S\left(f_{n}\right)=S(f)$ in Definition 3 ; hence

$$
\int_{S(f)} T_{f_{n}}{ }^{*} g(s) d \mu=\int_{S(g)} T f_{n}(s) g(s) d \mu
$$

It now follows by Definition 3 and an application of Hölder's inequality that we have

$$
\begin{aligned}
\int_{S(g)} T f(s) g(s) d \mu & =\lim _{n} \int_{S(g)} T f_{n}(s) g(s) d \mu, \\
& =\lim _{n} \int_{S(f)} T_{f_{n}}^{*} g(s) d \mu, \\
& =\int_{S(f)} T_{f}^{*} g(s) d \mu,
\end{aligned}
$$

which is the desired result.

References

1. R. V. Chacon and N. Friedman, Additive functionals, Arch. Rational Mech. Anal., 18 (1965), 230-240.
2. M. M. Day, The spaces L^{p} with $0<p<1$, Bull. Amer. Math. Soc., 46 (1940) 816-823.
3. N. Friedman and M. Katz, A representation theorem for additive functionals, Arch. Rational Mech. Anal., 21 (1966), 49-57.
4. A. D. Martin and V. J. Mizel, A representation theorem for certain nonlinear functionals, Arch. Rational Mech. Anal., 15 (1964), 353-367.

University of New Mexico

[^0]: Received September 24, 1965. Research supported by the National Science Foundation, Grant GP-1816.

