The Supersingular Locus of the Shimura Variety for $\operatorname{GU}(1, s)$

Inken Vollaard

Abstract. In this paper we study the supersingular locus of the reduction modulo p of the Shimura variety for $\mathrm{GU}(1, s)$ in the case of an inert prime p. Using Dieudonné theory we define a stratification of the corresponding moduli space of p-divisible groups. We describe the incidence relation of this stratification in terms of the Bruhat-Tits building of a unitary group.

In the case of $\mathrm{GU}(1,2)$, we show that the supersingular locus is equidimensional of dimension 1 and is of complete intersection. We give an explicit description of the irreducible components and their intersection behaviour.

Introduction

In this paper we study the supersingular locus of the reduction modulo p of the Shimura variety for $\operatorname{GU}(1, s)$ in the case of an inert prime p. For $G U(1,2)$ this is a purely 1-dimensional variety, and we describe explicitly the irreducible components and their intersection behaviour.

The results of this paper are thus part of the general program of giving an explicit description of the supersingular (or, more generally, the basic) locus of the reduction modulo p of a Shimura variety. Let us review previous work on this problem.

We fix a prime p and denote by \mathcal{A}_{g} the moduli space over $\overline{\mathbb{F}}_{p}$ of principally polarized abelian varieties of dimension $g>0$ with a small enough level structure prime to p. Let $\mathcal{A}_{g}^{\text {ss }}$ be its supersingular locus. If $g=1$, this is a finite set of points. If $g=2$, Koblitz $[\mathrm{Kb}]$ showed that the irreducible components of $\mathcal{A}_{2}^{s s}$ are smooth curves that intersect pairwise transversally at the superspecial points, i.e., the points of \mathcal{A}_{2} where the underlying abelian variety is superspecial (i.e., isomorphic to a power of a supersingular elliptic curve). Each superspecial point is the intersection of $p+1$ irreducible components.

Katsura and Oort [KO1] proved that each irreducible component of $\mathcal{A}_{2}^{\text {ss }}$ is isomorphic to \mathbb{P}^{1}. In [KO2] they calculated the dimension of the irreducible components of $\mathcal{A}_{3}^{\text {ss }}$ and the number of irreducible components of $\mathcal{A}_{2}^{\text {ss }}$ and $\mathcal{A}_{3}^{\text {ss }}$. In the case $g=3$, Li and Oort [LO] showed that the irreducible components are birationally equivalent to a \mathbb{P}^{1}-bundle over a Fermat curve. Furthermore, they computed for general g the dimension of the supersingular locus and the number of irreducible components.

[^0]The $\overline{\mathbb{F}}_{p}$-rational points of $\mathcal{A}_{2}^{\text {ss }}$ are described independently by Kaiser [Ka] and by Kudla and Rapoport [KR2]. They fixed a supersingular principally polarized abelian variety A over $\overline{\mathbb{F}}_{p}$ of dimension two and studied the $\overline{\mathbb{F}}_{p}$-rational points of the moduli space of quasi-isogenies of A. They covered the $\overline{\mathbb{F}}_{p}$-rational points of these moduli spaces with subsets that are in bijection with the $\overline{\mathbb{F}}_{p}$-rational points of \mathbb{P}^{1}. The incidence relation of these subsets is described by the Bruhat-Tits building of an algebraic group over $\left(\mathbb{O}_{p}\right.$. The number of superspecial points of $\mathcal{A}_{2}^{\text {ss }}$ is calculated in [KR2]. Each irreducible component of $\mathcal{A}_{2}^{\text {ss }}$ contains $p^{2}+1$ superspecial points.

Richartz [Ri] described the $\overline{\mathbb{F}}_{p}$-rational points of the moduli space of quasi-isogenies of a supersingular principally polarized abelian variety of dimension three. In analogy to the case $g=2$, she defined subsets of the $\overline{\mathbb{F}}_{p}$-rational points of this moduli space and proved that the incidence relation of these sets is given by the Bruhat-Tits building of an algebraic group over \mathbb{O}_{p}. She identified some of these sets with the $\overline{\mathbb{F}}_{p}$-rational points of Fermat curves over $\overline{\mathbb{F}}_{p}$.

Now consider the supersingular locus of a Hilbert-Blumenthal variety associated with a totally real field extension of degree g of (\mathbb{O}) in the case of an inert prime p. For $g=2$ the supersingular locus was studied by Stamm [St], (cf. [KR1]). He showed that the irreducible components of the supersingular locus are isomorphic to \mathbb{P}^{1} and contain $p^{2}+1$ superspecial points. Two components intersect transversally in at most one superspecial point, and each superspecial point is the intersection of two irreducible components. The number of irreducible components and the number of superspecial points of the supersingular locus were calculated in [KR1].

Bachmat and Goren [BG] analysed the case $g=2$ for arbitrary prime p. They gave another proof of Stamm's results and proved that in case of a ramified prime p the components of the supersingular locus are smooth rational curves. Furthermore, they calculated the number of components in case of an inert or ramified prime p.

The case of $g=3$ and an inert prime p was studied by Goren [Gn]. He proved that the irreducible components are smooth rational curves. Each superspecial point is the intersection of three irreducible components and each irreducible component contains only one superspecial point.
$\mathrm{Yu}[\mathrm{Yu}]$ analysed the case of $g=4$. He computed the number of irreducible components of the supersingular locus and the completion of the local ring at every superspecial point. Furthermore, he showed that every irreducible component is isomorphic to a ruled surface over \mathbb{P}^{1}.

Goren and Oort [GO] analyzed the Ekedahl-Oort stratification for general g. They proved that the supersingular locus is equidimensional of dimension $[g / 2]$.

Finally, consider the supersingular locus of the reduction modulo p of the Shimura variety for $\mathrm{GU}(1, s)$. In case of an inert prime p, Bültel and Wedhorn [BW] proved that the dimension of the supersingular locus is equal to $[s / 2]$.

We now recall the definition of the moduli space of abelian varieties for $\mathrm{GU}(r, s)$. We first review the corresponding PEL-data, (cf. [K2]). Let E be an imaginary quadratic extension of $\left(\mathbb{O}\right.$ such that p is inert in E and let \mathcal{O}_{E} be its ring of integers. Denote by * the nontrivial Galois automorphism of E. Let V be an E-vector space of dimension $n>0$ with perfect alternating (\mathbb{O})-bilinear form $(\cdot, \cdot): V \times V \rightarrow(\mathbb{O})$ such that

$$
(x v, w)=\left(v, x^{*} w\right)
$$

for all $x \in E$ and $v, w \in V$. Denote by G the algebraic group over (\mathbb{O}) such that

$$
G(R)=\left\{g \in \mathrm{GL}_{E \otimes_{\mathbb{Q}} R}\left(V \otimes_{\mathbb{Q}} R\right) \mid(g v, g w)=c(g)(v, w) ; c(g) \in R^{\times}\right\}
$$

for every (\mathbb{O})-algebra R. Let E_{p} be the completion of E with respect to the p-adic topology. We assume that there exists an $\mathcal{O}_{E_{p}}$-lattice Λ in $V \otimes_{\mathbb{Q}_{2}}\left(\mathbb{O}_{p}\right.$ such that the form (\cdot, \cdot) induces a perfect \mathbb{Z}_{p}-form on Λ. We fix an embedding φ_{0} of E into \mathbb{C}, thereby identifying $E \otimes_{\mathbb{Q}} \mathbb{R}$ with \mathbb{C}. We assume that there exists an isomorphism of \mathbb{C}-vector spaces of $V \otimes_{\mathbb{Q}} \mathbb{R}$ with \mathbb{C}^{n} such that the form (\cdot, \cdot) induces the hermitian form given by the diagonal matrix $\operatorname{diag}\left(1^{r},(-1)^{s}\right)$ on \mathbb{C}^{n}. We fix such an isomorphism. Then the group $G_{\mathbb{R}}$ is equal to the group $\mathrm{GU}(r, s)$ of unitary similitudes of $\operatorname{diag}\left(1^{r},(-1)^{s}\right)$. The nonnegative integers r, s satisfy $r+s=n$. Let h be the homomorphism of real algebraic groups $h: \operatorname{Res}_{\mathbb{C} / \mathbb{R}}\left(G_{m, C}\right) \rightarrow G_{\mathbb{R}}$ that maps an element $z \in \mathbb{C}^{\times}$to the matrix $\operatorname{diag}\left(z^{r}, \bar{z}^{s}\right)$. Then $\left(E, \mathcal{O}_{E},{ }^{*}, V,(\cdot, \cdot), \Lambda, G, h\right)$ is a PEL-datum. Let K be the reflex field of this PEL-datum. Then K is isomorphic to E if $r \neq s$ and is equal to (\mathbb{O}) if $r=s$. Denote by K_{p} the completion of K with respect to the p-adic topology and by \mathbb{F} the residue field of K.

Let A be an abelian scheme over an $\mathcal{O}_{K_{p}}$-scheme S of dimension n with \mathcal{O}_{E}-action, i.e., with a morphism $\iota: \mathcal{O}_{E} \rightarrow \operatorname{End} A$. Let φ_{0} and φ_{1} be the two $(\mathbb{O}$-embeddings of E into \bar{K}_{p}. Then the polynomial $\left(T-\varphi_{0}(a)\right)^{r}\left(T-\varphi_{1}(a)\right)^{s}$ is an element of $\mathcal{O}_{K_{p}}[T]$. We say that (A, ι) satisfies the Kottwitz determinant condition of signature (r, s) [K2, Ch. 5] if

$$
\operatorname{charpol}(a, \operatorname{Lie} A)=\left(T-\varphi_{0}(a)\right)^{r}\left(T-\varphi_{1}(a)\right)^{s} \in \mathcal{O}_{S}[T]
$$

for all $a \in \mathcal{O}_{E}$.
We recall the definition of the moduli problem defined by Kottwitz [K2] for these PEL-data. Denote by \mathbb{A}_{f}^{p} the ring of finite adeles of (\mathbb{O}) away from p. We fix a compact open subgroup C^{p} of $G\left(\mathbb{A}_{f}^{p}\right)$. We denote by A^{\vee} the dual abelian scheme of A. Let \mathcal{M} be the moduli problem which associates with any $\mathcal{O}_{K_{p}}$-scheme S the isomorphism classes of the following data:

- An abelian scheme A over S of dimension n.
- A $\left(\mathbb{O}\right.$-subspace $\bar{\lambda}$ of $\operatorname{Hom}\left(A, A^{\vee}\right) \otimes_{\mathbb{Z}}(\mathbb{O})$ such that $\bar{\lambda}$ contains a p-principal polarization, i.e., a polarization of order prime to p.
- A homomorphism $\iota: \mathcal{O}_{E} \rightarrow \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$ such that the Rosati involution given by $\bar{\lambda}$ on $\operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$ induces the involution ${ }^{*}$ on E.
- A C^{p}-level structure $\bar{\eta}: \mathrm{H}_{1}\left(A, \mathbb{A}_{f}^{p}\right) \xrightarrow{\sim} V \otimes_{\mathbb{Q}} \mathbb{A}_{f}^{p} \bmod C^{p}$.

We assume that (A, ι) satisfies the determinant condition of signature (r, s).
Two such data $(A, \bar{\lambda}, \iota, \bar{\eta})$ and $\left(A^{\prime}, \bar{\lambda}^{\prime}, \iota^{\prime}, \bar{\eta}^{\prime}\right)$ are isomorphic if there exists an isogeny prime to p from A to A^{\prime}, commuting with the action of \mathcal{O}_{E}, carrying $\bar{\eta}$ into $\bar{\eta}^{\prime}$ and carrying $\bar{\lambda}$ into $\bar{\lambda}^{\prime}$. For simplicity we write $\left(A \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}, \bar{\lambda}, \iota \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}, \bar{\eta}\right)$ for such an isomorphism class.

The moduli problem \mathcal{M} is represented by a smooth, quasi-projective scheme over Spec $\mathcal{O}_{K_{p}}$ if C^{p} is small enough [K2, Ch. 5]. The relative dimension of \mathcal{M} is equal to rs. Denote by $\mathcal{N}^{\text {ss }}$ the supersingular locus of the special fibre \mathcal{M}_{F} of \mathcal{M}. It is a closed subscheme of $\mathcal{M}_{\mathbb{F}}$ which is proper over Spec \mathbb{F}. Our goal is to describe the irreducible components of $\mathcal{M}^{s s}$ and their intersection behaviour.

The supersingular locus $\mathcal{N}^{\text {ss }}$ contains an $\overline{\mathbb{F}}_{p}$-rational point [BW, Lemma 5.2]. We will view $\mathcal{M}^{\text {ss }}$ as a scheme over $\overline{\mathbb{F}}_{p}$. Let $x=\left(A \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}, \iota \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}, \bar{\lambda}, \bar{\eta}\right) \in \mathcal{M}^{\text {ss }}\left(\overline{\mathbb{F}}_{p}\right)$ and denote by (\mathbb{X}, ι) the supersingular p-divisible group of height $2 n$ corresponding to x with $\mathcal{O}_{E_{p}}$-action ι. We choose a p-principal polarization $\lambda \in \bar{\lambda}$ and denote again by λ the induced p-principal polarization of \mathbb{X}. By construction (\mathbb{X}, ι) satisfies the determinant condition of type (r, s).

We recall the definition of the moduli space \mathcal{N} of quasi-isogenies of p-divisible groups in characteristic p [RZ, Definition 3.21] in the case of the group $\operatorname{GU}(r, s)$. The moduli space \mathcal{N} over $\operatorname{Spec} \overline{\mathbb{F}}_{p}$ is given by the following data up to isomorphism for an $\overline{\mathbb{F}}_{p}$-scheme S :

- A p-divisible group X over S of height $2 n$ with p-principal polarization λ_{X} and $\mathcal{O}_{E_{p}}$-action ι_{X} such that the Rosati involution induced by λ induces the involution ${ }^{*}$ on \mathcal{O}_{E}. We assume that (X, ι) satisfies the determinant condition of type (r, s).
- An $\mathcal{O}_{E_{p}}$-linear quasi-isogeny $\rho: X \rightarrow \mathbb{X} \times_{\text {Spec } \overline{\mathbb{F}}_{p}} S$ such that $\rho^{\vee} \circ \lambda \circ \rho$ is a $\left(\mathbb{O}_{p^{-}}\right.$ multiple of λ_{X} in $\operatorname{Hom}_{\mathcal{O}_{E_{p}}}\left(X, X^{\vee}\right) \otimes_{\mathbb{Z}}(\mathbb{O})$.
The moduli space \mathcal{N} is represented by a separated formal scheme which is locally formally of finite type over $\overline{\mathbb{F}}_{p}[R Z$, Theorem 3.25].

We recall the uniformization theorem of Rapoport and Zink [RZ, Theorem 6.30]. We will formulate this theorem only for the underlying schemes, not for the formal schemes. Let $I(\mathbb{O})$) be the group of quasi-isogenies in $\left.\operatorname{End}_{\mathcal{O}_{E}}(A) \otimes \mathbb{O}\right)$ that respect the homogeneous polarization $\bar{\lambda}$. As $\mathrm{GU}(r, s)$ satisfies the Hasse principle (see (6.2)), there exists an isomorphism of schemes over $\overline{\mathbb{F}}_{p}$

$$
I(\mathbb{O}) \backslash\left(\mathcal{N}^{\mathrm{red}} \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right) \xrightarrow{\sim} \mathcal{M}^{\text {ss }}
$$

In Section6 we will show, in the case of $\mathrm{GU}(1,2)$, that $\mathcal{N}^{\text {ss }}$ is locally isomorphic to $\mathcal{N}^{\text {red }}$ if C^{p} is small enough.

We now state our results. We assume that $p \neq 2$. Let k be an algebraically closed field extension of $\overline{\mathbb{F}}_{p}$ and let (X, ρ) be an element of $\mathcal{N}(k)$. As the height of the quasiisogeny ρ is divisible by n (Lemma 1.5), we may define the morphism $\kappa: \mathcal{N} \rightarrow \mathbb{Z}$ by sending an element of \mathcal{N} to the height of the quasi-isogeny divided by n. The fibres \mathcal{N}_{i} of κ define a disjoint decomposition of \mathcal{N} into open and closed formal subschemes. In fact, \mathcal{N}_{i} is empty if $n i$ is odd and \mathcal{N}_{i} is isomorphic to \mathcal{N}_{0} if $n i$ is even (Lemma 1.7, Proposition 1.18). For the rest of this introduction, we fix an integer i with $n i$ even.

From now on we assume that r is equal to 1 . Let C be a $\left(\mathbb{O}_{p^{2}}\right.$-vector space of dimension n. We choose a perfect skew-hermitian form $\{\cdot, \cdot\}$ on C such that there exists a self-dual $\mathbb{Z}_{p^{2}}$-lattice in C if n is odd and such that there exists no self-dual $\mathbb{Z}_{p^{2}}$-lattice if n is even. Denote by H the special unitary group of $(C,\{\cdot, \cdot\})$ over $\left(\mathbb{O}_{p}\right.$ and denote by $\mathcal{B}\left(H,\left(\mathbb{O}_{p}\right)_{\text {simp }}\right.$ the simplicial complex of the Bruhat-Tits building of H. We associate with each vertex Λ of $\mathcal{B}\left(H, \mathbb{O}_{p}\right)_{\text {simp }}$ a subset $\mathcal{V}(\Lambda)(k)$ of $\mathcal{N}_{i}(k)$. In Section 3 we attach to each vertex Λ an odd integer l with $1 \leq l \leq n$, the type of Λ. The type classifies the different orbits of the action of $\left.H(\mathbb{O})_{p}\right)$ on the set of vertices of $\mathcal{B}\left(H,()_{p}\right)_{\text {simp }}$. We call a point of $\mathcal{N}_{i}(k)$ superspecial if the underlying p-divisible group is superspecial, i.e., if the corresponding Dieudonné module M satisfies $F M=$ $V M$. Vertices of type 1 correspond to superspecial points of $\mathcal{N}_{i}(k)$. We prove the following theorem (Proposition[2.4 Proposition 3.4 Theorem[3.5).

Theorem 1 The sets $\mathcal{V}(\Lambda)(k)$ cover $\mathcal{N}_{i}(k)$.
Let Λ and Λ^{\prime} be two different vertices of $\mathcal{B}\left(H,\left(\mathbb{O}_{p}\right)_{\text {simp }}\right.$ of types l and l^{\prime}, respectively. Then the intersection of $\mathcal{V}(\Lambda)(k)$ and $\mathcal{V}\left(\Lambda^{\prime}\right)(k)$ is nonempty if and only if one vertex is a neighbour of the other or if the corresponding vertices have a common neighbour of type $l^{\prime \prime} \leq \min \left\{l, l^{\prime}\right\}$.

We associate with each vertex $\Lambda \in \mathcal{B}\left(H,\left(\mathcal{O}_{p}\right)_{\text {simp }}\right.$ a variety Y_{Λ} over $\overline{\mathbb{F}}_{p}$ such that for each algebraically closed field extension k of $\overline{\mathbb{F}}_{p}$ we have a bijection of $Y_{\Lambda}(k)$ with $\mathcal{V}(\Lambda)(k)$. Let l be the type of Λ and let U be the unitary group of an l-dimensional hermitian space over $\mathbb{F}_{p^{2}}$. We obtain the following theorem (Proposition 2.13, Theorem 2.15).
Theorem 2 The variety Y_{Λ} is projective, smooth and irreducible and its dimension is equal to $d=(l-1) / 2$.
(i) There exists a decomposition of Y_{Λ} into a disjoint union of locally closed subvarieties $Y_{\Lambda}=\biguplus_{j=0}^{d} X_{P_{j}}\left(w_{j}\right)$, where each $X_{P_{j}}\left(w_{j}\right)$ is isomorphic to a Deligne-Lusztig variety with respect to the group U and a parabolic subgroup P_{j} of U.
(ii) For every c with $0 \leq c \leq d$, the locally closed subvariety $X_{P_{c}}\left(w_{c}\right)$ is equidimensional of dimension c, and its closure in Y_{Λ} is equal to $\biguplus_{j=0}^{c} X_{P_{j}}\left(w_{j}\right)$. The variety $X_{P_{d}}\left(w_{d}\right)$ is open, dense, and irreducible of dimension d in Y_{Λ}.
(iii) For every c with $0 \leq c<d$, the subset $\biguplus_{j=0}^{c} X_{P_{j}}\left(w_{j}\right)(k)$ of $Y_{\Lambda}(k)$ corresponds to the subset $\bigcup_{\Lambda^{\prime}}, \mathcal{V}\left(\Lambda^{\prime}\right)(k)$ in $\mathcal{N}_{i}(k)$ where the union is taken over all neighbours Λ^{\prime} of Λ with type $(2 c+1)$.
In the case of $G U(1,0)$ and $G U(1,1)$, the scheme $\mathcal{N}_{0}^{\text {red }}$ is a disjoint union of infinitely many superspecial points.

In the case of $\operatorname{GU}(1,2)$, we define for each vertex Λ of type 3 a closed embedding of Y_{Λ} into \mathcal{N}_{0} such that for every algebraically closed field extension k of $\overline{\mathbb{F}}_{p}$ the image of $Y_{\Lambda}(k)$ in $\mathcal{N}_{0}(k)$ is equal to $\mathcal{V}(\Lambda)(k)$. We denote by $\mathcal{V}(\Lambda)$ the image of Y_{Λ}. Let \mathcal{C} be the smooth and irreducible Fermat curve in $\mathbb{P}_{\overline{\mathbb{F}}_{p}}^{2}$ given by the equation

$$
x_{0}^{p+1}+x_{1}^{p+1}+x_{2}^{p+1}=0
$$

We show that the varieties $\mathcal{V}(\Lambda)$ are the irreducible components of \mathcal{N}_{i} and prove the following explicit description of $\mathcal{N}^{\text {red }}$ (Theorem5.10).
Theorem 3 Let $(r, s)=(1,2)$. The schemes $\mathcal{N}_{i}^{\text {red }}$, with $i \in \mathbb{Z}$ even, are the connected components of $\mathcal{N}^{\text {red }}$, which are all isomorphic to each other. Each irreducible component of $\mathcal{N}^{\text {red }}$ is isomorphic to \mathcal{C}. Two irreducible components intersect transversally in at most one superspecial point. Each irreducible component contains $p^{3}+1$ superspecial points and each superspecial point is the intersection of $p+1$ irreducible components.

The scheme $\mathcal{N}^{\text {red }}$ is equidimensional of dimension 1 and of complete intersection.
Using the uniformization theorem quoted above, we obtain the following conclusions for $\mathcal{M}^{\text {ss }}$ if C^{p} is small enough (Corollary6.2).

Theorem 4 Let $(r, s)=(1,2)$. The supersingular locus $\mathcal{M}^{\text {ss }}$ is equidimensional of dimension 1 and of complete intersection. Its singular points are the superspecial points
of $\mathcal{M}^{\text {ss }}$. Each superspecial point is the pairwise transversal intersection of $p+1$ irreducible components. Each irreducible component is isomorphic to \mathcal{C} and contains $p^{3}+1$ superspecial points. Two irreducible components intersect in at most one superspecial point.

Let J be the group of similitudes of the isocrystal of $(\mathbb{X}, \iota, \lambda)$, or equivalently, the group of similitudes of $(C,\{\cdot, \cdot\})$ (1.13). Denote by J^{0} the subgroup of all elements $g \in J$ such that the p-adic valuation of the multiplier of g is equal to zero. Let $C_{J, p}$ and $C_{J, p}^{\prime}$ be maximal compact subgroups of J such that $C_{J, p}$ is hyperspecial and $C_{J, p}^{\prime}$ is not hyperspecial. We obtain the following corollary (Proposition6.3).
Corollary 5 We have

$$
\begin{aligned}
\#\left\{\text { irreducible components of } \mathcal{M}^{\text {ss }}\right\} & \left.=\#(I(\mathbb{O})) \backslash\left(J / C_{J, p} \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right)\right), \\
\#\left\{\text { superspecial points of } \mathcal{M}^{\text {ss }}\right\} & \left.=\#(I(\mathbb{O})) \backslash\left(J / C_{J, p}^{\prime} \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right)\right), \\
\#\left\{\text { connected components of } \mathcal{M}^{\text {ss }}\right\} & \left.=\#(I(\mathbb{O})) \backslash\left(J^{0} \backslash J \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right)\right) \\
& \left.=\#(I(\mathbb{O})) \backslash\left(\mathbb{Z} \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right)\right) .
\end{aligned}
$$

This paper is organized as follows. In Section 11 we describe the set $\mathcal{N}(k)$ for $\mathrm{GU}(r, s)$ using classical Dieudonné theory. From Section 2 on we assume $r=1$. Section 2 contains the definition of the sets $\mathcal{V}(\Lambda)(k)$ for a lattice Λ in an index set \mathcal{L}_{i} for every integer i. Furthermore, we prove Theorem 2, In Section 3 we identify the index set \mathcal{L}_{i} with the set of vertices of $\mathcal{B}\left(H, \mathbb{O}_{p}\right)$ and analyse the incidence relation of the sets $\mathcal{V}(\Lambda)(k)$ (Theorem 1). Sections 4 and 5 deal with the special case $\mathrm{GU}(1,2)$, and Theorem 3 is proved in Section 5] Here our main tool is Zink's theory of displays [Zi2] which is used to construct a universal display over $\mathcal{N}_{0}^{\text {red }}$. Section 6 contains the transfer of the results on the moduli space \mathcal{N} to the supersingular locus $\mathcal{M}^{\text {ss }}$ (Theorem4, Corollary[5).

We now explain why we restrict ourselves to the signature $(1, s)$. In the case $\mathrm{GU}(r, s)$ with $1<r \leq s$, it is not clear how to obtain a similar decomposition of $\mathcal{N}(k)$ into subsets $\mathcal{V}(\Lambda)(k)$ as above. In particular, one should not expect a linear closure relation order of strata as stated in Theorem 2,

In the case $r=1$, we expect that the pointwise decomposition of \mathcal{N} given here can be made algebraic. However, it seems not to be promising to construct a universal display over each variety Y_{Λ} by using a basis of the isodisplay and the equations defining Y_{Λ}. Indeed, for increasing s, these equations become quite complicated.

1 Dieudonné Lattices in the Supersingular Isocrystal for $\mathrm{GU}(r, s)$

In sections 1 to 5 we depart from the introduction and denote by E an unramified extension of \mathbb{O}_{p} of degree 2 with $p \neq 2$. Let \mathcal{O}_{E} be its ring of integers. We fix a positive integer n and nonnegative integers r and s with $n=r+s$.

Definition 1.1 Let \mathbb{X} be a supersingular p-divisible group of height $2 n$ over $\overline{\mathbb{F}}_{p}$ with \mathcal{O}_{E}-action $\iota: \mathcal{O}_{E} \rightarrow$ End \mathbb{X} such that (\mathbb{X}, ι) satisfies the determinant condition of
signature (r, s), i.e.,

$$
\operatorname{charpol}_{\overline{\mathbb{F}}_{p}}(a, \operatorname{Lie} \mathbb{X})=\left(T-\varphi_{0}(a)\right)^{r}\left(T-\varphi_{1}(a)\right)^{s} \in \overline{\mathbb{F}}_{p}[T]
$$

for all $a \in \mathcal{O}_{E}$. Here we denote by φ_{0} and φ_{1} the different \mathbb{Z}_{p}-morphisms of \mathcal{O}_{E} to $\overline{\mathbb{F}}_{p}$. Let λ be a p-principal quasi-polarization of \mathbb{X} such that the Rosati involution induced by λ induces the involution $*$ on \mathcal{O}_{E}.

We define the moduli space \mathcal{N} over $\operatorname{Spec} \overline{\mathbb{F}}_{p}$ given by the following data up to isomorphism for an $\overline{\mathbb{F}}_{p}$-scheme S :

- A p-divisible group X over S of height $2 n$ with p-principal polarization λ_{X} and \mathcal{O}_{E}-action ι_{X} such that the Rosati involution induced by λ_{X} induces the involution ${ }^{*}$ on \mathcal{O}_{E}. We assume that (X, ι) satisfies the determinant condition of signature (r, s).
- An \mathcal{O}_{E}-linear quasi-isogeny $\rho: X \rightarrow \mathbb{X} \times_{\text {Spec } \overline{\mathbb{F}}_{p}} S$ such that $\rho^{\vee} \circ \lambda \circ \rho$ is a $\left(\mathbb{O}_{p}\right.$-multiple of λ_{X} in $\operatorname{Hom}_{\mathcal{O}_{E}}\left(X, X^{\vee}\right) \otimes_{\mathbb{Z}}(\mathbb{O})$.

Remark 1.2 The moduli space \mathcal{N} is represented by a separated formal scheme which is locally formally of finite type over $\overline{\mathbb{F}}_{p}[\mathrm{RZ}$, Theorem 2.16].

Our goal is to describe the irreducible components of \mathcal{N} and their intersection behaviour.

We will now study the set $\mathcal{N}(k)$ for any algebraically closed field extension k of $\overline{\mathbb{F}}_{p}$. Let $W(k)$ be the ring of Witt vectors over k, let $W(k)_{\mathbb{Q}}$ be its quotient field and let σ be the Frobenius automorphism of $W(k)$. We write W instead of $W\left(\overline{\mathbb{F}}_{p}\right)$. Denote by \mathbb{M} the Dieudonné module of \mathbb{X} and by

$$
\begin{equation*}
N=\mathbb{M} \otimes_{\mathbb{Z}}(\mathbb{O} \tag{1.1}
\end{equation*}
$$

the associated supersingular isocrystal of dimension $2 n$ with Frobenius F and Verschiebung V. The \mathcal{O}_{E}-action ι on \mathbb{X} induces an E-action on N. The p-principal polarization λ of \mathbb{X} induces a perfect alternating form $\langle\cdot, \cdot\rangle: N \times N \rightarrow W_{\mathbb{Q}}$ such that for all $a \in E$ and x, y of N

$$
\begin{equation*}
\langle F x, y\rangle=\langle x, V y\rangle^{\sigma} \tag{1.2}
\end{equation*}
$$

and $\langle a x, y\rangle=\left\langle x, a^{*} y\right\rangle$. Denote by N_{k} the isocrystal $N \otimes_{W_{\mathbb{Q}}} W(k)_{\mathbb{Q}}$. For a lattice $M \subset N_{k}$, we denote by

$$
M^{\perp}=\left\{y \in N_{k} \mid\langle y, M\rangle \subset W(k)\right\}
$$

the dual lattice of M in N_{k} with respect to the form $\langle\cdot, \cdot\rangle$. By covariant Dieudonné theory, the tangent space Lie \mathbb{X} can be identified with $M / V M$ and we obtain the following proposition.
Proposition 1.3 For any algebraically closed field extension k of $\overline{\mathbb{F}}_{p}$ we obtain the following identification.

$$
\begin{align*}
& \mathcal{N}(k)=\left\{M \subset N_{k} \text { a } W(k) \text {-lattice } \mid M \text { is } F-, V \text { - and } O_{E} \text {-invariant },\right. \\
& \operatorname{charpol}_{k}(a, M / V M)=\left(T-\varphi_{0}(a)\right)^{r}\left(T-\varphi_{1}(a)\right)^{s} \tag{1.3}\\
& \text { for all } \left.a \in \mathcal{O}_{E}, M=p^{i} M^{\perp} \text { for some } i \in \mathbb{Z}\right\} .
\end{align*}
$$

We will now analyze the set $\mathcal{N}(k)$ in the form of (1.3). Consider the decomposition

$$
\begin{align*}
E \otimes_{\mathbb{Q}_{p}} W(k)_{\mathbb{Q}} & \cong W(k)_{\mathbb{Q}} \times W(k)_{\mathbb{Q}} \tag{1.4}\\
a \otimes x & \mapsto\left(\varphi_{0}(a) x, \varphi_{1}(a) x\right),
\end{align*}
$$

given by the two embeddings $\varphi_{i}: E \hookrightarrow W(k)_{\mathbb{Q}}$. It induces a $\mathbb{Z} / 2 \mathbb{Z}$-grading

$$
\begin{equation*}
N_{k}=N_{k, 0} \oplus N_{k, 1} \tag{1.5}
\end{equation*}
$$

of N_{k} into free $W(k)_{\mathbb{Q}_{Q}}$-modules of rank n. Furthermore, each $N_{k, i}$ is totally isotropic with respect to $\langle\cdot, \cdot\rangle$ and F induces a σ-linear isomorphism $F: N_{k, i} \rightarrow N_{k, i+1}$. We obtain $\mathcal{O}_{E} \otimes_{\mathbb{Z}_{p}} W(k) \cong W(k) \times W(k)$ analogous to (1.4). Therefore, every \mathcal{O}_{E}-invariant Dieudonné module $M \subset N_{k}$ has a decomposition $M=M_{0} \oplus M_{1}$ such that F and V are operators of degree 1 and $M_{i} \subset N_{k, i}$. For an \mathcal{O}_{E}-lattice M in N_{k} we will always denote such a decomposition by $M_{0} \oplus M_{1}$. Furthermore, for M_{i} we define the dual lattice of M_{i} with respect to $\langle\cdot, \cdot\rangle$ as

$$
M_{i}^{\perp}=\left\{y \in N_{k, i+1} \mid\left\langle y, M_{i}\right\rangle \subset W(k)\right\}
$$

For $W(k)$-lattices L and L^{\prime} in a finite dimensional $W(k)_{\mathbb{Q}^{2}}$-vector space, we denote by $\left[L^{\prime}: L\right]$ the index of L in L^{\prime}. If $L \subset L^{\prime}$, the index is defined as the length of the $W(k)$-module L^{\prime} / L. If $\left[L^{\prime}: L\right]=m$, we write $L \stackrel{m}{\subset} L^{\prime}$. In general, we define

$$
\left[L^{\prime}: L\right]=\left[L^{\prime}: L \cap L^{\prime}\right]-\left[L: L \cap L^{\prime}\right]
$$

Lemma 1.4 Let $M=M_{0} \oplus M_{1}$ be an \mathcal{O}_{E}-invariant lattice of N_{k}. Assume that M is invariant under F and V. Then M satisfies the determinant condition of signature (r, s) if and only if

$$
\begin{align*}
& p M_{0} \stackrel{s}{\subset} F M_{1} \stackrel{r}{\subset} M_{0}, \tag{1.6}\\
& p M_{1} \stackrel{r}{\subset} F M_{0} \stackrel{s}{\subset} M_{1} . \tag{1.7}
\end{align*}
$$

Proof Consider the decomposition $M / V M=M_{0} / V M_{1} \oplus M_{1} / V M_{0}$. The determinant condition is equivalent to the condition that $V M_{1}$ is of index r in M_{0} and $V M_{0}$ is of index s in M_{1}. Since $F V=V F=p \mathrm{id}_{M}$, we obtain that $p M_{1}$ is of index r in $F M_{0}$ and $p M_{0}$ is of index s in $F M_{1}$.

Let $\mathbb{M}_{k}=\mathbb{M}_{k, 0} \oplus \mathbb{M}_{k, 1}$ be the Dieudonné module of \mathbb{X}_{k}. For a Dieudonné lattice $M \in \mathcal{N}(k)$, denote by $\operatorname{vol}(M)=\left[\mathbb{M}_{k}: M\right]$ the volume of M.

Lemma 1.5 Let $M \in \mathcal{N}(k)$. If $M=p^{i} M^{\perp}$ for some integer i, then $\operatorname{vol}(M)=n i$.
Proof Since both vector spaces $N_{k, 0}$ and $N_{k, 1}$ are maximal totally isotropic with respect to $\langle\cdot, \cdot\rangle$, the condition $M=p^{i} M^{\perp}$ is equivalent to the two conditions

$$
p^{i} M_{0}^{\perp}=M_{1}, \quad p^{i} M_{1}^{\perp}=M_{0}
$$

By duality, the last two conditions are equivalent. We obtain

$$
\begin{aligned}
\operatorname{vol}(M) & =\left[\mathbb{M}_{k, 0}: M_{0}\right]+\left[\mathbb{M}_{k, 1}: M_{1}\right]=\left[M_{0}^{\perp}: \mathbb{M}_{k, 0}^{\perp}\right]+\left[\mathbb{M}_{k, 1}: M_{1}\right] \\
& =\left[p^{-i} M_{1}: \mathbb{M}_{k, 1}\right]+\left[\mathbb{M}_{k, 1}: M_{1}\right]=n i,
\end{aligned}
$$

which proves the claim.
Let $M \in \mathcal{N}(k)$ and let (X, ρ) be the corresponding p-divisible group and quasiisogeny. Denote the height of ρ by $\operatorname{ht}(\rho)$. Then $\operatorname{ht}(\rho)=\operatorname{vol}(M)$. As the height of a quasi-isogeny of p-divisible groups over S is locally constant over S, we obtain by Lemma 1.5 a morphism

$$
\begin{aligned}
\kappa: \mathcal{N} & \rightarrow \mathbb{Z} \\
(X, \rho) & \mapsto \operatorname{ht}(\rho) / n
\end{aligned}
$$

Remark 1.6 For $i \in \mathbb{Z}$ the fibre $\mathcal{N}_{i}=\kappa^{-1}(i)$ is the open and closed formal subscheme of \mathcal{N} of quasi-isogenies of height $n i$.

Lemma 1.7 If ni is odd, the formal scheme \mathcal{N}_{i} is empty.
Proof Let M be an element of $\mathcal{N}(k)$. Since both \mathbb{M}_{k} and M satisfy the determinant condition of signature (r, s), we obtain by Lemma 1.4 that

$$
\begin{aligned}
\operatorname{vol}(M) & =\left[\mathbb{M}_{k, 0}: M_{0}\right]+\left[\mathbb{M}_{k, 1}: M_{1}\right]=\left[\mathbb{M}_{k, 0}: M_{0}\right]+\left[F \mathbb{M}_{k, 1}: F M_{1}\right] \\
& =2\left[\mathbb{M}_{k, 0}: M_{0}\right]+\left[F \mathbb{M}_{k, 1}: \mathbb{M}_{k, 0}\right]+\left[M_{0}: F M_{1}\right]=2\left[\mathbb{M}_{k, 0}: M_{0}\right]
\end{aligned}
$$

Hence $\operatorname{vol}(M)$ is even, i.e., $n i$ is even.
Let $N_{k}=N_{k, 0} \oplus N_{k, 1}$ be as in (1.5). To describe the set $\mathcal{N}(k)$, it is convenient to express $\mathcal{N}(k)$ in terms of $N_{k, 0}$. Let τ be the σ^{2}-linear operator $V^{-1} F$ on N_{k}. Then $N_{k, 0}$ and $N_{k, 1}$ are both τ-invariant. Denote by $\left(\mathbb{O}_{p^{2}}\right.$ the unique unramified extension of degree 2 of $\left(\mathbb{O}_{p}\right.$ in $W_{\mathbb{Q}}$ and denote by $\mathbb{Z}_{p^{2}}$ its ring of integers. Since the isocrystal N_{k} is supersingular, $\left(N_{k}, \tau\right)$ is isoclinic with slope zero. Thus $\left(N_{k, i}, \tau\right)$ is isoclinic of slope zero for $i=0,1$, i.e., there exists a τ-invariant lattice in $N_{k, i}$. For every τ-invariant lattice $M_{i} \subset N_{k, i}$, there exists a τ-invariant basis of M_{i} [Zi1, §6.26]. Let C be the $\mathbb{O}_{p^{2}}$-vector space of all τ-invariant elements of $N_{k, 0}$ and let M_{0}^{τ} be the $\mathbb{Z}_{p^{2}}$-module of τ-invariant elements of M_{0}.

Remark 1.8 We obtain $M_{0}=M_{0}^{\tau} \otimes_{\mathbb{Z}_{p^{2}}} W(k)$, the set of τ-invariants M_{0}^{τ} is a lattice in C and $N_{k, 0}=C \otimes \otimes_{\mathbb{Q}^{2}} W(k)_{\mathbb{Q}}$. Note that the $\mathbb{O}_{p^{2}}$-vector space C does not depend on k.

We write C_{k} for the base change $C \otimes_{\mathbb{O}_{p^{2}}} W(k)_{\mathbb{Q}}$.
Definition 1.9 We define a new form on C_{k} by $\{x, y\}:=\langle x, F y\rangle$.

This is a perfect form on C_{k} linear in the first and σ-linear in the second variable. By (1.2) we obtain the following property of $\{\cdot, \cdot\}$

$$
\begin{equation*}
\{x, y\}=-\left\{y, \tau^{-1}(x)\right\}^{\sigma} \tag{1.8}
\end{equation*}
$$

which in turn implies

$$
\begin{equation*}
\{\tau(x), \tau(y)\}=\{x, y\}^{\sigma^{2}} \tag{1.9}
\end{equation*}
$$

For a $W(k)$-lattice L in C_{k}, denote by L^{\vee} the dual of L with respect to the form $\{\cdot, \cdot\}$ defined by $L^{\vee}=\left\{y \in C_{k} \mid\{y, L\} \subset W(k)\right\}$. We obtain by (1.8) that

$$
\begin{equation*}
\left(L^{\vee}\right)^{\vee}=\tau(L) \tag{1.10}
\end{equation*}
$$

In particular, taking the dual is not an involution on the set of lattices in C_{k}. The identity (1.9) implies that

$$
\begin{equation*}
\tau\left(L^{\vee}\right)=\tau(L)^{\vee} \tag{1.11}
\end{equation*}
$$

The form $\{\cdot, \cdot\}$ on C_{k} induces by restriction to C a perfect skew-hermitian form on C with respect to $(\mathbb{O})_{p^{2}} /(\mathbb{O})_{p}$ which we will again denote by $\{\cdot, \cdot\}$. For the perfect form to be skew-hermitian means that it is linear in the first and σ-linear in the second variable and we have $\{x, y\}=-\{y, x\}^{\sigma}$, where the Frobenius σ is an involution on $(\mathbb{O})_{p}$.

It is clear that for each τ-invariant lattice A of C_{k} we obtain $\left(A^{\vee}\right)^{\tau}=\left(A^{\tau}\right)^{\vee}$, where the second dual is taken with respect to the skew-hermitian form $\{\cdot, \cdot\}$ on C.

Proposition 1.10 There is a bijection between $\mathcal{N}(k)$ and

$$
\mathcal{D}(C)(k)=\left\{A \subset C_{k} \mid A \text { is a lattice and } p^{i+1} A^{\vee} \stackrel{r}{\subset} A \stackrel{s}{\subset} p^{i} A^{\vee} \text { for some } i \in \mathbb{Z}\right\} .
$$

The bijection is obtained by associating with $M=M_{0} \oplus M_{1} \in \mathcal{N}(k)$ the lattice M_{0} in C_{k}.

Remark 1.11 Note that by duality and (1.10) the chain condition

$$
p^{i+1} A^{\vee} \stackrel{r}{\subset} A \stackrel{s}{\subset} p^{i} A^{\vee}
$$

is equivalent to the chain condition $p^{-i} \tau(A) \stackrel{s}{\subset} A^{\vee} \stackrel{r}{\subset} p^{-i-1} \tau(A)$, which is equivalent to $p^{i+1} A^{\vee} \stackrel{r}{\subset} \tau(A) \stackrel{S}{\subset} p^{i} A^{\vee}$.

Definition 1.12 An element $M \in \mathcal{N}(k)$ is called superspecial if $F(M)=V(M)$, i.e., if M is τ-invariant. A lattice $A \subset C$ is superspecial if and only if A is τ-invariant.

Note that M is superspecial if and only if the corresponding lattice $A=M_{0}$ is superspecial.

Proof of Proposition 1.10 Let $M=M_{0} \oplus M_{1}$ be an \mathcal{O}_{E}-invariant lattice that is stable under F and V.
Claim $M=p^{i} M^{\perp}$ with respect to $\langle\cdot, \cdot\rangle$ if and only if $F M_{1}=p^{i+1} M_{0}^{\vee}$.
Indeed, the lattice M is equal to $p^{i} M^{\perp}$ if and only if $p^{i} M_{0}^{\perp}=M_{1}$ (proof of Lemma 1.5). We have

$$
\begin{aligned}
F\left(M_{0}^{\perp}\right) & =\left\{y \in N_{k, 0} \mid\left\langle F^{-1} y, M_{0}\right\rangle \subset W(k)\right\} \\
& =\left\{y \in N_{k, 0} \mid\left\{p^{-1} y, M_{0}\right\} \subset W(k)\right\}=p M_{0}^{\vee}
\end{aligned}
$$

which proves the claim.
Let M be an element of the set $\mathcal{N}(k)$. Since $F M_{1}$ is equal to $p^{i+1}{ }_{r} M_{0}^{\vee}$ for some $i \in \mathbb{Z}$, we obtain from (1.6) with $M_{0}=A$ the chain condition $p^{i+1} A^{\vee} \stackrel{r}{\subset} A \stackrel{s}{\subset} p^{i} A^{\vee}$. Hence A is an element of $\mathcal{D}(C)(k)$. Conversely, associate with a lattice A of $\mathcal{D}(C)(k)$ the lattice $A \oplus F^{-1}\left(p^{i+1} A^{\vee}\right) \subset N_{k, 0} \oplus N_{k, 1}$. It is an element of $\mathcal{N}(k)$ by the same arguments.

Lemma 1.13 Let $t \in \mathbb{Z}_{p^{2}}^{\times}$with $t^{\sigma}=-t$ and let V be a $\left(\mathbb{O}_{p^{2}}\right.$-vector space of dimension n. Let I_{n} be the identity matrix of rank n and let J_{n} be the matrix

$$
J_{n}=\left(\begin{array}{cccc}
p & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right)
$$

There exist two perfect skew-hermitian forms on V up to isomorphism. These forms correspond to $t I_{n}$ and to $t J_{n}$, respectively. Furthermore, if M is a lattice in V and $i \in \mathbb{Z}$ with

$$
\begin{equation*}
p^{i+1} M^{\vee} \stackrel{r}{\subset} M \stackrel{s}{\subset} p^{i} M^{\vee} \tag{1.12}
\end{equation*}
$$

then $s \equiv n i \bmod 2$ in the first case and $s \not \equiv n i \bmod 2$ in the second case. In particular, the form $t\binom{I_{r}}{p I_{s}}$ is isomorphic to the form $t I_{n}$ ifs is even and is isomorphic to $t J_{n}$ if s is odd.

Proof Let $\{\cdot, \cdot\}$ be a perfect skew-hermitian form on V. Let U be the unitary group over $\left(\mathbb{O}_{p}\right.$ associated with the pair $(V,\{\cdot, \cdot\})$. As $H^{1}\left(\mathbb{O}_{p}, U\right) \cong \mathbb{Z} / 2 \mathbb{Z}[K 1, \S 6]$, there exist two non isomorphic skew-hermitian forms on V. Choose a basis of V.

Claim The skew-hermitian forms on V corresponding to the matrix $t I_{n}$ and to the matrix $t J_{n}$ are not isomorphic.

Indeed, assume that these forms are isomorphic. Then there exists a lattice M in V with $M=M^{\vee}$ and a lattice L in V with

$$
p L^{\vee} \stackrel{n-1}{\subset} L \subset L^{\vee} .
$$

Let k be an integer such that L^{\vee} is contained in $p^{k} M$. We obtain $p^{-k} M \stackrel{l}{\subset} L \stackrel{1}{\subset} L^{\vee} \stackrel{l}{\subset}$ $p^{k} M$. Thus $2 k n=2 l+1$, which is a contradiction. Therefore, the two forms are not isomorphic.

Let M be a lattice in V which satisfies (1.12). A similar index argument as above shows that $s \equiv n i \bmod 2$ if the skew-hermitian form is isomorphic to $t I_{n}$ and $s \not \equiv$ $n i \bmod 2$ in the other case.

Lemma 1.14 Let V be a $\left(\mathbb{O}_{p^{2}}\right.$-vector space of dimension n and let $\{\cdot, \cdot\}$ be a perfect skew-hermitian form on V. Let $M \subset V$ be a $\mathbb{Z}_{p^{2}}$-lattice with

$$
p M^{\vee} \stackrel{r}{\subset} M \stackrel{s}{\subset} M^{\vee}
$$

Then there exists a basis of M such that the form $\{\cdot, \cdot\}$ with respect to this basis is given by the matrixt $\left(\begin{array}{cc}I_{r} & p I_{s}\end{array}\right)$.
Proof The lemma is proved by an analogue of the Gram-Schmidt orthogonalization.

Proposition 1.15 There exists a basis of C such that the form $\{\cdot, \cdot\}$ with respect to this basis is given by the matrix $\left(t I_{n}\right)$ if s is even and by $\left(t J_{n}\right)$ if s is odd.

In particular, the isocrystal N with \mathcal{O}_{E}-action and perfect form $\langle\cdot, \cdot\rangle$ as in (1.1) is uniquely determined up to isomorphism.

Proof The image of the Dieudonné lattice $\mathbb{M}_{k} \in \mathcal{N}(k)$ under the bijection of Proposition 1.10 satisfies $p \mathbb{M}_{k, 0}^{\vee} \stackrel{r}{\subset} \mathbb{M}_{k, 0} \stackrel{s}{\subset} \mathbb{M}_{k, 0}^{\vee}$. Thus the proposition follows from Lemma 1.14

Let J be the group of isomorphisms of the isocrystal N with additional structure, i.e.,

$$
\begin{align*}
& J=\left\{g \in \mathrm{GL}_{E \otimes \mathrm{a}_{p} W\left(\overline{\mathbb{F}}_{p}\right)_{\mathbb{Q}}}(N) \mid F g=g F ;\langle g x, g y\rangle\right.=c(g)\langle x, y\rangle \tag{1.13}\\
&\left.\quad \text { with } c(g) \in\left(W\left(\overline{\mathbb{F}}_{p}\right)_{\mathbb{Q}}\right)^{\times}\right\} .
\end{align*}
$$

Then J is the group $\operatorname{End}_{\mathcal{O}_{E}, \lambda}^{\circ}(\mathbb{X})^{\times}$of \mathcal{O}_{E}-linear quasi-isogenies ρ of the p-divisible group \mathbb{X} of Definition 1.1 such that $\lambda \circ \rho$ is a $\left(O_{p}^{\times}-\right.$multiple of $\rho^{\vee} \circ \lambda$.

An element $g \in J$ acts on \mathcal{N} by sending $\left(X, \iota_{X}, \lambda_{X}, \rho\right)$ to $\left(X, \iota_{X}, \lambda_{X}, g \circ \rho\right)$. Consider the decomposition $N=N_{0} \oplus N_{1}$ of the isocrystal N as in (1.5).

Remark 1.16 (i) The group J can be identified with the group of unitary similitudes of the hermitian space $(C,\{\cdot, \cdot\})$. Indeed, let $g \in J$. As g is \mathcal{O}_{E}-linear, it respects the grading of N. Since g commutes with F, the action of g on N is uniquely determined by its action on N_{0} and we obtain $\{g x, g y\}=c(g)\{x, y\}$ for all elements $x, y \in N_{0}$. As g commutes with τ, it is defined over $\mathbb{O}_{p^{2}}$, i.e., an automorphism of $N_{0}^{\tau}=C$. In particular, $c(g) \in\left(\mathbb{O}_{p^{2}}\right.$.
(ii) Let v_{p} be the p-adic valuation on $\mathbb{O}_{p^{2}}$. It defines a morphism $\theta: J \rightarrow \mathbb{Z}$ by sending an element $g \in J$ to $v_{p}(c(g))$. Denote by J^{0} the kernel of θ.
(iii) For $\rho \in \operatorname{End}_{\mathcal{O}_{E}, \lambda}^{\circ}(\mathbb{X})^{\times}$, let $g \in J$ be the corresponding automorphism of the isocrystal and let $\alpha=v_{p}(c(g))$. We obtain $g \mathbb{M} I=c(g)(g \mathbb{M})^{\perp}$, hence by Lemma 1.5 the height of ρ is equal to $n \alpha$. By Remark 1.6 the element g defines an isomorphism of \mathcal{N}_{i} with $\mathcal{N}_{i+\alpha}$ for every integer i.

Lemma 1.17 The image of θ is equal to \mathbb{Z} if n is even and equal to $2 \mathbb{Z}$ if n is odd. In particular, there exists a quasi-isogeny $\rho \in \operatorname{End}_{\mathcal{O}_{E, \lambda}}(\mathbb{X})$ of height $h \in \mathbb{Z}$ if and only if h is divisible by n if n is even and if h is divisible by $2 n$ if n is odd.

Proof For $g=p \operatorname{id}_{N}$ we have $c(g)=p^{2}$. If n is odd, the same argument as in Lemma 1.7 shows that the image of θ is contained in $2 \mathbb{Z}$. Thus we may assume that n is even. It is sufficient to show that there exists an element $g \in \operatorname{GL}(C)$ such that $\{g x, g y\}=p\{x, y\}$ for all $x, y \in C$.

Let T_{1} and T_{2} be the matrices in $\mathrm{GL}(C)$ given by

$$
T_{1}=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right) \quad T_{2}=\left(\begin{array}{llll}
& & & p \\
& & 1 & \\
& . & &
\end{array}\right)
$$

By Lemma 1.13 the perfect skew-hermitian form on C induced by $t T_{1}$ is isomorphic to $t I_{n}$ and the perfect skew-hermitian form induced by $t T_{2}$ is isomorphic to $t J_{n}$. We set $g=\operatorname{diag}\left(p^{n / 2}, 1^{n / 2}\right)$. Then g satisfies the claim.

For $i \in \mathbb{Z}$ we denote by $\mathcal{D}_{i}(C)(k)$ the image of $\mathcal{N}_{i}(k)$ (see Remark 1.6) under the bijection of Proposition 1.10 i.e.,

$$
\begin{equation*}
\mathcal{D}_{i}(C)(k)=\left\{A \in \mathcal{D}(C)(k) \mid p^{i+1} A^{\vee} \stackrel{r}{\subset} A \stackrel{s}{\subset} p^{i} A^{\vee}\right\} \tag{1.14}
\end{equation*}
$$

We have a decomposition of $\mathcal{D}(C)(k)$ into a disjoint union of the sets $\mathcal{D}_{i}(C)(k)$,

$$
\mathcal{D}(C)(k)=\biguplus_{i \in \mathbb{Z}} \mathcal{D}_{i}(C)(k)
$$

The sets $\mathcal{D}_{i}(C)(k)$ are invariant under the action of τ on $\mathcal{D}(C)(k)$. By Lemma 1.7we know that $\mathcal{D}_{i}(C)(k)$ is empty if $n i$ is odd.

Proposition 1.18 Let i be an integer such that $n i$ is even. If n is even, let g be an element of J such that $v_{p}(c(g))=-1$ (Lemma 1.17). There exists an isomorphism

$$
\begin{equation*}
\Psi_{i}: \mathcal{N}_{i} \xrightarrow{\sim} \mathcal{N}_{0} \tag{1.15}
\end{equation*}
$$

such that the following holds. If i is even, Ψ_{i} induces on k-rational points the bijection

$$
\begin{aligned}
\Psi_{i}: \mathcal{D}_{i}(C)(k) & \xrightarrow{\sim} \mathcal{D}_{0}(C)(k), \\
A & \longmapsto p^{-\frac{i}{2}} A,
\end{aligned}
$$

and if i is odd, Ψ_{i} induces the bijection

$$
\begin{aligned}
\Psi_{i}: \mathcal{D}_{i}(C)(k) & \stackrel{\sim}{\longrightarrow} \mathcal{D}_{0}(C)(k) \\
A & \longmapsto p^{\frac{-i+1}{2}} g(A) .
\end{aligned}
$$

Proof If i is even, the multiplication $p^{-i / 2}: \mathbb{X} \rightarrow \mathbb{X}$ defines an isomorphism of \mathcal{N}_{i} with \mathcal{N}_{0} that satisfies the claim. If i is odd, the quasi-isogeny $p^{(-i+1) / 2} g$ induces an isomorphism of \mathcal{N}_{i} with \mathcal{N}_{0} that satisfies the claim.

2 The Set Structure of \mathcal{N} for $G U(1, s)$

From now on, we will restrict ourselves to the case of $\operatorname{GU}(1, s)$. Our goal is to describe the irreducible components of \mathcal{N}_{i} for any integer i with $n i$ even. In this section we will define irreducible varieties over $\overline{\mathbb{F}}_{p}$ of dimension equal to the dimension of \mathcal{N}_{i} such that the k-rational points of these varieties cover $\mathcal{N}_{i}(k)$ for every algebraically closed field extension k of $\overline{\mathbb{F}}_{p}$.

We will always denote by k an algebraically closed field extension of $\overline{\mathbb{F}}_{p}$. Let C_{k} be the $W(k)_{\mathbb{Q}_{2}}$-vector space of dimension $n=s+1$ with σ^{2}-linear operator τ as in Remark 1.8 By Definition 1.9 the vector space C_{k} is equipped with a perfect form $\{\cdot, \cdot\}$, linear in the first variable and σ-linear in the second variable, that satisfies $\{x, y\}=-\left\{y, \tau^{-1}(x)\right\}^{\sigma}$ for all $x, y \in C_{k}$. By Proposition 1.15 the restriction of $\{\cdot, \cdot\}$ to C is a perfect skew-hermitian form equivalent to the skew-hermitian form induced by $t I_{n}$ if n is odd and equivalent to $t J_{n}$ if n is even.

Let $i \in \mathbb{Z}$. The set $\mathcal{D}_{i}(C)(k)$ as in (1.14) consists of all lattices A in C_{k} such that

$$
\begin{equation*}
p^{i+1} A^{\vee} \stackrel{1}{\subset} A{ }^{n-1} \subset p^{i} A^{\vee} \tag{2.1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
p^{i+1} A^{\vee} \stackrel{1}{\subset} \tau(A) \stackrel{n-1}{\subset} p^{i} A^{\vee} \tag{2.2}
\end{equation*}
$$

By Lemma 1.7 we know that $\mathcal{D}_{i}(C)(k)$ is empty if $n i$ is odd. If $n i$ is even, the set $\mathcal{D}_{i}(C)(k)$ is nonempty by Proposition 1.18. Therefore, we will always assume that $n i$ is even.

We need the following crucial lemma.
Lemma 2.1 Let A be a lattice in $\mathcal{D}_{i}(C)(k)$. There exists an integer d with $0 \leq d \leq s / 2$ and such that

$$
\Lambda=A+\tau(A)+\cdots+\tau^{d}(A)
$$

is a τ-invariant lattice. If d is minimal with this condition, we have

$$
p^{i+1} \Lambda^{\vee} \subset p^{i+1} A^{\vee} \stackrel{1}{\subset} A \stackrel{d}{\subset} \Lambda \stackrel{n-2 d-1}{\subset} p^{i} \Lambda^{\vee} \subset p^{i} A^{\vee}
$$

and $p^{i+1} \Lambda^{\vee}$ is of index $(2 d+1)$ in Λ.

The proof of Lemma 2.1 will use explicitly that the index of $p^{i+1} A^{\vee}$ in A is equal to 1 . It does not work in the case of general index.
Proof For every nonnegative integer j, denote by T_{j} the lattice

$$
\begin{equation*}
T_{j}=A+\tau(A)+\cdots+\tau^{j}(A) \tag{2.3}
\end{equation*}
$$

We have $T_{j+1}=T_{j}+\tau\left(T_{j}\right)$. Let $d \geq 0$ be minimal with $T_{d}=\tau\left(T_{d}\right)$, i.e., $\tau\left(T_{j}\right) \neq T_{j}$ for every $0 \leq j<d$. Such an integer exists [RZ, Proposition 2.17]. If $d=0$, there is nothing to prove, hence we may assume that $d \geq 1$.
Claim If $d \geq 2$, then for $2 \leq j \leq d$

$$
\begin{equation*}
\tau\left(T_{j-2}\right) \stackrel{1}{\subset} T_{j-1} \stackrel{1}{\subset} T_{j} \quad \text { and } \quad \tau\left(T_{j-2}\right) \stackrel{1}{\subset} \tau\left(T_{j-1}\right) \stackrel{1}{\subset} T_{j} . \tag{2.4}
\end{equation*}
$$

In particular, $A=T_{0}$ is of index j in T_{j}.
Indeed, if $j=2$ we obtain $p^{i+1} A^{\vee} \stackrel{1}{\subset} A$ and $p^{i+1} A^{\vee} \stackrel{1}{\subset} \tau(A)$ by (2.1) and (2.2). Hence either $A=\tau(A)$ or A and $\tau(A)$ are both of index 1 in $T_{1}=A+\tau(A)$. Since $d \geq 1$, the second possibility occurs. As A is of index 1 in T_{1}, the lattice $\tau(A)$ is of index 1 in $\tau\left(T_{1}\right)$. We obtain that either $T_{1}=\tau\left(T_{1}\right)$ or that T_{1} and $\tau\left(T_{1}\right)$ are both of index 1 in $T_{2}=T_{1}+\tau\left(T_{1}\right)$. Since $d \geq 2$, the second possibility occurs, which proves the claim for $j=2$. The general case follows by induction on j.

We will now show that T_{d} is contained in T_{d}^{\vee}. By (2.1) and (2.2), we have

$$
A+\tau(A) \subset p^{i} A^{\vee} \subset p^{-1} \tau(A), \quad \tau(A)+\tau^{2}(A) \subset p^{i} \tau(A)^{\vee} \subset p^{-1} \tau(A)
$$

hence

$$
\begin{equation*}
A+\tau(A)+\tau^{2}(A) \subset p^{-1} \tau(A) \tag{2.5}
\end{equation*}
$$

Using (2.5) we obtain

$$
T_{d}=A+\cdots+\tau^{d}(A) \subset p^{-1} \tau(A)+\cdots+p^{-1} \tau^{d-1}(A) \subset p^{-1} T_{d-1}
$$

Since T_{d} is τ-invariant, T_{d} is contained in $p^{-1} \tau^{l}\left(T_{d-1}\right)$ for every integer l, thus

$$
T_{d} \subset p^{-1} \bigcap_{l \in \mathbb{Z}} \tau^{l}\left(T_{d-1}\right)
$$

Now

$$
\begin{equation*}
\bigcap_{l \in \mathbb{Z}} \tau^{l}\left(T_{d-1}\right)=\bigcap_{l \in \mathbb{Z}} \tau^{l}(A) \tag{2.6}
\end{equation*}
$$

Indeed, this is clear if $d=1$, since $T_{0}=A$. If $d \geq 2$, we obtain by (2.4) that $T_{d-1} \cap \tau\left(T_{d-1}\right)=\tau\left(T_{d-2}\right)$, hence

$$
\bigcap_{l \in \mathbb{Z}} \tau^{l}\left(T_{d-1}\right)=\bigcap_{l \in \mathbb{Z}} \tau^{l}\left(T_{d-2}\right)
$$

and (2.6) follows by induction. Since $d \geq 1$, we have $A \neq \tau(A)$, and hence $A \cap \tau(A)=$ $p^{i+1} A^{\vee}$ by (2.1) and (2.2). We obtain

$$
\begin{equation*}
T_{d} \subset p^{i} \bigcap_{l \in \mathbb{Z}} \tau^{l}(A)^{\vee} \tag{2.7}
\end{equation*}
$$

Dualizing (2.3) for $j=d$ shows that $T_{d}^{\vee}=A^{\vee} \cap \cdots \cap \tau^{d}\left(A^{\vee}\right)$, hence by (2.7)

$$
T_{d} \subset p^{i} \bigcap_{l \in \mathbb{Z}} \tau^{l}(A)^{\vee}=p^{i} \bigcap_{l \in \mathbb{Z}} \tau^{l}\left(T_{d}\right)^{\vee}=p^{i} T_{d}^{\vee}
$$

The last equality is satisfied because T_{d}, and hence T_{d}^{\vee}, are τ-invariant. We obtain

$$
\begin{equation*}
p^{i+1} T_{d}^{\vee} \subset p^{i+1} A^{\vee} \stackrel{1}{\subset} A \subset T_{d} \subset p^{i} T_{d}^{\vee} \subset p^{i} A^{\vee} \tag{2.8}
\end{equation*}
$$

Using (2.8) and $A \stackrel{s}{\subset} p^{i} A^{\vee}$ we see that $d \leq s / 2$, which proves the claim.
Definition 2.2 For $i \in \mathbb{Z}$ with $n i$ even, let \mathcal{L}_{i} be the set of all lattices Λ in C satisfying

$$
\begin{equation*}
p^{i+1} \Lambda^{\vee} \varsubsetneqq \Lambda \subset p^{i} \Lambda^{\vee} \tag{2.9}
\end{equation*}
$$

Let $\mathcal{L}=\biguplus_{i \in \mathbb{Z}} \mathcal{L}_{i}$ be the disjoint union of the sets \mathcal{L}_{i}. We say that $\Lambda \in \mathcal{L}_{i}$ is of type l, if $p^{i+1} \Lambda^{\vee}$ is of index l in Λ. Denote by $\mathcal{L}_{i}^{(l)}$ the set of all lattices of type l in \mathcal{L}_{i}. For $\Lambda \in \mathcal{L}_{i}$ let $\Lambda_{k}=\Lambda \otimes_{\mathbb{Z}_{p^{2}}} W(k)$. We define

$$
\mathcal{V}(\Lambda)(k)=\left\{A \subset \Lambda_{k} \mid p^{i+1} A^{\vee} \stackrel{1}{\subset} A\right\} .
$$

Remark 2.3 (i) Let $\Lambda \in \mathcal{L}_{i}$. The type l of Λ is always an odd integer with $1 \leq l \leq n$. Indeed, it is clear that $1 \leq l \leq n$. Since $n i$ is even, the integer $n-l$ is even if and only if n is odd (Lemma 1.13).
(ii) There is a bijection between \mathcal{L}_{i} and the set of all τ-invariant lattices in C_{k} satisfying (2.9). Via this bijection the superspecial lattices in $\mathcal{D}_{i}(C)(k)$ correspond to the lattices $\Lambda \in \mathcal{L}_{i}$ of type 1 .
(iii) Let $\Lambda \in \mathcal{L}_{i}$. By duality a lattice A in $\mathcal{V}(\Lambda)(k)$ satisfies

$$
\begin{equation*}
p^{i+1} \Lambda_{k} \subset p^{i+1} \Lambda_{k}^{\vee} \subset p^{i+1} A^{\vee} \subset A \subset \Lambda_{k} \tag{2.10}
\end{equation*}
$$

(iv) For every i the isomorphism Ψ_{i} of Proposition 1.18 induces an isomorphism Ψ_{i} of $\mathcal{L}_{i}^{(l)}$ with $\mathcal{L}_{0}^{(l)}$ such that $\mathcal{V}\left(\Psi_{i}(\Lambda)\right)(k)=\Psi_{i}(\mathcal{V}(\Lambda)(k))$.

The sets $\mathcal{V}(\Lambda)(k)$ will be identified with the k-rational points of an irreducible smooth variety. In Section [5] we will prove that for $\operatorname{GU}(1,2)$ the varieties corresponding to lattices Λ of maximal type are isomorphic to the irreducible components of \mathcal{N}. We will start with some basic properties of $\mathcal{V}(\Lambda)(k)$.

Proposition 2.4 (i) We have $\mathcal{D}_{i}(C)(k)=\bigcup_{\Lambda \in \mathcal{L}_{i}} \mathcal{V}(\Lambda)(k)$. In particular, $\mathcal{L}_{i} \neq \varnothing$. (ii) For $\Lambda \in \mathcal{L}_{i}$ and $\Lambda^{\prime} \in \mathcal{L}_{j}$ with $i \neq j$, we have $\mathcal{V}(\Lambda)(k) \cap \mathcal{V}\left(\Lambda^{\prime}\right)(k)=\varnothing$.
(iii) Let Λ and Λ^{\prime} be elements of \mathcal{L}_{i}.
(a) If $\Lambda \subset \Lambda^{\prime}$, then $\mathcal{V}(\Lambda)(k) \subset \mathcal{V}\left(\Lambda^{\prime}\right)(k)$.
(b) We have

$$
\mathcal{V}(\Lambda)(k) \cap \mathcal{V}\left(\Lambda^{\prime}\right)(k)= \begin{cases}\mathcal{V}\left(\Lambda \cap \Lambda^{\prime}\right)(k) & \text { if } \Lambda \cap \Lambda^{\prime} \in \mathcal{L}_{i} \\ \varnothing & \text { otherwise } .\end{cases}
$$

Proof Statements (i), (ii), and (iii)(a) follow from the definition and Lemma 2.1 To prove (iii)(b), let A be an element of $\mathcal{V}(\Lambda)(k) \cap \mathcal{V}\left(\Lambda^{\prime}\right)(k)$. By (2.10) we have

$$
p^{i+1} \Lambda^{\vee} \subset p^{i+1} A^{\vee} \varsubsetneqq A \subset \Lambda_{k} \subset p^{i} \Lambda_{k}^{\vee} \subset p^{i} A^{\vee}
$$

and similarly for Λ_{k}^{\prime} instead of Λ_{k}. We obtain

$$
\begin{aligned}
p^{i+1}\left(\Lambda_{k} \cap \Lambda_{k}^{\prime}\right)^{\vee} \subset p^{i+1} A^{\vee} \varsubsetneqq A & \subset\left(\Lambda_{k} \cap \Lambda_{k}^{\prime}\right) \subset \Lambda_{k} \\
& \subset p^{i} \Lambda_{k}^{\vee} \subset p^{i}\left(\Lambda_{k} \cap \Lambda_{k}^{\prime}\right)^{\vee} \subset p^{i} A^{\vee}
\end{aligned}
$$

hence $\Lambda \cap \Lambda^{\prime} \in \mathcal{L}_{i}$. A similar calculation shows the equality

$$
\mathcal{V}(\Lambda)(k) \cap \mathcal{V}\left(\Lambda^{\prime}\right)(k)=\mathcal{V}\left(\Lambda \cap \Lambda^{\prime}\right)(k)
$$

Proposition 2.5 Let $\Lambda, \Lambda^{\prime} \in \mathcal{L}_{i}$.
(i) $\mathcal{V}(\Lambda)(k)$ contains a superspecial lattice. Furthermore, $\# \mathcal{V}(\Lambda)(k)=1$ if and only if Λ is of type 1 . In this case $\mathcal{V}(\Lambda)(k)=\left\{\Lambda_{k}\right\}$.
(ii) $\mathcal{V}\left(\Lambda^{\prime}\right)(k) \subset \mathcal{V}(\Lambda)(k)$ if and only if $\Lambda^{\prime} \subset \Lambda$. In particular, $\mathcal{V}\left(\Lambda^{\prime}\right)(k)=\mathcal{V}(\Lambda)(k)$ if and only if $\Lambda^{\prime}=\Lambda$.
(iii) Let l be the type of Λ. For every odd integer $1 \leq l^{\prime} \leq n$, there exists a lattice $\Lambda^{\prime} \in \mathcal{L}_{i}$ of type l^{\prime} with $\Lambda^{\prime} \subset \Lambda$ if $l^{\prime} \leq l$ and $\Lambda \subset \Lambda^{\prime}$ if $l \leq l^{\prime}$.
In particular, the maximal sets $\mathcal{V}(\Lambda)(k)$ are the sets with Λ of type n if n is odd and of type $n-1$ if n is even.

For the proof of Proposition 2.5, we first need a description of the sets $\mathcal{V}(\Lambda)(k)$ in terms of linear algebra. We first consider the case $i=0$. Let $\Lambda \in \mathcal{L}_{0}$ be of type l. We associate with Λ the $\mathbb{F}_{p^{2}}$-vector spaces

$$
\begin{equation*}
V=\Lambda / p \Lambda^{\vee} \quad \text { and } \quad V^{\prime}=\Lambda^{\vee} / \Lambda \tag{2.11}
\end{equation*}
$$

By (2.9) the vector space V is of dimension l and V^{\prime} is of dimension $n-l$. For $z \in \mathbb{Z}_{p^{2}}$ denote by \bar{z} its image in $\mathbb{F}_{p^{2}}$. The skew-hermitian form $\{\cdot, \cdot\}$ on C induces a perfect skew-hermitian form (\cdot, \cdot) on V by

$$
\begin{equation*}
(\bar{x}, \bar{y})=\overline{\{x, y\}} \in \mathbb{F}_{p^{2}} \tag{2.12}
\end{equation*}
$$

for $\bar{x}, \bar{y} \in V$ and lifts $x, y \in \Lambda$. Similarly, we obtain a perfect skew-hermitian form on V^{\prime} by

$$
(\bar{x}, \bar{y})^{\prime}=\overline{(p\{x, y\})} \in \mathbb{F}_{p^{2}}
$$

for $\bar{x}, \bar{y} \in V^{\prime}$ and lifts $x, y \in \Lambda^{\vee}$.
Let τ be the operator on $V_{k}=V \otimes_{\mathbb{F}_{p^{2}}} k$ defined by the Frobenius of k over $\mathbb{F}_{p^{2}}$. We denote again by (\cdot, \cdot) the induced form on V_{k} given by

$$
\begin{align*}
V_{k} \times V_{k} & \rightarrow k, \tag{2.13}\\
(v \otimes x, w \otimes y) & \mapsto x y^{\sigma}(v, w) .
\end{align*}
$$

This form is linear in the first variable and σ-linear in the second variable and satisfies

$$
\begin{equation*}
(x, y)=-\left(y, \tau^{-1}(x)\right)^{\sigma} \tag{2.14}
\end{equation*}
$$

For a subspace U of V_{k}, we denote by U^{\perp} the orthogonal complement

$$
U^{\perp}=\left\{x \in V_{k} \mid(x, U)=0\right\}
$$

By (2.14) we obtain

$$
\begin{equation*}
\left(U^{\perp}\right)^{\perp}=\tau(U) \quad \text { and } \quad \tau(U)^{\perp}=(\tau(U))^{\perp} \tag{2.15}
\end{equation*}
$$

analogous to (1.11).
Remark 2.6 Let G be the unitary group associated with $(V,(\cdot, \cdot))$. Since $\mathrm{H}^{1}\left(\mathbb{F}_{p}, G\right)=0$, there exists up to isomorphism only one skew-hermitian form on V, and similarly for V^{\prime}.

Proposition 2.7 There exists an inclusion preserving bijection

$$
\begin{aligned}
\left\{T \subset \Lambda_{k} \mid\right. & \left.T \text { is a lattice and } p T^{\vee} \subset T \subset \Lambda_{k}\right\} \\
& \rightarrow\left\{U \subset V_{k} \mid U \text { is a } k \text {-subspace and } \operatorname{dim} U=\frac{l+j}{2}, U^{\perp} \subset U\right\} \\
T & \mapsto \bar{T}
\end{aligned}
$$

where \bar{T} is equal to $T / p \Lambda_{k}^{\vee}$.
In particular, the τ-invariant lattices on the left-hand side correspond to the τ-invariant subspaces on the right-hand side.

Proof For a lattice T contained in the set on the left-hand side, we obtain from (2.9)

$$
\begin{equation*}
p T \subset p \Lambda_{k} \stackrel{n-l}{\subset} p \Lambda_{k}^{\vee} \subset p T^{\vee} \stackrel{j}{\subset} T \subset \Lambda_{k} \tag{2.16}
\end{equation*}
$$

Since $\overline{p T^{\vee}}=\bar{T}^{\perp}$, we obtain from (2.16) the inclusions $\{0\} \subset \bar{T}^{\perp} \stackrel{j}{\subset} \bar{T} \subset V_{k}$, which proves the claim.

Corollary 2.8 Let $\Lambda \in \mathcal{L}_{0}^{(l)}$.
(i) The set of lattices $\Lambda_{1} \in \mathcal{L}_{0}^{\left(l_{1}\right)}$ with $\Lambda_{1} \subset \Lambda$ is equal to the set of $\mathbb{F}_{p^{2}}$-subspaces $U \subset V$ of dimension $\left(l+l_{1}\right) / 2$ with $U^{\perp} \subset U$. In particular, superspecial points in $\mathcal{V}(\Lambda)(k)$ correspond to subspaces $U \subset V$ of dimension $(l+1) / 2$ with $U^{\perp} \subset U$.
(ii) The lattices $\Lambda_{1} \in \mathcal{L}_{0}^{\left(l_{1}\right)}$ with $\Lambda \subset \Lambda_{1}$ correspond to the $\mathbb{F}_{p^{2}}$-subspaces $U \subset V^{\prime}$ of dimension $n-\left(l+l_{1}\right) / 2$ with $U^{\perp^{\prime}} \subset U$.

Proof Part (i) follows from Proposition 2.7. The superspecial points are lattices in \mathcal{L}_{0} of type 1 .

To prove (ii), let Λ_{1} be an element of $\mathcal{L}_{0}^{\left(l_{1}\right)}$ with $\Lambda \subset \Lambda_{1}$. We have

$$
\begin{equation*}
\Lambda \subset \Lambda_{1} \stackrel{n-l_{1}}{\subset} \Lambda_{1}^{\vee} \subset \Lambda^{\vee} \tag{2.17}
\end{equation*}
$$

For a lattice $L \subset C$ the dual $L^{\vee^{\prime}}$ with respect to $p\{\cdot, \cdot\}$ is equal to $p^{-1} L^{\vee}$. Thus (2.17) is equivalent to

$$
\Lambda=p\left(\Lambda^{\vee}\right)^{\vee^{\prime}} \subset p\left(\Lambda_{1}^{\vee}\right)^{\vee^{\prime}} \stackrel{n-l_{1}}{\subset} \Lambda_{1}^{\vee} \subset \Lambda^{\vee}
$$

Now (ii) follows from Proposition 2.7 with V^{\prime} instead of V and $p\{\cdot, \cdot\}$ instead of $\{\cdot, \cdot\}$, as the dimension of V^{\prime} is equal to $n-l$.

Proof of Proposition 2.5 We first prove the proposition in the case $i=0$.
Let Λ be an element of \mathcal{L}_{0} of type l. Let V be as in (2.11). By Corollary 2.8 the superspecial points of $\mathcal{V}(\Lambda)(k)$ correspond to $\mathbb{F}_{p^{2}}$-subspaces $U \subset V$ of dimension $(l+1) / 2$ with $U^{\perp} \subset U$. Such subspaces always exist, hence $\mathcal{V}(\Lambda)(k)$ always contains superspecial points. Furthermore, if $\operatorname{dim} V=l \geq 3$, there exists more than one subspace with these properties. This shows that $\mathcal{V}(\Lambda)(k)$ consists of only one element if and only if $l=1$, hence proves (i).

To prove (ii), let Λ^{\prime} and Λ be two elements of \mathcal{L}_{0} such that $\mathcal{V}\left(\Lambda^{\prime}\right)(k) \subset \mathcal{V}(\Lambda)(k)$. We want to prove that $\Lambda^{\prime} \subset \Lambda$. First note that $\mathcal{V}\left(\Lambda^{\prime}\right)(k)=\mathcal{V}\left(\Lambda^{\prime}\right)(k) \cap \mathcal{V}(\Lambda)(k)$ is not empty. Hence by Proposition [2.4(iii)(b), we obtain $\mathcal{V}\left(\Lambda^{\prime}\right)(k)=\mathcal{V}\left(\Lambda \cap \Lambda^{\prime}\right)(k)$ and $\Lambda \cap \Lambda^{\prime} \in \mathcal{L}_{0}$. Therefore, it is sufficient to prove that for $\Lambda^{\prime} \varsubsetneqq \Lambda$, the set $\mathcal{V}\left(\Lambda^{\prime}\right)(k)$ is strictly contained in $\mathcal{V}(\Lambda)(k)$.

Let V be as in (2.11) and let V_{1} be the subspace of V corresponding to Λ^{\prime} (Corollary 2.8). Since $V_{1} \varsubsetneqq V$, there exists a subspace $U \nsubseteq V_{1}$ of V with $U^{\perp} \stackrel{1}{\subset} U$. Thus there exists an element of $\mathcal{V}(\Lambda)(k) \backslash \mathcal{V}\left(\Lambda^{\prime}\right)(k)$ (Proposition 2.7).

Part (iii) follows from Corollary 2.8
By Remark 2.3(iv) the case of arbitrary i follows from the case $i=0$.
Let $\Lambda \in \mathcal{L}_{0}$ be of type l and let

$$
d=\frac{l-1}{2}
$$

Let $V=\Lambda / p \Lambda^{\vee}$ as in (2.11). By Proposition 2.7 we have

$$
\mathcal{V}(\Lambda)(k)=\left\{U \subset V_{k} \mid \operatorname{dim} U=d+1, U^{\perp} \subset U\right\}
$$

Denote by $\operatorname{Grass}_{d+1}(V)$ the Grassmannian over $\mathbb{F}_{p^{2}}$ of $(d+1)$-dimensional subspaces of V. The set $\mathcal{V}(\Lambda)(k)$ can naturally be endowed with the structure of a closed subscheme of $\operatorname{Grass}_{d+1}(V)$. For every $\mathbb{F}_{p^{2}}$-algebra R, let V_{R} be the base change $V \otimes_{\mathbb{F}_{p^{2}}} R$. By abuse of notation, we denote again by σ the Frobenius on R. Let U be a locally direct summand of V_{R} of rank m. We define the dual module $U^{\perp} \subset V_{R}$ as follows. For an R-module M, let $M^{(p)}=M \otimes_{R, \sigma} R$ be the Frobenius twist of M and let $M^{*}=\operatorname{Hom}_{R}(M, R)$. Then (\cdot, \cdot) induces an R-linear isomorphism

$$
\phi:\left(V_{R}\right)^{(p)} \xrightarrow{\sim}\left(V_{R}\right)^{*} .
$$

Thus $\phi\left(U^{(p)}\right)$ is a locally direct summand of $\left(V_{R}\right)^{*}$ of rank m. Let ψ_{U} be the composition $V_{R} \xrightarrow{\sim}\left(V_{R}\right)^{* *} \rightarrow \phi\left(U^{(p)}\right)^{*}$. The orthogonal complement

$$
\begin{equation*}
U^{\perp}:=\operatorname{ker}\left(\psi_{U}\right) \tag{2.18}
\end{equation*}
$$

is a locally direct summand of V_{R} of rank $l-m$. Over an algebraically closed field, this definition coincides with the usual definition.

We denote by Y_{Λ} the closed subscheme of $\operatorname{Grass}_{d+1}(V)$ defined over $\mathbb{F}_{p^{2}}$ given by

$$
\begin{equation*}
Y_{\Lambda}(R)=\left\{U \subset V_{R} \text { a locally direct summand } \mid \operatorname{rk}_{R} U=d+1, U^{\perp} \subset U\right\} \tag{2.19}
\end{equation*}
$$

for every $\mathbb{F}_{p^{2}}$-algebra R.
Remark 2.9 (i) Note that for every algebraically closed field extension k of $\overline{\mathbb{F}}_{p}$ we obtain $Y_{\Lambda}(k)=\mathcal{V}(\Lambda)(k)$. By abuse of notation we will again denote by Y_{Λ} the corresponding scheme over $\overline{\mathbb{F}}_{p}$.
(ii) Since there exists only one skew-hermitian form on V up to isomorphism, Y_{Λ} depends up to isomorphism only on the dimension of V, i.e., the type of Λ. We will show that Y_{Λ} is a smooth irreducible variety over $\mathbb{F}_{p^{2}}$.
(iii) Let $\Lambda \in \mathcal{L}_{i}^{(l)}$. By Remark 2.3(iv) the lattice $\Lambda^{\prime}=\Psi_{i}(\Lambda)$ is contained in $\mathcal{L}_{0}^{(l)}$ and Ψ_{i} induces a bijection between $\mathcal{V}(\Lambda)(k)$ and $\mathcal{V}\left(\Lambda^{\prime}\right)(k)$. Thus the set $\mathcal{V}(\Lambda)(k)$ can be identified with the k-rational points of the variety $Y_{\Lambda^{\prime}}$. We set $Y_{\Lambda}=Y_{\Lambda^{\prime}}$.

For every \mathbb{F}_{p}-algebra R we define a form $\langle\cdot, \cdot\rangle$ on $V \otimes_{\mathbb{F}_{p}} R$ by

$$
\begin{aligned}
\langle\cdot, \cdot\rangle:\left(V \otimes_{\mathbb{F}_{p}} R\right) \times\left(V \otimes_{\mathbb{F}_{p}} R\right) & \rightarrow \mathbb{F}_{p^{2}} \otimes_{\mathbb{F}_{p}} R, \\
(v \otimes a, w \otimes b) & \mapsto(v, w) \otimes a b,
\end{aligned}
$$

where (\cdot, \cdot) is the skew-hermitian form defined in (2.12). The form $\langle\cdot, \cdot\rangle$ is linear in R in both components, whereas the form $(\cdot, \cdot)_{R}$, extended to $V \otimes_{F_{p^{2}}} R$ analogously to (2.13), is linear in R in the first component and σ-linear in R in the second component. Let G be the unitary group over \mathbb{F}_{p} of Remark 2.6. Then for every \mathbb{F}_{p}-algebra R the set $G(R)$ is defined as

$$
G(R)=\left\{g \in \mathrm{GL}\left(V \otimes_{\mathbb{F}_{p}} R\right) \mid\langle g x, g y\rangle=\langle x, y\rangle \text { for all } x, y \in V \otimes_{\mathbb{F}_{p}} R\right\}
$$

Let T be the matrix

$$
T=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right) \in \mathrm{GL}_{l}\left(\mathbb{F}_{p}\right)
$$

and let \bar{t} be an element of $\mathbb{F}_{p^{2}}^{\times}$with $\bar{t}^{p}=-\bar{t}$.
Remark 2.10 As there exists only one perfect skew-hermitian form on V up to isomorphism, we can choose an $\mathbb{F}_{p^{2}}$-basis e_{1}, \ldots, e_{l} of V such that the form (\cdot, \cdot) with respect to this basis is given by the matrix $\bar{t} T$. We identify V via this basis with $\left(\mathbb{F}_{p^{2}}\right)^{l}$.

Lemma 2.11 Let $G_{\overline{\mathbb{F}}_{p}}$ be the base change of G over $\overline{\mathbb{F}}_{p}$. Then $G_{\overline{\mathbb{F}}_{p}}$ is isomorphic to $\mathrm{GL}_{l, \overline{\mathbb{F}}_{p}}$ with Frobenius action given by $\Phi(h)=T^{t}\left(h^{(p)}\right)^{-1} T$ for an element $h \in \mathrm{GL}_{l, \overline{\mathrm{~F}}}^{p}$.

Proof Let σ be the Frobenius of $\overline{\mathbb{F}}_{p}$. Furthermore, denote by $V_{\overline{\mathbb{F}}_{p}, \text { id }}$ the vector space $V \otimes_{\mathbb{F}_{p^{2}}} \overline{\mathbb{F}}_{p}$ and denote by $V_{\overline{\mathbb{F}}_{p}, \sigma}$ the vector space $V \otimes_{\mathbb{F}_{p^{2}}} \overline{\mathbb{F}}_{p}$, where in the second case the morphism $\mathbb{F}_{p^{2}} \hookrightarrow \overline{\mathbb{F}}_{p}$ is given by the Frobenius σ. We obtain an isomorphism

$$
\begin{aligned}
V \otimes_{\mathbb{F}_{p}} \overline{\mathbb{F}}_{p} \xrightarrow{\sim} V_{\overline{\mathbb{F}}_{p}, \mathrm{id}} \oplus V_{\overline{\mathbb{F}}_{p}, \sigma} \\
v \otimes a \mapsto(v \otimes a, v \otimes a)
\end{aligned}
$$

Both $V_{\overline{\mathbb{F}}_{p}, \text { id }}$ and $V_{\overline{\mathbb{F}}_{p}, \sigma}$ are totally isotropic with respect to the form $\langle\cdot, \cdot\rangle$, and the form defines a perfect $\overline{\mathbb{F}}_{p}$-linear pairing between the two $\overline{\mathbb{F}}_{p}$-vektor spaces $V_{\overline{\mathbb{F}}_{p}, \text { id }}$ and $V_{\overline{\mathbb{F}}_{p}, \sigma}$.

We now identify both $V_{\overline{\mathbb{F}}_{p}, \text { id }}$ and $V_{\overline{\mathbb{F}}_{p}, \sigma}$ with $\overline{\mathbb{F}}_{p}^{l}$ using the $\mathbb{F}_{p^{2}}$-basis e_{1}, \ldots, e_{l} of V of Remark 2.10. Then each $g \in G\left(\overline{\mathbb{F}}_{p}\right)$ corresponds to a pair $\left(g_{\text {id }}, g_{\sigma}\right) \in \mathrm{GL}_{l}\left(\overline{\mathbb{F}}_{p}\right) \times$ $\mathrm{GL}_{l}\left(\overline{\mathbb{F}}_{p}\right)$ with

$$
\begin{equation*}
{ }^{t} g_{\mathrm{id}} T g_{\sigma}=T \tag{2.20}
\end{equation*}
$$

In particular, we obtain an isomorphism

$$
\begin{align*}
G_{\overline{\mathbb{F}}_{p}} & \rightarrow \mathrm{GL}_{l, \overline{\mathbb{F}}_{p}} \tag{2.21}\\
g & \mapsto g_{\mathrm{id}}
\end{align*}
$$

For an element $g \in G\left(\overline{\mathbb{F}}_{p}\right)$ the Frobenius Φ of G is defined as $\left(\mathrm{id}_{V} \otimes \sigma\right) \circ g \circ$ $\left(\operatorname{id}_{V} \otimes \sigma\right)^{-1}$. It is easy to see that for the corresponding $\left(g_{i d}, g_{\sigma}\right)$ we obtain

$$
\Phi\left(g_{\mathrm{id}}, g_{\sigma}\right)=\left(g_{\sigma}^{(p)}, g_{\mathrm{id}}^{(p)}\right)
$$

where we denote for a matrix $h \in \mathrm{GL}_{l, \overline{\mathbb{F}}_{p}}$ by $h^{(p)}$ the matrix obtained by application of the Frobenius σ to every entry of h. Thus by (2.20) and (2.21) the Frobenius Φ
may be identified with the morphism

$$
\begin{aligned}
\mathrm{GL}_{l, \overline{\mathbb{F}}_{p}} & \rightarrow \mathrm{GL}_{l, \overline{\mathbb{F}}_{p}} \\
h & \mapsto T^{t}\left(h^{(p)}\right)^{-1} T,
\end{aligned}
$$

which proves the claim.
The diagonal torus S and the standard Borel B of upper triangular matrices in $G_{\overline{\mathbb{F}}_{p}}$ are defined over \mathbb{F}_{p}. Note that T corresponds to the longest Weyl group element of G with respect to S. Let $I=\left(i_{1}, \ldots, i_{c}\right)$ be an ordered partition of l. Denote by P_{I} the standard parabolic subgroup of $G_{\overline{\mathbb{F}}_{p}}$ containing B such that $\mathrm{GL}_{i_{1}, \overline{\mathbb{F}}_{p}} \times \cdots \times \mathrm{GL}_{i_{c}, \overline{\mathbb{F}}_{p}}$ is the Levi subgroup of P containing S. We write $\Phi(I)$ for the partition $\left(i_{c}, \ldots, i_{1}\right)$ and obtain $\Phi\left(P_{\left(i_{1}, \ldots, i_{c}\right)}\right)=P_{\Phi(I)}$. Hence Φ induces a morphism $\Phi: G_{\overline{\mathbb{F}}_{p}} / P_{I} \rightarrow G_{\overline{\mathbb{F}}_{p}} / P_{\Phi(I)}$. To simplify notation, we write G instead of $G_{\overline{\mathrm{F}}_{p}}$. For a flag $\mathcal{F} \in\left(G / P_{I}\right)(R)$, the dual flag \mathcal{F}^{\perp} with respect to (\cdot, \cdot) is defined analogously to (2.18).

Lemma 2.12 Let \mathcal{F} be a flag in G / P_{I}. The Frobenius Φ and the duality morphism $\mathcal{F} \mapsto \mathcal{F}^{\perp}$ define the same morphism $G / P_{I} \rightarrow G / P_{\Phi(I)}$, i.e., the dual flag \mathcal{F}^{\perp} is equal to $\Phi(\mathcal{F})$.

Proof Let \mathcal{F} be a flag in $G / P_{I}(R)$. Without loss of generality, we may assume that the constituents of \mathcal{F} are free. Let $\mathcal{F}_{I, 0}$ be the standard flag corresponding to the parabolic subgroup P_{I}. Then there exists an element $g \in G(R)$ such that $\mathcal{F}=g \mathcal{F}_{I, 0}$. We have $\Phi\left(g P_{I}\right)=\Phi(g) P_{\Phi(I)}$, hence $\Phi(\mathcal{F})=\Phi(g) \mathcal{F}_{\Phi(I), 0}=\Phi(g)\left(\mathcal{F}_{I, 0}\right)^{\perp}$. Furthermore, $(\Phi(g) x, g y)=(x, y)$ for all $x, y \in R^{l}$, hence $\Phi(g)\left(\mathcal{F}_{I, 0}\right)^{\perp}=\left(g \mathcal{F}_{I, 0}\right)^{\perp}$, which proves the claim.

Proposition 2.13 The closed subscheme Y_{Λ} of $\operatorname{Grass}_{d+1}(V)$ is smooth of dimension d.
Proof It is sufficient to prove the claim after base change to $\overline{\mathbb{F}}_{p}$. By Lemma 2.12 it is clear that Y_{Λ} is the intersection of the graph of the Frobenius

$$
\begin{aligned}
G / P_{(d+1, d)} & \hookrightarrow G / P_{(d+1, d)} \times G / P_{(d, d+1)}, \\
g & \mapsto(g, \Phi(g))
\end{aligned}
$$

with the morphism

$$
\begin{aligned}
G / P_{(d, 1, d)} & \hookrightarrow G / P_{(d+1, d)} \times G / P_{(d, d+1)} \\
g & \mapsto(g, g)
\end{aligned}
$$

It is easy to see that this intersection is transversal of dimension d, hence Y_{Λ} is smooth.

Our next goal is to relate Y_{Λ} with generalized Deligne-Lusztig varieties. Let S_{l} be the symmetric group in l elements and denote by W_{I} the Weyl group of the Levi subgroup $\mathrm{GL}_{i_{1}, \overline{\mathbb{F}}_{p}} \times \cdots \times \mathrm{GL}_{i_{c}, \overline{\mathbb{F}}_{p}}$ of P_{I}. We identify W_{I} with the corresponding subgroup
of S_{l}. Let

$$
\begin{aligned}
& \mathcal{F}=\left[0 \varsubsetneqq \mathcal{F}_{1} \varsubsetneqq \cdots \varsubsetneqq \mathcal{F}_{c} \varsubsetneqq V\right], \\
& \mathcal{G}=\left[0 \varsubsetneqq \mathcal{G}_{1} \varsubsetneqq \cdots \varsubsetneqq \mathcal{G}_{c} \varsubsetneqq V\right]
\end{aligned}
$$

be two flags in $G / P_{I}(R)$. Then \mathcal{F} and \mathcal{G} are in standard position if all submodules $\mathcal{F}_{i}+\mathcal{G}_{j}$ are locally direct summands of R^{l}. Equivalently, the stabilizers of \mathcal{F} and \mathcal{G} contain a common maximal torus. For \mathcal{F} and \mathcal{G} in standard position, we recall the definition of the relative position $\operatorname{inv}(\mathcal{F}, \mathcal{G})$. Consider the diagonal action of G on $G / P_{I} \times G / P_{I}$. By the Bruhat decomposition, the orbits of this action are classified by the quotient $W_{P_{I}} \backslash S_{l} / W_{P_{I}}$. Then $\operatorname{inv}(\mathcal{F}, \mathcal{G})$ is defined as the element of the constant sheaf associated with $W_{P_{I}} \backslash S_{l} / W_{P_{I}}$ such that locally on R the element $(\mathcal{F}, \mathcal{G}) \in G / P_{I} \times$ G / P_{I} is contained in the corresponding orbit.

For a partition I with $I=\Phi(I)$ and an element $w \in W_{P_{I}} \backslash S_{l} / W_{P_{I}}$, we recall the generalized Deligne-Lusztig variety $X_{P_{I}}(w)$ over $\overline{\mathbb{F}}_{p}$,

$$
X_{P_{I}}(w)=\left\{\mathcal{F} \in G / P_{I} \mid \operatorname{inv}(\Phi(\mathcal{F}), \mathcal{F})=w\right\}
$$

We call this variety a generalized Deligne-Lusztig variety instead of a Deligne-Lusztig variety, as in [DL] this variety is only defined in the case of a Borel subgroup. As noted in [Lu2], this construction works for arbitrary parabolic subgroups defined over \mathbb{F}_{p}.

The variety $X_{P_{I}}(w)$ is the transversal intersection of the graph of the Frobenius with the orbit of $(1, w)$ in $G / P_{I} \times G / P_{I}$ under the diagonal action of G. Therefore, the variety $X_{P_{I}}(w)$ is smooth, and its dimension is equal to the dimension of the subvariety $P_{I} w P_{I} / P_{I}$ of G / P_{I}. In particular, if $P_{I}=B$, the dimension is equal to the length of w.

For $i=0, \ldots, d$ denote by $w_{i}=(d+1, \ldots, d+i+1) \in S_{l}$ the cycle that maps $d+1$ to $d+2$, etc. and denote by I_{i} the partition $\left(d-i, 1^{2 i+1}, d-i\right)$. To simplify notation, we write P_{i} and W_{i} instead of $P_{I_{i}}$ and $W_{P_{i}}$.

We have $w_{0}=$ id and $I_{0}=(d, 1, d)$. If $i=d$, we obtain

$$
w_{d}=(d+1, d+2, \ldots, l-1, l) \quad \text { and } \quad I_{d}=\left(1^{l}\right)
$$

i.e., $P_{d}=B$. Note that $I_{d-1}=I_{d}=\left(1^{l}\right)$, but $w_{d-1} \neq w_{d}$.

Lemma 2.14 For $0 \leq i \leq d$ the dimension of $X_{P_{i}}\left(w_{i}\right)$ is equal to i.
Proof We have $\operatorname{dim} P_{i} w_{i} P_{i} / P_{i}=\operatorname{dim} P_{i} w_{i} P_{i} / B-\operatorname{dim} P_{i} / B$. Since I_{i} is equal to ($d-i, 1^{2 i+1}, d-i$), the Levi subgroup L of P_{i} containing S is isomorphic to

$$
\mathrm{GL}_{d-i} \times \mathbb{G}_{m}^{2 i+1} \times \mathrm{GL}_{d-i}
$$

Let B_{d-i} be the standard Borel of upper triangular matrices in GL_{d-i}. Then

$$
\operatorname{dim} P_{i} / B=\operatorname{dim} L /(B \cap L)=2 \operatorname{dim} \mathrm{GL}_{d-i} / B_{d-i}=(d-i-1)(d-i)
$$

On the other hand, $P_{i} w_{i} P_{i}=B W_{i} w_{i} W_{i} B$. Let $w_{i}^{\prime} \in S_{l}$ be the longest representative of the residue class of w_{i} in $W_{i} \backslash S_{l} / W_{i}$. Then the dimension of $P_{i} w_{i} P_{i} / B$ is equal to the length of w_{i}^{\prime}.

Suppose first that $i=d$, i.e., $P_{d}=B$. We obtain $W_{d}=1$. Thus $w_{d}^{\prime}=w_{d}$ and

$$
\operatorname{dim} X_{B}\left(w_{d}\right)=\text { length }\left(w_{d}\right)=d
$$

Now suppose $i<d$. Then

$$
\begin{aligned}
W_{i} & =\langle(12), \ldots,(d-i-1, d-i),(d+i+2, d+i+3), \ldots,(n-1, n)\rangle \\
& \cong S_{d-i} \times S_{d-i}
\end{aligned}
$$

Since $w_{i}=(d+1, \ldots, d+i+1)$, we obtain that w_{i}^{\prime} is equal to the product of w_{i} with the longest element in W_{i}. Therefore, the length of w_{i}^{\prime} is equal to $i+(n-i)(n-i-1)$, which proves the claim.

The next theorem establishes a link between Y_{Λ} and generalized Deligne-Lusztig varieties.

Theorem 2.15 There exists a decomposition of Y_{Λ} over $\overline{\mathbb{F}}_{p}$ into a disjoint union of locally closed subvarieties

$$
\begin{equation*}
Y_{\Lambda}=\biguplus_{i=0}^{d} X_{P_{i}}\left(w_{i}\right), \tag{2.22}
\end{equation*}
$$

such that for every j with $0 \leq j \leq d$ the subset $\biguplus_{i=0}^{j} X_{P_{i}}\left(w_{i}\right)$ is closed in Y_{Λ}.
The variety $X_{B}\left(w_{d}\right)$ is open, dense and irreducible of dimension din Y_{Λ}. In particular, Y_{Λ} is irreducible of dimension d.

Proof As in Remark 2.10 we identify V with $\left(\mathbb{F}_{p^{2}}\right)^{l}$ such that the form (\cdot, \cdot) is given by the matrix $t T$. For an algebraically closed field extension k of $\overline{\mathbb{F}}_{p}$ and a subspace $U \subset V_{k}$, we have $\left(U^{\perp}\right)^{\perp}=\tau(U)$ by (2.15). For an arbitrary $\overline{\mathbb{F}}_{p}$-algebra R, we do not have an operator τ on V_{R}, but to simplify notation, we write $\tau(U)$ for $\left(U^{\perp}\right)^{\perp}$ for all locally direct summands U of V_{R}.

Let U be an element of $Y_{\Lambda}(R)$. We may assume that $\operatorname{Spec} R$ is connected. The module U is a locally direct summand of R^{l} of rank $d+1$ such that $U^{\perp} \subset U$ with U / U^{\perp} locally free of rank 1 . Let \mathcal{F} be the flag $\mathcal{F}=\left[0 \varsubsetneqq U^{\perp} \varsubsetneqq U \varsubsetneqq V\right]$. By Lemma 2.12the flag $\Phi(\mathcal{F})$ is equal to $\Phi(\mathcal{F})=\left[0 \varsubsetneqq U^{\perp} \varsubsetneqq \tau(U) \varsubsetneqq V\right]$. If $U+\tau(U)$ is a locally direct summand of R^{l}, i.e., if \mathcal{F} and $\Phi(\mathcal{F})$ are in standard position, we obtain that $\operatorname{inv}(\Phi(\mathcal{F}), \mathcal{F})$ is either the identity or w_{1} in $W_{0} \backslash S_{l} / W_{0}$. Hence we obtain a disjoint decomposition of $\mathcal{V}(\Lambda)$ into the open subvariety $X_{P_{0}}\left(w_{1}\right)$ and the closed subvariety $X_{P_{0}}(\mathrm{id})$:

$$
\begin{equation*}
Y_{\Lambda}=X_{P_{0}}(\mathrm{id}) \uplus X_{P_{0}}\left(w_{1}\right) \tag{2.23}
\end{equation*}
$$

Let i be an integer with $0 \leq i \leq d-1$, and let \mathcal{F} be a flag in $X_{P_{i}}\left(w_{i}\right) \uplus X_{P_{i}}\left(w_{i+1}\right)$. Then \mathcal{F} is of the form

$$
\mathcal{F}=\left[0 \subset \mathcal{F}_{-i-1} \varsubsetneqq \cdots \varsubsetneqq \mathcal{F}_{-1} \varsubsetneqq \mathcal{F}_{1} \varsubsetneqq \cdots \varsubsetneqq \mathcal{F}_{i+1} \subset V\right]
$$

For an integer j with $1 \leq j \leq i+1$, the modules \mathcal{F}_{-j} and \mathcal{F}_{j} are locally direct summands of R^{l} of $\operatorname{rank}(d-j+1)$ and $(d+j)$, respectively.

Claim: \quad The flag \mathcal{F} is uniquely determined by \mathcal{F}_{1}. Indeed, since $\Phi(\mathcal{F})$ and \mathcal{F} are in relative position w_{i} or w_{i+1}, we obtain a commutative diagram

Furthermore, we have

$$
\begin{array}{ll}
\mathcal{F}_{-i-1}^{\perp}=\mathcal{F}_{i+1} & \text { if } \operatorname{inv}(\Phi(\mathcal{F}), \mathcal{F})=w_{i} \\
\mathcal{F}_{-i-1}^{\perp} \neq \mathcal{F}_{i+1} & \text { if } \operatorname{inv}(\Phi(\mathcal{F}), \mathcal{F})=w_{i+1}
\end{array}
$$

As $\Phi(\mathcal{F})$ and \mathcal{F} are in standard position, we obtain that for j with $2 \leq j \leq i+1$,

$$
\mathcal{F}_{j}=\mathcal{F}_{j-1}+\mathcal{F}_{-j+1}^{\perp}=\mathcal{F}_{j-1}+\tau\left(\mathcal{F}_{j-1}\right)
$$

By induction we obtain $\mathcal{F}_{j}=\sum_{m=1}^{j} \tau^{m}\left(\mathcal{F}_{1}\right)$. Therefore, \mathcal{F} is uniquely determined by \mathcal{F}_{1}, and the claim is proved.

Let i with $0 \leq i \leq d-2$. The claim shows that the natural morphisms

$$
X_{P_{i+1}}\left(w_{i+1}\right) \rightarrow X_{P_{i}}\left(w_{i+1}\right), \quad X_{P_{i+1}}\left(w_{i+2}\right) \rightarrow X_{P_{i}}\left(w_{i+1}\right)
$$

are monomorphisms. We now want to show that we have a decomposition of $X_{P_{i}}\left(w_{i+1}\right)$ into the closed subvariety $X_{P_{i+1}}\left(w_{i+1}\right)$ and the open subvariety $X_{P_{i+1}}\left(w_{i+2}\right)$,

$$
\begin{equation*}
X_{P_{i}}\left(w_{i+1}\right)=X_{P_{i+1}}\left(w_{i+1}\right) \uplus X_{P_{i+1}}\left(w_{i+2}\right) . \tag{2.24}
\end{equation*}
$$

Indeed, let \mathcal{F} be a flag in $X_{P_{i}}\left(w_{i+1}\right)(R)$. Since $\Phi(\mathcal{F})$ and \mathcal{F} are in standard position, $\mathcal{F}_{i+2}:=\mathcal{F}_{i+1}+\tau\left(\mathcal{F}_{i+1}\right)$ and $\mathcal{F}_{-i-2}:=\mathcal{F}_{i+2}^{\perp}$ are locally direct summands of R^{l} of rank $(d+i+2)$ and $(d-i-1)$, respectively. We extend \mathcal{F} to the flag

$$
\mathcal{F}^{\prime}=\left[0 \subset \mathcal{F}_{-i-2} \varsubsetneqq \cdots \varsubsetneqq \mathcal{F}_{-1} \varsubsetneqq \mathcal{F}_{1} \varsubsetneqq \cdots \varsubsetneqq \mathcal{F}_{i+2} \subset V\right]
$$

If $\Phi\left(\mathcal{F}^{\prime}\right)$ and \mathcal{F}^{\prime} are in standard position, we obtain that $\operatorname{inv}\left(\Phi\left(\mathcal{F}^{\prime}\right), \mathcal{F}^{\prime}\right)$ is either w_{i+1} or w_{i+2} in $W_{i+1} \backslash S_{l} / W_{i+1}$. Thus, \mathcal{F}^{\prime} is either an element of $X_{P_{i+1}}\left(w_{i+1}\right)$ or of $X_{P_{i+1}}\left(w_{i+2}\right)$. This proves (2.24).

The disjoint sum decomposition in (2.22) follows by induction from (2.23) and (2.24). The subset $\biguplus_{i=0}^{j} X_{P_{i}}\left(w_{i}\right)$ is closed in Y_{Λ} by construction. By Lemma 2.14 the variety $X_{P_{i}}\left(w_{i}\right)$ is of dimension i. Since Y_{Λ} is smooth of dimension d, the open subvariety $X_{B}\left(w_{d}\right)$ is dense. It remains to show that $X_{B}\left(w_{d}\right)$ is irreducible.

Consider the set $D=\{(1,2), \ldots,(l-1, l)\}$ of simple reflections of G with respect to B. The Frobenius action on D with respect to G is given by $\sigma((i, i+1))=$ $(l-i, l-i+1)$. Since l is odd, there are d orbits of the action of σ on D. Each orbit is of the form $\{(i, i+1),(l-i, l-i+1)\}$ with $d+1 \leq i \leq l-1$. A Coxeter element of S_{l} is a product of the form $\nu_{1} \cdots \nu_{d} \in S_{l}$, where $\nu_{1}, \ldots, \nu_{d} \in D$ are representatives of the different orbits [Lu1]. The element $w_{d}=(d+1, d+2) \cdots(l-1, l) \in S_{l}$ is a Coxeter element. It was shown in [Lu1, 4.8] that $X_{B}(w)$ is irreducible for each Coxeter element w. In particular, $X_{B}\left(w_{d}\right)$ is irreducible. This proves the theorem.
Proposition 2.16 Let $\Lambda^{\prime} \in \mathcal{L}_{0}$ with $\Lambda^{\prime} \subset \Lambda$ and denote by V^{\prime} the $\mathbb{F}_{p^{2}}$-vector space $\Lambda^{\prime} / p\left(\Lambda^{\prime}\right)^{\vee}$. Let l^{\prime} be the type of Λ^{\prime} and let $d^{\prime}=\left(l^{\prime}-1\right) / 2$. Then the variety $Y_{\Lambda^{\prime}}$ is a closed subvariety of Y_{Λ} of dimension equal to d^{\prime}.
Proof By definition (2.19) we have

$$
Y_{\Lambda^{\prime}}(R)=\left\{U \subset V_{R}^{\prime} \mid U \text { is a locally direct summand, } \mathrm{rk}_{R} U=d^{\prime}+1, U^{\perp} \subset U\right\}
$$

hence by Proposition 2.7

$$
Y_{\Lambda^{\prime}}(R)=\left\{U \in Y_{\Lambda}(R) \mid U \subset\left(\Lambda^{\prime} / p \Lambda^{\vee}\right)_{R}\right\}
$$

Thus $Y_{\Lambda^{\prime}}$ is a closed subvariety of Y_{Λ}. By Proposition 2.13 the dimension of $Y_{\Lambda^{\prime}}$ is equal to d^{\prime}.

For $U \in Y_{\Lambda}(k)$ let $0 \leq i_{U} \leq d$ be the minimal integer such that $U+\cdots+\tau^{i}(U)$ is τ-invariant. For a lattice $A \in \mathcal{V}(\Lambda)(k)$, let i_{A} be the minimal integer such that $A+\cdots+\tau^{i}(A)$ is τ-invariant. Suppose that A corresponds to U via the bijection of Proposition 2.7 Then $i_{A}=i_{U}$.

Denote by $\mathcal{V}(\Lambda)(k)^{\circ} \subset \mathcal{V}(\Lambda)(k)$ the set of lattices $A \in \mathcal{V}(\Lambda)(k)$ with $i_{A}=d$, i.e., $A+\cdots+\tau^{d}(A)=\Lambda_{k}$.
Corollary 2.17 For every integer i with $0 \leq i \leq d$ we have

$$
X_{P_{i}}\left(w_{i}\right)(k)=\left\{U \in Y_{\Lambda}(k) \mid i_{U}=i\right\}=\left\{A \in \mathcal{V}(\Lambda)(k) \mid i_{A}=i\right\}
$$

In particular, $X_{B}\left(w_{d}\right)(k)=\mathcal{V}(\Lambda)(k)^{\circ}$. Hence

$$
\biguplus_{j=0}^{i} X_{P_{j}}\left(w_{j}\right)(k)=\bigcup_{\substack{\Lambda^{\prime} \subset \Lambda \\ \Lambda^{\prime} \subset \mathcal{L}_{0}^{\left(l^{\prime}\right)} \\ l^{\prime} \leq 2 i+1}} \mathcal{V}\left(\Lambda^{\prime}\right)(k)=\bigcup_{\substack{\Lambda^{\prime} \subset \Lambda \\ \Lambda^{\prime} \in \mathcal{L}_{0}^{(2 i+1)}}} \mathcal{V}\left(\Lambda^{\prime}\right)(k)
$$

There exists a scheme theoretical decomposition

$$
Y_{\Lambda}=\bigcup_{\substack{\Lambda^{\prime} \varsubsetneqq \Lambda \\ \Lambda^{\prime} \in \mathcal{L}_{0}}} Y_{\Lambda^{\prime}} \uplus X_{B}\left(w_{d}\right)
$$

where the first summand is closed and the second summand is open.
Proof The corollary follows from the proof of Theorem 2.15 and from Proposition 2.16

3 The Combinatorial Intersection Behaviour of the Sets $\mathcal{V}(\Lambda)$

Let C be a $\left(\mathbb{O}_{p^{2}}\right.$-vector space of dimension n with perfect skew-hermitian form $\{\cdot, \cdot\}$ as in Section 2. Denote by t an element of $\mathbb{Z}_{p^{2}}^{\times}$with $t^{\sigma}=-t$. Again we assume that the skew-hermitian form $\{\cdot, \cdot\}$ is equivalent to the form induced by the matrix T with $T=t I_{n}$ if n is odd and equivalent to the form induced by $T=t J_{n}$ if n is even. Denote by H the special unitary group over $\left(\mathbb{O}_{p}\right.$ with respect to $(C,\{\cdot, \cdot\})$, i.e., for a $\left(\mathbb{O}_{p}\right.$-algebra R, we have

$$
H(R)=\left\{g \in \mathrm{SL}_{\mathbb{O}_{p^{2}} \otimes \otimes_{\mathbb{Q}_{p}} R}\left(C \otimes_{\mathbb{Q}_{p}} R\right) \mid\{g x, g y\}=\{x, y\} \text { for all } x, y \in C \otimes_{\mathbb{Q}_{p}} R\right\}
$$

Let k be an algebraically closed field extension of $\overline{\mathbb{F}}_{p}$. In this section we will prove that the incidence relation of the sets $\mathcal{V}(\Lambda)(k)$ of $\mathcal{D}_{i}(C)(k)$ can be read off from the combinatorial simplicial structure of the Bruhat-Tits building $\mathcal{B}\left(H, \mathbb{O}_{p}\right)$ associated with H. As in Section 2 , we assume that $n i$ is even.

Propositions 2.4 and 2.5 show that the intersection behaviour of the sets $\mathcal{V}(\Lambda)(k)$ only depends on $\Lambda \in \mathcal{L}_{i}$. Therefore, we write $\mathcal{V}(\Lambda)$ and $\mathcal{D}_{i}(C)$ instead of $\mathcal{V}(\Lambda)(k)$ and $\mathcal{D}_{i}(C)(k)$.

Definition 3.1 Let \mathcal{B}_{i} be the abstract simplicial complex given by the following data. Let m be a nonnegative integer. An m-simplex is a subset $S \subset \mathcal{L}_{i}$ of $m+1$ elements that satisfies the following condition. There exists an ordering $\Lambda_{0}, \ldots, \Lambda_{m}$ of the elements of S such that

$$
\begin{equation*}
p^{i+1} \Lambda_{m}^{\vee} \varsubsetneqq \Lambda_{0} \varsubsetneqq \Lambda_{1} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{m} \tag{3.1}
\end{equation*}
$$

A vertex is defined as a 0 -simplex.
Remark 3.2 Let S be an m-simplex of \mathcal{B}_{i}, and let $\Lambda_{0}, \ldots, \Lambda_{m}$ be an ordering of the elements of S that satisfies (3.1). Since all Λ_{j} are in \mathcal{L}_{i}, we obtain from (3.1) the more precise chain of inclusions

$$
\begin{equation*}
p^{i+1} \Lambda_{0}^{\vee} \varsubsetneqq \Lambda_{0} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{m} \subset p^{i} \Lambda_{m}^{\vee} \varsubsetneqq \cdots \varsubsetneqq p^{i} \Lambda_{0}^{\vee} \tag{3.2}
\end{equation*}
$$

Obviously, we have $0 \leq m \leq(n-1) / 2$.
Definition 3.3 Let $\{\Lambda\}$ be a vertex of \mathcal{B}_{i}. A vertex $\left\{\Lambda^{\prime}\right\} \in \mathcal{B}_{i}$ is a neighbour of $\{\Lambda\}$ if $\Lambda \neq \Lambda^{\prime}$ and if there exists a simplex $S \in \mathcal{B}_{i}$ such that Λ and Λ^{\prime} are contained in S.

The above definition is equivalent to the condition that $\left\{\Lambda, \Lambda^{\prime}\right\}$ is a 1-simplex of \mathcal{B}_{i}, i.e., $\Lambda \varsubsetneqq \Lambda^{\prime}$ or $\Lambda^{\prime} \varsubsetneqq \Lambda$. We say that $\{\Lambda\}$ is of type l if Λ is of type l. Let l and l^{\prime} be the types of Λ and Λ^{\prime} respectively. In the first case we obtain $l<l^{\prime}$ and in the second case $l^{\prime}>l$.

Proposition 3.4 (i) Let Λ be a lattice in \mathcal{L}_{i} of type l. Then the set

$$
\left\{\Lambda^{\prime} \in \mathcal{L}_{i} \mid \mathcal{V}\left(\Lambda^{\prime}\right) \varsubsetneqq \mathcal{V}(\Lambda)\right\}
$$

corresponds to the set of neighbours of $\{\Lambda\}$ of type $l^{\prime}<l$.
(ii) Let Λ and Λ^{\prime} be in \mathcal{L}_{i} of type l and l^{\prime} respectively such that $\Lambda \neq \Lambda^{\prime}$. Then

$$
\mathcal{V}(\Lambda) \cap \mathcal{V}\left(\Lambda^{\prime}\right) \neq \varnothing
$$

if and only if $\{\Lambda\}$ is a neighbour of $\left\{\Lambda^{\prime}\right\}$ or if there exists a vertex $\{\widetilde{\Lambda}\}$ in \mathcal{B}_{i} of type $c<\min \left\{l, l^{\prime}\right\}$ such that $\{\widetilde{\Lambda}\}$ is a common neighbour of $\{\Lambda\}$ and $\left\{\Lambda^{\prime}\right\}$.

Proof The proposition follows from Proposition 2.4 (iii)(b).
Theorem 3.5 Let $\mathcal{B}\left(H,()_{p}\right)_{\text {simp }}$ be the abstract simplicial complex of the Bruhat-Tits building of H. Then there exists a simplicial bijection between \mathcal{B}_{i} and $\mathcal{B}\left(H,\left(\mathbb{O}_{p}\right)\right.$ simp.

Proof We choose a basis of C such that the form $\{\cdot, \cdot\}$ is given by T. For a matrix g, denote by $g^{(\sigma)}$ the matrix obtained by applying the Frobenius σ of $\left(\mathbb{O}_{p^{2}} / \mathbb{O}_{p}\right.$ to every entry of g. Then H is isomorphic to $\mathrm{SL}(C)$ over $\left(\mathbb{O}_{p^{2}}\right.$ with Frobenius

$$
\Phi(g)=T\left({ }^{t} g^{(\sigma)}\right)^{-1} T
$$

for $g \in \mathrm{SL}(C)$ (the proof is analogous to the proof of Lemma 2.11). The simplicial complex $\mathcal{B}\left(H, \mathbb{O}_{p}\right)_{\text {simp }}$ is equal to the fixed points of Φ on the simplicial complex $\mathcal{B}\left(\mathrm{SL}(C),\left(\mathcal{O}_{p^{2}}\right)_{\text {simp }}[\mathrm{Ti}, 2.6 .1]\right.$.

An m-simplex of $\mathcal{B}\left(\operatorname{SL}(C), \mathbb{O}_{p^{2}}\right)_{\text {simp }}$ is a set $\left\{\left[\Lambda_{0}\right], \ldots,\left[\Lambda_{m}\right]\right\}$ of homothety classes of lattices with the following property. There exist representatives $\Lambda_{j} \in\left[\Lambda_{j}\right]$ which, after renumbering the lattices $\Lambda_{0}, \ldots, \Lambda_{m}$, form an infinite lattice chain

$$
\begin{equation*}
\cdots \varsubsetneqq p \Lambda_{m} \varsubsetneqq \Lambda_{0} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{m} \varsubsetneqq p^{-1} \Lambda_{0} \varsubsetneqq \cdots \tag{3.3}
\end{equation*}
$$

We first consider the case $i=0$. We define a simplicial morphism

$$
\begin{aligned}
\varphi: \mathcal{B}_{0} & \rightarrow \mathcal{B}\left(\operatorname{SL}(C),\left(\mathbb{O}_{p^{2}}\right)_{\text {simp }}\right. \\
\left\{\Lambda_{0}, \ldots, \Lambda_{m}\right\} & \mapsto\left\{\left[\Lambda_{0}\right], \ldots,\left[\Lambda_{m}\right],\left[\Lambda_{m}^{\vee}\right] \ldots\left[\Lambda_{0}^{\vee}\right]\right\} .
\end{aligned}
$$

This morphism is well defined as (3.3) follows from (3.2). To show that φ induces an isomorphism onto $\mathcal{B}\left(H,\left(_{2}\right)_{\text {simp }}\right.$, it is sufficient to prove the following claim.

Claim: Each simplex of $\mathcal{B}\left(H,\left(O_{p}\right)_{\text {simp }}\right.$ can be written uniquely as

$$
\left\{\left[\Lambda_{0}\right], \ldots,\left[\Lambda_{a}\right],\left[\Lambda_{a}^{\vee}\right], \ldots,\left[\Lambda_{0}^{\vee}\right]\right\}
$$

such that there exist representatives $\Lambda_{0}, \ldots, \Lambda_{a}$ satisfying

$$
p \Lambda_{0}^{\vee} \varsubsetneqq \Lambda_{0} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{a} \subset \Lambda_{a}^{\vee} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{0}^{\vee}
$$

Indeed, a simplex $\left\{\left[\Lambda_{0}\right], \ldots,\left[\Lambda_{m}\right]\right\}$ of $\mathcal{B}\left(\operatorname{SL}(C), \mathbb{O}_{p^{2}}\right)_{\text {simp }}$ is a fixed point under the action of Φ if the lattice chain (3.3) coincides with its dual chain

$$
\cdots \varsubsetneqq p \Lambda_{0}^{\vee} \varsubsetneqq \Lambda_{m}^{\vee} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{0}^{\vee} \varsubsetneqq p^{-1} \Lambda_{m}^{\vee} \varsubsetneqq \cdots
$$

This means that there exist integers j and a with $0 \leq a \leq m$ such that

An easy index calculation shows that there exists an ordering of the homothety classes and representatives such that we obtain a lattice chain

$$
p \Lambda_{0}^{\vee} \varsubsetneqq \Lambda_{0} \varsubsetneqq \Lambda_{1} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{\left[\frac{m+1}{2}\right]} \subset \Lambda_{\left[\frac{m+1}{2}\right]}^{\vee} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{1}^{\vee} \varsubsetneqq \Lambda_{0}^{\vee}
$$

This proves the claim in the case of $i=0$.
Now consider the general case. By Remark[2.3](iv) the isomorphism Ψ_{i} of Proposition 1.18 induces an inclusion and type preserving isomorphism of \mathcal{L}_{i} with \mathcal{L}_{0}. Thus Ψ_{i} induces a simplicial bijection

$$
\begin{equation*}
\theta_{i}: \mathcal{B}_{i} \xrightarrow{\sim} \mathcal{B}_{0} \tag{3.4}
\end{equation*}
$$

which proves the theorem.
Proposition 3.6 Let $\Lambda, \Lambda^{\prime} \in \mathcal{L}_{i}$. There exist a positive integer u and elements $\Lambda_{1}=\Lambda, \Lambda_{2}, \ldots, \Lambda_{u-1}, \Lambda_{u}=\Lambda^{\prime}$ in \mathcal{L}_{i} such that $\mathcal{V}\left(\Lambda_{j}\right) \cap \mathcal{V}\left(\Lambda_{j+1}\right) \neq \varnothing$ for every j with $1 \leq j \leq u-1$.

Proof The building $\mathcal{B}\left(H, \mathbb{O}_{p}\right)$ is connected, and thus the simplicial complex $\mathcal{B}\left(H,\left(\mathbb{O}_{p}\right)_{\text {simp }}\right.$ is connected. Then the proposition follows from Theorem 3.5 and Proposition 3.4

Proposition 3.7 In the case of $\mathrm{GU}(1,2)$, i.e., if $n=3$, the simplicial complex \mathcal{B}_{i} is a tree. It has two different kind of vertices. Vertices of type 1 correspond to lattices in $\mathcal{L}_{i}^{(1)}$, i.e., superspecial lattices in $\mathcal{D}_{i}(C)$, and have $p+1$ neighbours of type 3 . Vertices of type 3 correspond to lattices in $\mathcal{L}_{i}^{(3)}$ and have $p^{3}+1$ neighbours of type 1 .

Proof As n is equal to 3 , Remark 3.2 shows that there exist only 0 -simplices and 1 -simplices. The building $\mathcal{B}\left(H, \mathcal{O}_{p}\right)$ is contractible, hence its simplicial complex is a tree. Thus by Theorem 3.5 the simplicial complex \mathcal{B}_{i} is a tree. The type of a lattice $\Lambda \in \mathcal{L}_{i}$ is equal to 1 or 3 (Remark 2.3). By construction of \mathcal{B}_{i}, each vertex of type 1 has only neighbours of type 3 and each vertex of type 3 has only neighbours of type 1.

Now consider the case $i=0$. Let Λ be in $\mathcal{L}_{0}^{(3)}$. Denote by V the $\mathbb{F}_{p^{2}}$-vector space $V=\Lambda / p \Lambda$ with perfect skew-hermitian form (\cdot, \cdot) as in (2.11) and (2.12). By Corollary $2.8(\mathrm{i})$, the neighbours of $\{\Lambda\}$ correspond to $\mathbb{F}_{p^{2}}$-subspaces U of V of dimension 2 with $U^{\perp} \subset U$. As all skew-hermitian forms on V are equivalent, there exists a basis of V such that (\cdot, \cdot) is given by the matrix $\bar{t} I_{3}$. By duality the neighbours of $\{\Lambda\}$ correspond to the totally isotropic subspaces of V of dimension 1, i.e., to the $\mathbb{F}_{p^{2}}$-rational points of the Fermat curve \mathcal{C} in $\mathbb{P}_{\mathbb{F}_{p^{2}}^{2}}^{2}$ given by the equation $x_{0}^{p+1}+x_{1}^{p+1}+$
x_{2}^{p+1}. An easy calculation shows that the number of $\mathbb{F}_{p^{2}}$-rational points of \mathcal{C} is equal to $p^{3}+1$.

Analogously, the neighbours of a 0 -simplex $\{M\}$ correspond by Corollary 2.8 (ii) to the totally isotropic 1-dimensional subspaces of the 2-dimensional $\mathbb{F}_{p^{2}}$-vector space $V^{\prime}=M^{\vee} / M$. An easy calculation shows the claim.

Now consider the general case. By (3.4) there exists a simplicial bijection between \mathcal{B}_{i} and B_{0}, hence the claim follows from the case $i=0$.

Remark 3.8 Let $n=3$ and let $\Lambda, \Lambda^{\prime} \in \mathcal{L}_{i}$. As \mathcal{B}_{i} is a tree, there exists a unique lattice chain for Λ and Λ^{\prime} as in Proposition 3.6 of minimal length. We call its length u the distance $u\left(\Lambda, \Lambda^{\prime}\right)$ of Λ and Λ^{\prime}. The distance of two lattices Λ and Λ^{\prime} of the same type is even.

4 The Local Structure of $\mathcal{N}^{\text {red }}$ for $\operatorname{GU}(1,2)$

In the next two sections, we will describe the scheme theoretic structure of $\mathcal{N}^{\text {red }}$ in the case of the unitary group $\mathrm{GU}(1,2)$. We again assume that $p \neq 2$. We will first describe the scheme-theoretic structure of the open and closed subscheme $\mathcal{N}_{0}^{\text {red }}$ of quasi-isogenies of height 0 .

We will always denote by k an algebraically closed field extension of $\overline{\mathbb{F}}_{p}$. By abuse of notation, we will mostly identify the elements of $\mathcal{N}(k)$ with their corresponding Dieudonné modules as in (1.3). We say that a p-divisible group in $\mathcal{N}_{0}(k)$ is superspecial if the corresponding Dieudonné module is superspecial. Let $N=N_{0} \oplus N_{1}$ be the isocrystal over $W\left(\overline{\mathbb{F}}_{p}\right)_{\mathbb{Q}}$ with perfect alternating form $\langle\cdot, \cdot\rangle$ as in Section 1 . In Sections 2 and 3, we have denoted by C the $\mathbb{O}_{p^{2}}$-vector space N_{0}^{τ} of τ-invariant elements of N_{0} (Remark 1.8). By abuse of notation, we will identify the sets $\mathcal{N}_{0}(k)$ and $\mathcal{D}_{0}(C)(k)$ using the bijection of Proposition 1.10. By Remark 2.3 we will identify the superspecial points of $\mathcal{N}_{0}(k)$ with the lattices in $\mathcal{L}_{0}^{(1)}$.

We fix some notation. As in Lemma 1.13, we fix an element $t \in \mathbb{Z}_{p^{2}}^{\times}$with $t^{\sigma}=-t$ and denote by \bar{t} its image in $\mathbb{F}_{p^{2}}^{\times}$. For an element x in a ring R, we write $[x]$ for the Teichmüller representative $(x, 0, \ldots) \in W(R)$. The map $[\cdot]: R \rightarrow W(R)$ is multiplicative and injective. As $p \neq 2$, we have $1+[-1]=0$, which we will frequently use in the sequel.

For every scheme S over $\mathbb{F}_{p^{2}}$, we denote again by S the corresponding scheme over $\overline{\mathbb{F}}_{p}$.

For $\Lambda \in \mathcal{L}_{0}$ we have defined a closed subset $\mathcal{V}(\Lambda)(k)$ of $\mathcal{N}_{0}(k)$. By Remark 2.9(i) and Proposition 2.13 there exists a smooth, irreducible and proper variety Y_{Λ} over $\mathbb{F}_{p^{2}}$ such that $Y_{\Lambda}(k)=\mathcal{V}(\Lambda)(k)$ for every algebraically closed field extension k of $\overline{\mathbb{F}}_{p}$. The varieties Y_{Λ} depend up to isomorphism only on the type l of Λ (Remark 2.9 (ii)). By Remark 2.3 the type l is equal to 1 or 3 . If $l=1$, the variety Y_{Λ} consists of only one point. If $l=3$, the variety Y_{Λ} is smooth and irreducible of dimension 1 (Proposition 2.13, Theorem 2.15).

Remark 4.1 By Proposition 2.4 we know that $\mathcal{N}_{0}(k)=\bigcup_{\Lambda \in \mathcal{L}_{0}^{(3)}} \mathcal{V}(\Lambda)(k)$. If the intersection of two different sets $\mathcal{V}(\Lambda)(k)$ and $\mathcal{V}\left(\Lambda^{\prime}\right)(k)$ is nonempty, they intersect at
one superspecial point, the lattice $\Lambda \cap \Lambda^{\prime}$ (Proposition 2.4, Proposition 2.5). Each set $\mathcal{V}(\Lambda)(k)$ contains $p^{3}+1$ superspecial points and each superspecial point is contained in $p+1$ sets $\mathcal{V}(\Lambda)(k)$ (Proposition 3.7).

Let $\mathbf{M} \in \mathcal{N}_{0}(k)$ be a superspecial Dieudonné lattice. The following lemma follows directly from Sections 1 and 2 ,

Lemma 4.2 The lattice \mathbf{M} is already defined over $\mathbb{Z}_{p^{2}}$. There exists a τ-invariant basis $e_{1}, e_{2}, e_{3}, f_{1}, f_{2}, f_{3}$ of \mathbf{M} such that $\mathbf{M}_{0}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle_{W(k)}$ and $\mathbf{M}_{1}=\left\langle f_{1}, f_{2}, f_{3}\right\rangle_{W(k)}$. The matrix of F with respect to the above basis of \mathbf{M} is given by

The form $\{\cdot, \cdot\}$ on \mathbf{M}_{0} is given by the matrix

$$
t\left(\begin{array}{lll}
p & & \tag{4.1}\\
& 1 & \\
& & p
\end{array}\right)
$$

In particular, the only nonzero values of the alternating form $\langle\cdot, \cdot\rangle$ on the basis of \mathbf{M} are given by $\left\langle e_{i}, f_{j}\right\rangle=-\left\langle f_{i}, e_{j}\right\rangle=t \delta_{i j}$.

Proof As \mathbf{M} is superspecial, it is τ-invariant, hence defined over $\mathbb{Z}_{p^{2}}$. By Lemma 1.14 there exists a basis e_{1}, e_{2}, e_{3} of \mathbf{M}_{0}^{τ} such that the form $\{\cdot, \cdot\}$ is given by the matrix (4.1). We have $p \mathbf{M}_{0}^{V}=\left\langle e_{1}, p e_{2}, e_{3}\right\rangle$. The proof of Proposition 1.10 shows that \mathbf{M}_{1} is equal to $F^{-1}\left(p \mathbf{M}_{0}^{\vee}\right)$. For $i=1,3$ we define $f_{i}=F^{-1} e_{i}$ and set $f_{2}=F^{-1}\left(p e_{2}\right)$. This basis satisfies the conditions of the lemma.

Let \mathcal{J} be the set $\mathcal{J}=\left\{[\lambda: \mu] \in \mathbb{P}^{1}\left(\mathbb{F}_{p^{2}}\right) \mid \lambda^{p+1}+\mu^{p+1}=0\right\}$. Note that \mathcal{J} has $p+1$ elements.

Lemma 4.3 There exists a bijection between the sets $\mathcal{V}(\Lambda)(k)$ with $\Lambda \in \mathcal{L}_{0}^{(3)}$ that contain \mathbf{M} and the elements $[\lambda: \mu] \in \mathcal{J}$. For $[\lambda: \mu] \in \mathcal{J}$ the corresponding lattice $\Lambda \in \mathcal{L}_{0}^{(3)}$ is given by

$$
\begin{equation*}
\Lambda=\left\langle e_{1}, e_{2}, e_{3}, p^{-1}\left([\lambda] e_{1}+[\mu] e_{3}\right)\right\rangle_{W\left(\overline{\mathbb{F}}_{p}\right)} \tag{4.2}
\end{equation*}
$$

In particular, \mathbf{M} is contained in $p+1$ sets $\mathcal{V}(\Lambda)(k)$.
Proof Let $\Lambda \in \mathcal{L}_{0}^{(3)}$ be a lattice with $\mathbf{M}_{0}^{\tau} \subset \Lambda$. We must prove that Λ is of the form (4.2) for unique $[\lambda: \mu] \in \mathcal{J}$. We have

$$
p \Lambda \stackrel{1}{\subset} p\left(\mathbf{M}_{0}^{\tau}\right)^{\vee} \stackrel{1}{\subset} \mathbf{M}_{0}^{\tau} \stackrel{1}{\subset} \Lambda=\Lambda^{\vee} \stackrel{1}{\subset}\left(\mathbf{M}_{0}^{\tau}\right)^{\vee} .
$$

Since \mathbf{M}_{0}^{τ} is of index 1 in Λ, there exist elements $\lambda, \mu, \nu \in \mathbb{F}_{p^{2}}$ such that

$$
\Lambda=\left\langle e_{1}, e_{2}, e_{3}, p^{-1}\left([\lambda] e_{1}+[\nu] e_{2}+[\mu] e_{3}\right)\right\rangle_{W\left(\mathbb{F}_{p^{2}}\right)}
$$

As Λ is totally isotropic, $\nu=0$ and $\lambda^{p+1}+\mu^{p+1}=0$. The element $[\lambda: \mu] \in \mathbb{P}^{1}\left(\mathbb{F}_{p^{2}}\right)$ is uniquely determined by Λ.

On the other hand, it is clear that every lattice defined by (4.2) is contained in $\mathcal{L}_{0}^{(3)}$ and contains \mathbf{M}_{0}^{τ}.

The Frobenius σ acts on the set \mathcal{J}. We choose a set

$$
\begin{equation*}
\tilde{\mathfrak{f}}=\left\{\left(\lambda_{i}, \mu_{i}\right)\right\}_{0 \leq i \leq p} \tag{4.3}
\end{equation*}
$$

of representatives of the different elements of \mathcal{J} such that $\left(\lambda_{i}^{p}, \mu_{i}^{p}\right) \in \tilde{\mathcal{J}}$ for every i. We denote by $\sigma(i)$ the unique integer j with $0 \leq j \leq p$ and $\left(\lambda_{i}^{p}, \mu_{i}^{p}\right)=\left(\lambda_{j}, \mu_{j}\right)$.

We fix an integer i with $0 \leq i \leq p$. Let Λ_{i} be the lattice corresponding to $\left(\lambda_{i}, \mu_{i}\right)$ and let

$$
e_{\lambda_{i}, \mu_{i}}=p^{-1}\left(\left[\lambda_{i}\right] e_{1}+\left[\mu_{i}\right] e_{3}\right) \in \Lambda_{i}
$$

Then $\left\{e_{1}, e_{2}, e_{\lambda_{i}, \mu_{i}}\right\}$ is a $W\left(\mathbb{F}_{p^{2}}\right)$-basis of Λ_{i}. Let V be the $\overline{\mathbb{F}}_{p}$-vector space $\Lambda_{i} / p \Lambda_{i}$ with induced basis $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{\lambda_{i}, \mu_{i}}\right\}$. Denote by (\cdot, \cdot) the perfect form on V induced by $\{\cdot, \cdot\}$. With respect to the above basis the form (\cdot, \cdot) is given by the matrix

$$
t\left(\begin{array}{ccc}
& & \lambda_{i}^{p} \\
& 1 & \\
\lambda_{i} & &
\end{array}\right) \in \mathrm{GL}_{3}\left(\mathbb{F}_{p^{2}}\right)
$$

In (2.19) the variety $Y_{\Lambda_{i}}$ is defined as the closed subvariety of $\operatorname{Grass}_{2}(V)$ over $\mathbb{F}_{p^{2}}$ given by

$$
Y_{\Lambda_{i}}(R)=\left\{U \subset V_{R} \mid U \text { is a locally direct summand, } \operatorname{rk}_{R} U=2, U^{\perp} \subset U\right\}
$$

The superspecial lattice \mathbf{M} corresponds via the bijection of Proposition 2.7 to $\mathbf{U}=$ $\left\langle\bar{e}_{1}, \bar{e}_{2}\right\rangle$. Let $\mathcal{U}_{\mathbf{M}, i}$ be the open neighbourhood of \mathbf{U} in $Y_{\Lambda_{i}}$ given for each $\mathbb{F}_{p^{2}}$-algebra R by

$$
\mathcal{U}_{\mathbf{M}, i}(R)=\left\{U_{a, b}=\left\langle\bar{e}_{1}+a \bar{e}_{\lambda_{i}, \mu_{i}}, \bar{e}_{2}+b \bar{e}_{\lambda_{i}, \mu_{i}}\right\rangle \mid a, b \in R\right\} \cap \mathcal{V}\left(\Lambda_{i}\right)(R)
$$

Lemma 4.4 We have

$$
\begin{aligned}
& \mathcal{U}_{\mathbf{M}, i}(R)= \\
& \qquad\left\{U_{a, b}=\left\langle\bar{e}_{1}+a \bar{e}_{\lambda_{i}, \mu_{i}}, \bar{e}_{2}+b \bar{e}_{\lambda_{i}, \mu_{i}}\right\rangle \mid a^{p} \lambda_{i}^{p}+a \lambda_{i}-b^{p+1} \lambda_{i}^{p+1}=0 ; a, b \in R\right\} .
\end{aligned}
$$

In particular, $\mathcal{U}_{\mathbf{M}, i}$ is isomorphic to $T_{i}=\operatorname{Spec} R_{i}$, where

$$
\begin{equation*}
R_{i}=\mathbb{F}_{p^{2}}[a, b] /\left(a^{p} \lambda_{i}^{p}+a \lambda_{i}-b^{p+1} \lambda_{i}^{p+1}\right) \tag{4.4}
\end{equation*}
$$

Proof For $U_{a, b}$ to be contained in $\mathcal{V}\left(\Lambda_{i}\right)(R)$, it is necessary and sufficient that $U_{a, b}^{\perp} \subset$ $U_{a, b}$. An easy computation shows that $U_{a, b} \cap U_{a, b}^{\perp} \neq 0$ if and only if

$$
a^{p} \lambda_{i}^{p}+a \lambda_{i}-b^{p+1} \lambda_{i}^{p+1}=0
$$

In this case we obtain $U_{a, b}^{\perp}=\left\langle\bar{e}_{1}-b^{p} \lambda_{i}^{p} \bar{e}_{2}-a^{p} \lambda_{i}^{p-1} \bar{e}_{\lambda_{i}, \mu_{i}}\right\rangle$.
Remark 4.5 As the Frobenius twist $T_{i}^{(p)}$ of T_{i} is isomorphic to $T_{\sigma(i)}$, we will always identify $T_{i}^{(p)}$ with $T_{\sigma(i)}$. We denote by $\mathrm{Fr}_{T_{i}}: T_{i} \rightarrow T_{\sigma(i)}$ the relative Frobenius.

Lemma 4.6 The variety $Y_{\Lambda_{i}}$ is isomorphic to the smooth and projective curve $C_{\lambda_{i}}$ in $\mathbb{P}_{\mathbb{F}_{p^{2}}}^{2}$ given by the equation $a^{p} \lambda_{i}^{p} d+a \lambda_{i} d^{p}-b^{p+1} \lambda_{i}^{p+1}=0$ for $[a: b: d] \in \mathbb{P}_{\mathbb{F}_{p^{2}}}^{2}$.

Proof By Lemma 4.4 the projective nonsingular curves $Y_{\Lambda_{i}}$ and $C_{\lambda_{i}}$ are isomorphic over the open subvarieties $\mathcal{U}_{a, b}$ and $\{d \neq 0\}$ respectively. Therefore, they are isomorphic.

Remark 4.7 (i) The complement of $\mathcal{U}_{\mathbf{M}, i}$ in $Y_{\Lambda_{i}}$ contains only one point. This point is $\mathbb{F}_{p^{2}}$-rational. Indeed, this follows from the same result for $C_{\lambda_{i}}$.
(ii) The curve $Y_{\Lambda_{i}}$ is isomorphic to the Fermat curve \mathcal{C} in $\mathbb{P}_{\mathbb{F}_{p^{2}}}^{2}$ given by the equation $x_{0}^{p+1}+x_{1}^{p+1}+x_{2}^{p+1}=0$. Indeed, as there exists up to isomorphism only one perfect skew-hermitian form on $\left(\mathbb{F}_{p^{2}}\right)^{3}$, the Fermat curve \mathcal{C} is isomorphic to the curve $C_{\lambda_{i}}$ of Lemma 4.6

For $a, b \in k$ denote by $c \in k$ the element $c=-\lambda_{i} \mu_{i}^{-1} a$. Let

$$
f_{\lambda_{i}, \mu_{i}}=p^{-1}\left(\left[\lambda_{i}^{p}\right] f_{1}+\left[\mu_{i}^{p}\right] f_{3}\right) \in N_{1}
$$

We define the following elements of the isocrystal N_{k}, which depend on a, b.

$$
\begin{align*}
& \tilde{e}_{1}=e_{1}-\left[b^{p^{-1}} \lambda_{i}^{p}\right] e_{2}+\left([a]-\left[b^{\frac{p+1}{p}} \lambda_{i}^{p}\right]\right) e_{\lambda_{i}, \mu_{i}} \\
& \tilde{e}_{2}=e_{2}+[b] e_{\lambda_{i}, \mu_{i}} \\
& \tilde{e}_{3}=e_{3}-\left[b^{p^{-1}} \mu_{i}^{p}\right] e_{2}+\left([c]-\left[b^{\frac{p+1}{p}} \mu_{i}^{p}\right]\right) e_{\lambda_{i}, \mu_{i}} \tag{4.5}\\
& \tilde{f}_{1}=f_{1}-\left[b \lambda_{i}\right] p^{-1} f_{2}-\left[a \lambda_{i}^{1-p}\right] f_{\lambda_{i}, \mu_{i}}, \\
& \tilde{f}_{2}=f_{2}+\left[b^{p^{-1}}\right] p f_{\lambda_{i}, \mu_{i}} \\
& \tilde{f}_{3}=f_{3}-\left[b \mu_{i}\right] p^{-1} f_{2}-\left[c \mu_{i}^{1-p}\right] f_{\lambda_{i}, \mu_{i}} .
\end{align*}
$$

Denote by $\delta_{\mathbf{M}, i}$ the open immersion

$$
\begin{align*}
\delta_{\mathbf{M}, i}: T_{i} & \hookrightarrow Y_{\Lambda_{i}}, \\
(a, b) & \mapsto U_{a, b} \tag{4.6}
\end{align*}
$$

of Lemma 4.4 By Proposition 2.7 we have a bijection $\theta_{i}: Y_{\Lambda_{i}}(k) \leftrightarrow \mathcal{V}\left(\Lambda_{i}\right)(k)$. Consider the following diagram

By Remark4.7(i), the complement of the set $\mathcal{S}_{\mathbf{M}, i}(k) \subset \mathcal{V}\left(\Lambda_{i}\right)(k)$ defined in the above diagram consists of only one superspecial point.
Proposition 4.8 The map $\Psi_{M, i}(k)$ is given by

$$
\begin{aligned}
\Psi_{\mathbf{M}, i}(k): & T_{i}(k) \xrightarrow{1: 1} \mathcal{S}_{\mathbf{M}, i}(k) \subset \mathcal{V}(\Lambda)(k), \\
(a, b) & \mapsto M_{a, b}=M_{0} \oplus M_{1},
\end{aligned}
$$

with

$$
\begin{align*}
& M_{0}=\left\langle\tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}\right\rangle_{W(k)} \tag{4.8}\\
& M_{1}=\left\langle\tilde{f}_{1}, \tilde{f}_{2}, \tilde{f}_{3}\right\rangle_{W(k)} \tag{4.9}
\end{align*}
$$

and $V\left(M_{a, b}\right)=\left\langle\tilde{e}_{1}, p \tilde{e}_{2}, \tilde{e}_{3}, p \tilde{f}_{1}, \tilde{f}_{2}, p \tilde{f}_{3}\right\rangle_{W(k)}$.
Proof For $(a, b) \in T_{i}(k)$ we have $\delta_{\mathbf{M}, i}(a, b)=U_{a, b}$. Let $\pi: \Lambda_{i} \rightarrow \Lambda_{i} / p \Lambda_{i}$ be the natural projection, and let π_{k} be the base change of π with $W(k)$. Then by Proposition 2.7we obtain $M_{0}=\pi_{k}^{-1}\left(U_{a, b}\right)$ and $M_{1}=F^{-1}\left(p M_{0}^{\vee}\right)$. We have

$$
\begin{align*}
M_{0} & =\left\langle e_{1}+[a] e_{\lambda_{i}, \mu_{i}}, e_{2}+[b] e_{\lambda_{i}, \mu_{i}}, p e_{\lambda_{i}, \mu_{i}}\right\rangle \tag{4.10}\\
& =\left\langle e_{1}+[a] e_{\lambda_{i}, \mu_{i}}, e_{2}+[b] e_{\lambda_{i}, \mu_{i}}, e_{3}+[c] e_{\lambda_{i}, \mu_{i}}\right\rangle
\end{align*}
$$

Similarly, we obtain for $p M_{0}^{\vee}=\pi_{k}^{-1}\left(U_{a, b}^{\perp}\right)$

$$
\begin{align*}
& p M_{0}^{\vee}=\left\langle e_{1}-\left[b^{p} \lambda_{i}^{p}\right] e_{2}-\left[a^{p} \lambda_{i}^{p-1}\right] e_{\lambda_{i}, \mu_{i}}, p e_{2}, p e_{\lambda_{i}, \mu_{i}}\right\rangle \\
&=\left\langle e_{1}-\left[b^{p} \lambda_{i}^{p}\right] e_{2}-\left[a^{p} \lambda_{i}^{p-1}\right] e_{\lambda_{i}, \mu_{i}}, p e_{2}\right. \tag{4.11}\\
&\left.e_{3}-\left[b^{p} \mu_{i}^{p}\right] e_{2}-\left[c^{p} \mu_{i}^{p-1}\right] e_{\lambda_{i}, \mu_{i}}\right\rangle
\end{align*}
$$

Note that for the equalities (4.10) and (4.11) we again use $p \neq 2$. From (4.11) we obtain

$$
\begin{align*}
& M_{1}=\left\langle f_{1}-\left[b \lambda_{i}\right] p^{-1} f_{2}-\left[a \lambda_{i}^{1-p}\right] f_{\lambda_{i}, \mu_{i}}, f_{2}\right. \tag{4.12}\\
&\left.f_{3}-\left[b \mu_{i}\right] p^{-1} f_{2}-\left[c \mu_{i}^{1-p}\right] f_{\lambda_{i}, \mu_{i}}\right\rangle
\end{align*}
$$

As $p f_{\lambda_{i}, \mu_{i}}=\left[\lambda_{i}^{p}\right] \tilde{f}_{1}+\left[\mu_{i}^{p}\right] \tilde{f}_{3}$, equality (4.9) follows from (4.12). The equality (4.8) follows from the equations

$$
\tilde{e}_{1}=\left(e_{1}+[a] e_{\lambda_{i}, \mu_{i}}\right)-\left[b^{p^{-1}} \lambda_{i}^{p}\right] \tilde{e}_{2}, \quad \tilde{e}_{3}=\left(e_{3}+[c] e_{\lambda_{i}, \mu_{i}}\right)-\left[b^{p^{-1}} \mu_{i}^{p}\right] \tilde{e}_{2} .
$$

An easy calculation shows that $V\left(M_{a, b}\right)$ has the desired basis.
Remark 4.9 The map $\Psi_{\mathrm{M}, i}(k)$ is not a morphism. Indeed, the formulas (4.5) show that the module $M_{a, b}$ is not defined over a non perfect ring.

Our goal is to find an affine scheme $T_{\mathbf{M}}$ such that locally at \mathbf{M} the variety $\mathcal{N}_{0}^{\text {red }}$ is isomorphic to T_{M}. Consider the polynomial ring in a_{i}, b_{i} for $0 \leq i \leq p$,

$$
A=\mathbb{F}_{p^{2}}\left[a_{i}, b_{i}\right]_{0 \leq i \leq p}
$$

For $0 \leq i \leq p$ let $h_{i} \in A$ be the polynomial $h_{i}=a_{i}^{p} \lambda_{i}^{p}+a_{i} \lambda_{i}-b_{i}^{p+1} \lambda_{i}^{p+1}$ and let $\mathfrak{a} \subset A$ be the ideal $\mathfrak{a}=\left(h_{i}, a_{i} a_{j}, a_{i} b_{j}, b_{i} b_{j}\right)_{0 \leq i \neq j \leq p}$. Let $A^{\prime}=A / \mathfrak{a}$ and let Z be the affine scheme Spec A^{\prime}. Denote by Z_{i} the closed subscheme $\operatorname{Spec} A^{\prime} /\left(a_{j}, b_{j}\right)_{j \neq i}$ of Z.

Lemma 4.10 The closed subschemes Z_{i} are the irreducible components of Z. They intersect transversally at the origin 0 and each Z_{i} is isomorphic to \mathcal{U}_{i}. Furthermore, Z is reduced and its tangent space at the origin has dimension $p+1$.

Proof For $0 \leq i \leq p$ the closed subscheme Z_{i} is isomorphic to \mathcal{U}_{i}. We obtain

$$
Z \backslash\{0\}=\biguplus_{i=0}^{p} Z_{i} \backslash\{0\}
$$

hence the Z_{i} are the irreducible components of Z. In particular, Z is smooth away from the origin.

We now prove that A^{\prime} is reduced. Since \mathcal{U}_{i} is irreducible, it is clear that h_{i} is irreducible. Let $f \in A$ such that $f^{r} \in \mathfrak{a}$ for an integer $r \geq 1$. We want to show that $f \in \mathfrak{a}$. By the definition of \mathfrak{a}, we may assume that $f=\sum_{i=0}^{p} f_{i}$, with polynomials $f_{i} \in A$ that depend only on a_{i}, b_{i}. Then

$$
f^{r} \equiv \sum_{i=0}^{p} f_{i}^{r} \bmod \mathfrak{a}
$$

As $f^{r} \in \mathfrak{a}$, we obtain that $f_{i}^{r} \in \mathfrak{a}$ for every i by the definition of \mathfrak{a}. Therefore, f_{i}^{r} is divisible by h_{i}. Since h_{i} is irreducible, it divides f_{i}, which proves that A^{\prime} is reduced.

The tangent space at the origin is given by the equations $d a_{i}=0$ for $i=0, \ldots, p$, where $d a_{i}$ and $d b_{i}$ are the differentials of a_{i} and b_{i}, respectively. Therefore, the tangent space is of dimension $p+1$. In particular, all irreducible components intersect transversally at the origin.

The moduli space \mathcal{M} of abelian varieties defined in the introduction is smooth of dimension 2. By the uniformization theorem of Rapoport and Zink, the moduli space \mathcal{N} is locally isomorphic to the closed subvariety $\mathcal{N}^{\text {ss }}$ of the special fibre of \mathcal{M} if C^{p} is small enough ($c f$. Section 6). Thus the tangent space of $\mathcal{N}^{\text {red }}$ at each closed point is at most of dimension 2. Therefore, the local structure of $\mathcal{N}_{0}^{\text {red }}$ at a supersingular point cannot be given by Z. We will define a modification of the ring A^{\prime} such that the tangent space at the origin has dimension 2 and prove that the local structure of $\mathcal{N}_{0}^{\text {red }}$ is given by this modification.

Consider $R=\mathbb{F}_{p^{2}}\left[a_{i}, x, y\right]_{0 \leq i \leq p}$. For an integer k with $0 \leq k \leq p$ let $g_{k} \in R$ be the polynomial

$$
g_{k}=\sum_{i=0}^{p}\left(a_{i}^{p} \lambda_{i}^{p-k} \mu_{i}^{k}+a_{i} \lambda_{i}^{1-k} \mu_{i}^{k}\right)-x^{p+1-k} y^{k}
$$

Define

$$
\begin{equation*}
R_{\mathbf{M}}=R /\left(x^{p+1}+y^{p+1}, a_{i} a_{j}, a_{i}\left(\lambda_{i} y-\mu_{i} x\right), g_{k}\right)_{0 \leq i \neq j \leq p, 0 \leq k \leq p} \tag{4.13}
\end{equation*}
$$

and denote by $T_{\mathrm{M}}=\operatorname{Spec} R_{\mathrm{M}}$ the corresponding affine scheme. Let

$$
\begin{equation*}
R_{\mathbf{M}, i}=R_{\mathbf{M}} /\left(a_{j}, \lambda_{i} y-\mu_{i} x\right)_{j \neq i} \tag{4.14}
\end{equation*}
$$

and let $T_{\mathrm{M}, i}$ be the corresponding closed subscheme of $T_{\mathbf{M}}$.
Let R_{i} be as in (4.4). We write a_{i}, b_{i} instead of a, b for the indeterminates of R_{i}. We have the following equality in R_{i}

$$
\left(\lambda_{i}^{-1} \mu_{i}\right)^{k} h_{i}=a_{i}^{p} \lambda_{i}^{p-k} \mu_{i}^{k}+a_{i} \lambda_{i}^{1-k} \mu_{i}^{k}-\left(b_{i} \lambda_{i}\right)^{p+1-k}\left(b_{i} \mu_{i}\right)^{k}
$$

Therefore, the morphism

$$
\begin{align*}
\eta_{i}: R_{i} & \rightarrow R_{\mathbf{M}, i}, \\
a_{i} & \mapsto a_{i} \tag{4.15}\\
b_{i} & \mapsto \lambda_{i}^{-1} x
\end{align*}
$$

is an isomorphism.
Proposition 4.11 The closed subschemes $T_{\mathbf{M}, i}$ are the $p+1$ irreducible components of T_{M}, which intersect pairwise transversally at the origin 0 . Furthermore, $T_{M, i}$ is isomorphic to \mathcal{U}_{i} for $0 \leq i \leq p$, hence is smooth of dimension 1 .

In particular, T_{M} is of dimension 1 and smooth away from the origin. The tangent space of T_{M} at the origin is 2-dimensional.

Proof As $R_{\mathbf{M}, i}$ is isomorphic to R_{i} by (4.15), the subscheme $T_{\mathbf{M}, i}$ is isomorphic to \mathcal{U}_{i}. Thus it is smooth of dimension 1. The schemes T_{M} and $T_{\mathrm{M}, i}$ coincide on the open locus $\left\{a_{i} \neq 0\right\}$. We have

$$
T_{\mathbf{M}} \backslash\{0\}=\biguplus_{i=0}^{p} T_{\mathbf{M}, i} \backslash\{0\}
$$

This shows that T_{M} is of dimension 1 and smooth away from the origin.
We now compute the tangent space of T_{M} at the origin. By (4.13) the tangent space at the origin is given in terms of the differentials $d a_{0}, \ldots, d a_{p}, d x, d y$ by the equations $\sum_{i=0}^{p} \lambda_{i}^{1-k} \mu_{i}^{k} d a_{i}=0$ for $0 \leq k \leq p$. This system of equations has rank $p+1$ (Vandermonde determinant), hence we obtain $d a_{i}=0$ for all i. This proves that the tangent space has dimension 2. Furthermore, we see that any two irreducible components intersect transversally at the origin.

Proposition 4.12 The scheme T_{M} is reduced.
To prove Proposition 4.12, we first consider the homomorphism

$$
\begin{aligned}
\psi: R=\mathbb{F}_{p^{2}}\left[a_{i}, x, y\right]_{0 \leq i \leq p} & \rightarrow A=\mathbb{F}_{p^{2}}\left[a_{i}, b_{i}\right]_{0 \leq i \leq p} \\
a_{i} & \mapsto a_{i} \\
x & \mapsto \sum_{i=0}^{p} b_{i} \lambda_{i} \\
y & \mapsto \sum_{i=0}^{p} b_{i} \mu_{i}
\end{aligned}
$$

It is easy to see that the homomorphism ψ induces a homomorphism $\psi^{\prime}: R_{\mathbf{M}} \rightarrow A^{\prime}$. We will show that ψ^{\prime} is injective. This will prove that R_{M} is reduced, as A^{\prime} is reduced by Lemma 4.10

Let \tilde{A} be the ring $\tilde{A}=A /\left(a_{i} a_{j}, b_{i} b_{j}, a_{i} b_{j}\right)_{0 \leq i \neq j \leq p}$ and denote by \tilde{R} the ring

$$
\tilde{R}=R /\left(x^{p+1}+y^{p+1}, a_{i} a_{j}, a_{i}\left(\lambda_{i} y-\mu_{i} x\right)\right)_{0 \leq i \neq j \leq p}
$$

We obtain a commutative diagram

Note that all rings in this diagram are graded rings with respect to the grading induced by the indeterminates a_{i}, b_{i}, x, and y. All homomorphisms respect the gradings.

Lemma 4.13 The morphism $\tilde{\psi}: \tilde{R} \rightarrow \tilde{A}$ is injective.

Proof Let $f \in R$ such that $\beta_{1} \circ \psi(f)=0$. We want to show that $\alpha_{1}(f)=0$. We may assume that f is of the form

$$
\begin{equation*}
f=\sum_{i=0}^{p} a_{i} f_{i}\left(a_{i}, x, y\right)+\tilde{f}(x, y) \tag{4.16}
\end{equation*}
$$

Here f_{i}, \tilde{f} are polynomials in R such that f_{i} depends only on a_{i}, x, y and \tilde{f} depends only on x, y. Since $\beta_{1} \circ \psi(f)=0$, we obtain for all i

$$
\begin{align*}
\tilde{f}\left(b_{i} \lambda_{i}, b_{i} \mu_{i}\right) & =0 \in A, \tag{4.17}\\
a_{i} f_{i}\left(a_{i}, b_{i} \lambda_{i}, b_{i} \mu_{i}\right) & =0 \in A . \tag{4.18}
\end{align*}
$$

Let $\tilde{f}_{m}(x, y)$ be the homogeneous component of degree m of \tilde{f}. Then

$$
\tilde{f}_{m}\left(\lambda_{i} b_{i}, \mu_{i} b_{i}\right)=b_{i}^{m} \tilde{f}_{m}\left(\lambda_{i}, \mu_{i}\right)=0
$$

for all i. Therefore, $\tilde{f}_{m}(x, y)=0$ for all $(x, y) \in \operatorname{Proj} \mathbb{F}_{p^{2}}[x, y] /\left(x^{p+1}+y^{p+1}\right)$. Since this scheme is reduced, we obtain that $x^{p+1}+y^{p+1}$ divides \tilde{f}_{m}. Thus $\alpha_{1}(\tilde{f})=0$.

Now consider the equation (4.18). We may write

$$
f_{i}\left(a_{i}, x, y\right)=\sum_{r, m} a_{i}^{r} f_{r, m}(x, y)
$$

where $f_{r, m}$ is a polynomial in x, y homogeneous of degree m. By (4.18) we obtain $f_{r, m}\left(\lambda_{i}, \mu_{i}\right)=0$. An analogous argument as above shows that the polynomial $\mu_{i} x-\lambda_{i} y$ divides $f_{r, m}$, hence $a_{i}\left(\mu_{i} x-\lambda_{i} y\right)$ divides f_{i}. Therefore, $\alpha_{1}\left(f_{i}\right)=0$ and $\tilde{\psi}$ is injective.
Proof of Proposition 4.12 As A^{\prime} is reduced by Lemma 4.10, it suffices to prove that ψ^{\prime} is injective.

Let $f \in R$ such that the image of $\beta_{3} \circ \psi(f)=0$. We may assume that f is of the form (4.16). We obtain

$$
\begin{equation*}
\tilde{\psi}\left(\alpha_{1}(f)\right)=\sum_{i=0}^{p}\left(a_{i} f_{i}\left(a_{i}, b_{i} \lambda_{i}, b_{i} \mu_{i}\right)+\tilde{f}\left(b_{i} \lambda_{i}, b_{i} \mu_{i}\right)\right) \tag{4.19}
\end{equation*}
$$

As $\beta_{3} \circ \psi(f)=0$, there exist polynomials $w_{i}\left(a_{i}, b_{i}\right)$ and $z_{i}\left(b_{i}\right)$ in A with $z_{i}\left(b_{i}\right)$ depending only on b_{i} such that

$$
\begin{equation*}
\tilde{\psi}\left(\alpha_{1}(f)\right)=\sum_{i=0}^{p}\left(a_{i} w_{i}\left(a_{i}, b_{i}\right)+z_{i}\left(b_{i}\right)\right) h_{i} . \tag{4.20}
\end{equation*}
$$

Since h_{i} is a polynomial of degree $p+1$ in b_{i}, it is easy to see that every monomial in \tilde{f} is of degree greater or equal than $p+1$. We write

$$
\begin{equation*}
\tilde{f}=\sum_{k=0}^{p} x^{p+1-k} y^{k} \tilde{f}_{k}(x, y) \tag{4.21}
\end{equation*}
$$

Define $f^{\prime}=\sum_{i=0}^{p} a_{i} w_{i}\left(a_{i}, \lambda_{i}^{-1} x\right) g_{0}-\sum_{k=0}^{p} \tilde{f}_{k}(x, y) g_{k}$.
Claim: We have $\tilde{\psi}\left(\alpha_{1}\left(f^{\prime}\right)\right)=\tilde{\psi}\left(\alpha_{1}(f)\right)$.
An easy calculation shows that

$$
\begin{equation*}
\tilde{\psi}\left(\alpha_{1}(f)\right)-\tilde{\psi}\left(\alpha_{1}\left(f^{\prime}\right)\right)=\sum_{i=0}^{p} h_{i}\left[z_{i}\left(b_{i}\right)+\sum_{k=0}^{p} \lambda_{i}^{-k} \mu_{i}^{k} \tilde{f}_{k}\left(b_{i} \lambda_{i}, b_{i} \mu_{i}\right)\right] \tag{4.22}
\end{equation*}
$$

We obtain from (4.19), (4.20), and (4.21) with $a_{i}=0$ for all i that

$$
-z_{i}\left(b_{i}\right)=\sum_{k=0}^{p} \lambda_{i}^{-k} \mu_{i}^{k} \tilde{f}_{k}\left(b_{i} \lambda_{i}, b_{i} \mu_{i}\right)
$$

which by (4.22) proves the claim.
Since $\tilde{\psi}$ is injective by Lemma 4.13, we obtain that $\alpha_{1}\left(f^{\prime}\right)=\alpha_{1}(f)$. By construction $\alpha_{3}\left(f^{\prime}\right)=0$, hence ψ^{\prime} is injective.
Lemma 4.14 The completion $\hat{\mathcal{O}}_{T_{M}, 0}$ of the local ring of T_{M} at the origin 0 is isomorphic to $\mathbb{F}_{p^{2}}[[x, y]] / \prod_{i=0}^{p}\left(\lambda_{i} y-\mu_{i} x\right)$. In particular, T_{M} is of complete intersection.

Proof We use the notations of (4.13). An elementary calculation shows that

$$
\prod_{i=0}^{p}\left(\lambda_{i} y-\mu_{i} x\right)
$$

is contained in the ideal $\left(g_{k}\right)_{0 \leq k \leq p}$ of R. Thus the morphism

$$
\begin{aligned}
\varphi^{\circ}: \mathbb{F}_{p^{2}}[[x, y]] / \prod_{i=0}^{p}\left(\lambda_{i} y-\mu_{i} x\right) & \rightarrow \hat{R}_{\mathbf{M}, 0}, \\
x & \mapsto x \\
y & \mapsto y
\end{aligned}
$$

is well defined. The corresponding schemes are both of dimension 1 and have $(p+1)$ irreducible components. Let φ be the morphism of schemes corresponding to φ°. It is easy to see that the tangent map of φ is an isomorphism. Therefore, φ° is surjective. Furthermore, φ induced an isomorphism on irreducible components, hence φ° is injective.

From now on, we use the theory of displays as in [Zi 2]. First of all, we recall the definition of a display. Let R be a ring of characteristic p. We denote by I_{R} the image of the Verschiebung τ^{\prime} on $W(R)$. A $3 n$-display over R is a tuple $\mathcal{P}=\left(P, Q, F, V^{-1}\right)$ such that P is a finitely generated projective $W(R)$-module, Q is a submodule of P, and $F: P \rightarrow P$ and $V^{-1}: Q \rightarrow P$ are σ-linear maps such that the following conditions are satisfied [Zi2, Definition 1]:
(i) $\quad I_{R} P \subset Q \subset P$ and P / Q is a direct summand of the $W(R)$-module $P / I_{R} P$.
(ii) $V^{-1}: Q \rightarrow P$ is a σ-linear epimorphism, i.e., the map $W(R) \otimes_{F, W(R)} Q \rightarrow P$ with $w \otimes m \mapsto w m$ is surjective.
(iii) For $x \in P$ and $w \in W(R)$ we have $V^{-1}\left(\tau^{\prime}(w) x\right)=w F(x)$.

A $3 n$-display \mathcal{P} is called a display if \mathcal{P} satisfies the nilpotent condition of [Zi2, Definition 13].

Let M be a Dieudonné module over a perfect field k. Then

$$
\mathcal{P}_{M}=\left(M, V(M), F, V^{-1}\right)
$$

is a $3 n$-display. It is a display if and only if V is topologically nilpotent on M for the p-adic topology, i.e., if the associated p-divisible group has no étale part.

There exists a functor from the category of displays over R to the category of formal p-divisible groups over R [Zi 2 , Theorem 81]. If R is of finite type over a field of characteristic p, this functor is an equivalence of categories [Zi 2 , Theorem 103]. For such a ring R, we will identify the elements of $\mathcal{N}_{0}(R)$ with the corresponding displays with additional structure.

For a $3 n$-display $\mathcal{P}=\left(P, Q, F, V^{-1}\right)$, denote by N the base change $N=P \otimes$ $\left.{ }^{(}\right)$. Then N is a projective $W_{\mathbb{Q}}(R)$-module and F induces a σ-linear operator on N which we will again denote by F. The pair (N, F) is called the isodisplay of \mathcal{P} [Zi2, Definition 61].

Now assume that R is torsion free as abelian group and that P is of rank n. Then the morphism $W(R) \rightarrow W_{\mathbb{Q}}(R)$ is injective, hence P is a $W(R)$-submodule of N. Let P^{\prime} be a projective $W(R)$-submodule of N of rank n and Q^{\prime} be a $W(R)$-submodule of P^{\prime} such that P / Q is a direct summand of the $W(R)$-module $P / I_{R} P$. Denote by V^{-1} the operator $p^{-1} F$ on N. If P^{\prime} is F-invariant and $V^{-1}\left(Q^{\prime}\right) \subset P^{\prime}$, the tuple $\mathcal{P}^{\prime}=\left(P^{\prime}, Q^{\prime}, F, V^{-1}\right)$ is a $3 n$-display. If \mathcal{P} is a display, the $3 n$-display \mathcal{P}^{\prime} is a display. Let Qisg_{R} be the category of displays over R up to isogeny, i.e., the objects are displays and the morphisms are $\operatorname{Hom}\left(\mathcal{P}, \mathcal{P}^{\prime}\right) \otimes_{\mathbb{Z}}\left(\mathbb{O}\right.$. Then the functor $\mathrm{Qisg}_{R} \rightarrow(\text { Isodisplays })_{R}$ is fully faithful [Zi 2 , Proposition 66].

Let $\mathbf{M} \in \mathcal{N}_{0}(k)$ be a superspecial Dieudonné lattice. As \mathbf{M} is τ-invariant, we obtain $V^{2}=\sigma^{-2} \mathrm{id}_{\mathbf{M}}$, hence the corresponding $3 n$-display is a display. Let $R_{\mathbf{M}}$ be the ring defined in 4.13). By base change we obtain a display $\mathcal{P}_{\mathbf{M}}=\left(P_{\mathbf{M}}, Q_{\mathbf{M}}, F, V^{-1}\right)$ over R_{M} with

$$
\begin{gathered}
P_{\mathbf{M}}=\mathbf{M} \otimes_{W\left(F_{p^{2}}\right)} W\left(R_{\mathbf{M}}\right) \\
Q_{\mathbf{M}}=\left\langle e_{1}, f_{2}, e_{3}\right\rangle_{W\left(R_{\mathbf{M}}\right)} \oplus I_{R_{\mathbf{M}}}\left\langle f_{1}, e_{2}, f_{3}\right\rangle_{W\left(R_{\mathbf{M}}\right)} \subset P_{\mathbf{M}}
\end{gathered}
$$

and induced F and V^{-1} [Zi 2 , Definition 20]. The display \mathcal{P}_{M} is equipped with an action of \mathcal{O}_{E}, i.e., a $\mathbb{Z} / 2 \mathbb{Z}$-grading

$$
P_{\mathbf{M}}=P_{\mathbf{M}, 0} \oplus P_{\mathbf{M}, 1}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle_{W\left(R_{\mathbf{M}}\right)} \oplus\left\langle f_{1}, f_{2}, f_{3}\right\rangle_{W\left(R_{\mathbf{M}}\right)}
$$

and an induced grading $Q_{\mathrm{M}}=Q_{\mathrm{M}, 0} \oplus \mathrm{Q}_{\mathrm{M}, 1}$. The perfect alternating form $\langle\cdot, \cdot\rangle$ on \mathbf{M} induces a perfect alternating form on the display $\mathcal{P}_{\mathbf{M}}$, i.e., a perfect alternating
form $\langle\cdot, \cdot\rangle: P_{\mathbf{M}} \times P_{\mathbf{M}} \rightarrow W\left(R_{\mathbf{M}}\right)$ such that $\tau^{\prime}\left(\left\langle V^{-1}\left(x_{1}\right), V^{-1}\left(x_{2}\right)\right\rangle\right)=\left\langle x_{1}, x_{2}\right\rangle$ for all x_{1}, x_{2} in Q_{M} [Zi2, Definition 18].

Let $N_{\mathbf{M}}=P_{\mathbf{M}} \otimes\left(\mathbb{O}\right.$) and denote by $\left(N_{\mathbf{M}}, F\right)$ the isodisplay of $\mathcal{P}_{\mathbf{M}}$. As $R_{\mathbf{M}}$ is reduced (Proposition 4.12), the morphism $P_{\mathbf{M}} \hookrightarrow N_{M}$ is injective and we obtain a $\mathbb{Z} / 2 \mathbb{Z}$ grading and a perfect alternating form on N_{M}. We denote by V^{-1} the operator $p^{-1} F$ on N_{M}.

We now construct a display \mathcal{P} over $R_{\mathbf{M}}$ together with a quasi-isogeny $\rho: \mathcal{P} \rightarrow \mathcal{P}_{\mathbf{M}}$ such that \mathcal{P} is equipped with all the data of \mathcal{N}_{0}. Then by base change this display will define a morphism $T_{\mathrm{M}} \rightarrow \mathcal{N}_{0}^{\text {red }}$ (4.31).

Let $c_{i}=-\lambda_{i} \mu_{i}^{-1} a_{i}$. Consider the following elements of $N_{\mathbf{M}}$ analogously to (4.5):

$$
\begin{align*}
& \tilde{e}_{1}=e_{1}- {[x] e_{2}+\left(\left[\sum_{i=0}^{p} a_{i}^{p} \lambda_{i}^{p}\right]-\left[x^{p+1}\right]\right) p^{-1} e_{1} } \tag{4.23}\\
&+\left(\left[\sum_{i=0}^{p} a_{i}^{p} \mu_{i}^{p}\right]-\left[x y^{p}\right]\right) p^{-1} e_{3} \\
& \tilde{e}_{2}=e_{2}+\left[x^{p}\right] p^{-1} e_{1}+\left[y^{p}\right] p^{-1} e_{3} \tag{4.24}\\
& \tilde{e}_{3}=e_{3}- {[y] e_{2}+\left(\left[\sum_{i=0}^{p} c_{i}^{p} \lambda_{i}^{p}\right]-\left[x^{p} y\right]\right) p^{-1} e_{1} } \tag{4.25}\\
&+\left(\left[\sum_{i=0}^{p} c_{i}^{p} \mu_{i}^{p}\right]-\left[y^{p+1}\right]\right) p^{-1} e_{3}, \\
& \tilde{f}_{1}=f_{1}- {\left[x^{p}\right] p^{-1} f_{2}-\left[\sum_{i=0}^{p} a_{i}^{p} \lambda_{i}^{p}\right] p^{-1} f_{1}-\left[\sum_{i=0}^{p} a_{i}^{p} \lambda_{i}^{p-1} \mu_{i}\right] p^{-1} f_{3} } \tag{4.26}\\
& \tilde{f}_{2}=f_{2}+[x] f_{1}+[y] f_{3}, \tag{4.27}\\
& \tilde{f}_{3}=f_{3}-\left[y^{p}\right] p^{-1} f_{2}-\left[\sum_{i=0}^{p} c_{i}^{p} \lambda_{i} \mu_{i}^{p-1}\right] p^{-1} f_{1}-\left[\sum_{i=0}^{p} c_{i}^{p} \mu_{i}^{p}\right] p^{-1} f_{3} \tag{4.28}
\end{align*}
$$

If we identify $R_{\mathbf{M}, i}$ with R_{i} via η_{i}, as in (4.15), we obtain over $R_{\mathbf{M}, i}$ the elements of (4.5) up to a Frobenius twist.

Let $P=P_{0} \oplus P_{1} \subset N_{\mathbf{M}}$ be the module given by

$$
\begin{equation*}
P_{0}=\left\langle\tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}\right\rangle_{W\left(R_{\mathrm{M}}\right)}, \quad P_{1}=\left\langle\tilde{f}_{1}, \tilde{f}_{2}, \tilde{f}_{3}\right\rangle_{W\left(R_{\mathrm{M}}\right)} \tag{4.29}
\end{equation*}
$$

Denote by Q the submodule $Q=\left\langle\tilde{e}_{1}, \tilde{f}_{2}, \tilde{e}_{3}\right\rangle_{W\left(R_{\mathrm{M}}\right)} \oplus I_{R_{\mathrm{M}}}\left\langle\tilde{f}_{1}, \tilde{e}_{2}, \tilde{f}_{3}\right\rangle_{W\left(R_{\mathrm{M}}\right)}$ of P. We define a morphism

$$
\begin{aligned}
\rho^{\prime}: \mathcal{P} & \rightarrow \mathcal{P}_{\mathbf{M}}, \\
\tilde{e}_{i} & \mapsto p \tilde{e}_{i} \\
\tilde{f}_{i} & \mapsto p \tilde{f}_{i}
\end{aligned}
$$

Proposition 4.15 The tuple $\mathcal{P}:=\left(P, Q, F, V^{-1}\right)$ is a subdisplay of the isodisplay N_{M}. It is invariant under the action of \mathcal{O}_{E} and satisfies the determinant condition of signature $(1,2)$. The module P is free of rank 6 and the form $\langle\cdot, \cdot\rangle$ is given by the matrix

$$
t\left(\begin{array}{cc}
0 & I_{3} \tag{4.30}\\
-I_{3} & 0
\end{array}\right)
$$

with respect to the above basis of P.
The morphism ρ^{\prime} is a quasi-isogeny of height 6 of displays with \mathcal{O}_{E}-action such that for all $x_{1}, x_{2} \in \mathcal{P}$ we have $\left\langle\rho^{\prime}\left(x_{1}\right), \rho^{\prime}\left(x_{2}\right)\right\rangle=p^{2}\left\langle x_{1}, x_{2}\right\rangle$.

Proof The display \mathcal{P} is \mathcal{O}_{E}-invariant, because the $\mathbb{Z} / 2 \mathbb{Z}$-grading on N_{M} induces the $\mathbb{Z} / 2 \mathbb{Z}$-grading $P=P_{0} \oplus P_{1}$ and a $\mathbb{Z} / 2 \mathbb{Z}$-grading $Q=Q_{0} \oplus Q_{1}$. To show that \mathcal{P} is a subdisplay of N_{M}, we must prove that P is invariant under F and that $V^{-1} Q \subset P$. Consider

$$
L=\left\langle\tilde{e}_{1}, \tilde{f}_{2}, \tilde{e}_{3}\right\rangle_{W\left(R_{\mathrm{M}}\right)} \quad \text { and } \quad T=\left\langle\tilde{f}_{1}, \tilde{e}_{2}, \tilde{f}_{3}\right\rangle_{W\left(R_{\mathrm{M}}\right)}
$$

We will show that $P=L \oplus T$ is a normal decomposition of P. It is sufficient to prove that $F T \subset P$ and $V^{-1} L \subset P$.

As an example, we will check that $V^{-1}\left(\tilde{e}_{1}\right) \in P$. The other inclusions can be proved by a similar calculation. By (4.23) we have

$$
\begin{aligned}
V^{-1}\left(\tilde{e}_{1}\right)=f_{1}-\left[x^{p}\right] p^{-1} f_{2}+\left(\left[\sum_{i=0}^{p} a_{i}^{p^{2}} \lambda_{i}\right]\right. & \left.-\left[x^{p(p+1)}\right]\right) p^{-1} f_{1} \\
& +\left(\left[\sum_{i=0}^{p} a_{i}^{p^{2}} \mu_{i}\right]-\left[x^{p} y^{p^{2}}\right]\right) p^{-1} f_{3}
\end{aligned}
$$

By (4.26) we obtain

$$
\begin{aligned}
& V^{-1}\left(\tilde{e}_{1}\right)=\tilde{f}_{1}+\left(\left[\sum_{i=0}^{p} a_{i}^{p} \lambda_{i}^{p}\right]+\left[\sum_{i=0}^{p} a_{i}^{p^{2}} \lambda_{i}\right]-\left[x^{p(p+1)}\right]\right) p^{-1} f_{1} \\
&+\left(\left[\sum_{i=0}^{p} a_{i}^{p} \lambda_{i}^{p-1} \mu_{i}\right]+\left[\sum_{i=0}^{p} a_{i}^{p^{2}} \mu_{i}\right]-\left[x^{p} y^{p^{2}}\right]\right) p^{-1} f_{3}
\end{aligned}
$$

Now an easy calculation using the relations of R_{M} (4.13) shows that

$$
\begin{aligned}
& V^{-1}\left(\tilde{e}_{1}\right)=\tilde{f}_{1}+\left(\left[\sum_{i=0}^{p} a_{i}^{p} \lambda_{i}^{p}\right]+\left[\sum_{i=0}^{p} a_{i}^{p^{2}} \lambda_{i}\right]-\left[x^{p(p+1)}\right]\right) p^{-1} \tilde{f}_{1} \\
&+\left(\left[\sum_{i=0}^{p} a_{i}^{p} \lambda_{i}^{p-1} \mu_{i}\right]+\left[\sum_{i=0}^{p} a_{i}^{p^{2}} \mu_{i}\right]-\left[x^{p} y^{p^{2}}\right]\right) p^{-1} \tilde{f}_{3}
\end{aligned}
$$

By definition of R_{M} (4.13) we know that

$$
\begin{gathered}
{\left[\sum_{i=0}^{p} a_{i} \lambda_{i}\right]+\left[\sum_{i=0}^{p} a_{i}^{p} \lambda_{i}^{p}\right]-\left[x^{p+1}\right] \in I_{R_{\mathrm{M}}},} \\
{\left[\sum_{i=0}^{p} a_{i} \lambda_{i}^{1-p} \mu_{i}^{p}\right]+\left[\sum_{i=0}^{p} a_{i}^{p} \mu_{i}^{p}\right]-\left[x y^{p}\right] \in I_{R_{\mathrm{M}}}}
\end{gathered}
$$

hence their images under σ are elements of $p W\left(R_{\mathbf{M}}\right)$. Thus $V^{-1}\left(\tilde{e}_{1}\right) \in P$.
The following statements follow by a straightforward calculation. The matrix of $\langle\cdot, \cdot\rangle$ on P with respect to the basis in (4.29) is given by the matrix

$$
t\left(\begin{array}{cc}
0 & I_{3} \\
-I_{3} & 0
\end{array}\right)
$$

hence the form is perfect on P. As $\operatorname{det}\left(\tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}, \tilde{f}_{1}, \tilde{f}_{2}, \tilde{f}_{3}\right)=1$, the module P is free of rank 6. We have $\rho^{\prime}(Q) \subset Q_{\mathbf{M}}$, hence ρ^{\prime} is a quasi-isogeny. The height of ρ^{\prime} is equal to 6 .

To prove the determinant condition of signature (1,2), note that $Q / I_{R_{M}} P$ is isomorphic to the dual of the Lie algebra of the corresponding p-divisible group. By construction the dimension of $Q_{0} / I_{R_{M}} P_{0}$ is equal to 2 and the dimension of $Q_{1} / I_{R_{M}} P_{1}$ is equal to 1 , hence the determinant condition is satisfied.

Let $\mathcal{P}_{\mathbb{M}}$ be the display over $R_{\mathbb{M}}$ of the p-divisible group \mathbb{X} of Definition 1.1. Denote by $\rho_{\mathbf{M}}: \mathcal{P}_{\mathbf{M}} \rightarrow \mathcal{P}_{\mathbb{M}}$ the quasi-isogeny of height 0 induced by the two lattices \mathbb{M} and \mathbf{M} in N. Let $\rho=p^{-1} \rho_{\mathbf{M}} \circ \rho^{\prime}: \mathcal{P} \rightarrow \mathcal{P}_{\mathbb{M}}$. Then by Proposition 4.15, the morphism ρ is a quasi-isogeny of height 0 of polarized displays. The pair (\mathcal{P}, ρ) defines by base change a morphism

$$
\begin{equation*}
\Phi_{\mathrm{M}}: T_{\mathrm{M}} \rightarrow \mathcal{N}_{0}^{\mathrm{red}} \tag{4.31}
\end{equation*}
$$

Here we denote again by T_{M} the corresponding scheme over $\overline{\mathbb{F}}_{p}$. By construction of the display \mathcal{P} of Proposition 4.15, the morphism Φ_{M} depends on the choice of the basis e_{1}, \ldots, f_{3} of \mathbf{M}. We denote by $\Phi_{\mathbf{M}, i}$ the restriction of $\Phi_{\mathbf{M}}$ to the irreducible component $T_{\mathbf{M}, i}$ of $T_{\mathbf{M}}$.

Let ξ be a k-rational point of $T_{\mathbf{M}, i}$ and let $(\underline{a}, x, y) \in k^{p+3}$ be the coordinates of ξ with $\underline{a}=\left(a_{0}, \ldots, a_{p}\right)$. We have $a_{j}=0$ for $j \neq i$ and $y=\lambda_{i}^{-1} \mu_{i} x$. We identify $T_{\mathbf{M}, i}$ with T_{i} via the isomorphism η_{i} of (4.15), i.e., the element ξ corresponds to $\left(a_{i}, b_{i}\right)$ with $b_{i}=x \lambda_{i}^{-1}$. Consider the set $\mathcal{S}_{\mathbf{M}, \sigma(i)}(k) \subset \mathcal{V}\left(\Lambda_{\sigma(i)}\right)(k)$ as in 4.7) and consider the relative Frobenius $\mathrm{Fr}_{T_{\mathrm{M}, i}}: T_{\mathbf{M}, i} \rightarrow T_{\mathbf{M}, \sigma(i)}$ (Remark4.5).
Lemma 4.16 On k-rational points $\Phi_{\mathbf{M}, i}$ induces a bijection between $T_{M, i}$ and $\mathcal{S}_{\mathbf{M}, \sigma(i)}(k)$,

$$
\begin{align*}
\Phi_{\mathbf{M}, i}: T_{\mathbf{M}, i}(k) & \rightarrow \mathcal{S}_{\mathbf{M}, \sigma(i)}(k), \tag{4.32}\\
\left(a_{i}, b_{i}\right) & \mapsto M_{a_{i}^{p}, b_{i}^{p}}
\end{align*}
$$

i.e., we have on k-rational points $\Phi_{\mathbf{M}, i}=\Psi_{\mathbf{M}, \sigma(i)}(k) \circ \mathrm{Fr}_{T_{M, i}}$. In particular, the morphism $\Phi_{\mathbf{M}, i}$ is universally injective.

Proof Denote by $\left(\mathcal{P}_{\xi}, \rho_{\xi}\right)$ the image of ξ under Φ_{M}. If ξ is equal to zero, i.e., $\underline{a}=\underline{0}$ and $x=y=0$, then $\left(\mathcal{P}_{\xi}, \rho_{\xi}\right)$ is equal to the superspecial point \mathbf{M}.

If we compare the formulas for P_{ξ} in (4.23) to (4.28) with the formulas of $M_{a_{i}^{p}, b_{i}^{p}} \in$ $\mathcal{S}_{\mathbf{M}, \sigma(i)}(k)$ in (4.5), we find that $P_{\xi}=M_{a_{i}^{p}, b_{i}^{p}}$ as sublattices of the isocrystal N_{k}. Therefore, $\Phi_{\mathbf{M}, i}$ is given by (4.32) and is equal to the composition $\Psi_{\mathbf{M}, \sigma(i)} \circ \operatorname{Fr}_{T_{\mathbf{M}, i}}$ (Proposition 4.8). As $\mathrm{Fr}_{T_{\mathrm{M}, i}}$ and $\Psi_{\mathrm{M}, \sigma(i)}$ are universally bijective on k-rational points, the morphism (4.32) is universally bijective.
Proposition 4.17 The morphism Φ_{M} is universally injective, and the tangent morphism at each closed point is injective.
Proof By Lemma 4.16 the morphisms $\Phi_{\mathbf{M}, i}$ are universally injective for each i. The Frobenius induces a bijection on the set \tilde{f} of (4.3), hence $\Lambda_{\sigma(i)} \neq \Lambda_{\sigma(j)}$ for $i \neq j$. By Lemma 4.3 and Remark4.1, we obtain $\mathcal{V}\left(\Lambda_{\sigma(i)}\right)(k) \cap \mathcal{V}\left(\Lambda_{\sigma(j)}\right)(k)=\{\mathbf{M}\}$. Therefore, the images of two irreducible components of T_{M} intersect only at the superspecial point \mathbf{M}. This proves that $\Phi_{\mathbf{M}}$ is universally injective.

Now we want to show that Ψ is injective on tangent spaces. Let ξ be a k-rational point of $T_{\mathbf{M}}$ and let $\left(\mathcal{P}_{\xi}, \rho_{\xi}\right)$ be its image under $\Phi_{\mathbf{M}}$. We know that $\left(\mathcal{P}_{\xi}, \rho_{\xi}\right)$ has no nontrivial automorphisms. Let α, β be two elements of the tangent space of T_{M} at ξ. We denote by $\left(\mathcal{P}_{\alpha}, \rho_{\alpha}\right)$ and $\left(\mathcal{P}_{\beta}, \rho_{\beta}\right)$ the images of α and β under $\Phi_{\mathbf{M}}$, respectively. We assume that $\Phi_{\mathbf{M}}(\alpha)=\Phi_{\mathbf{M}}(\beta)$. Then there exists an \mathcal{O}_{E}-linear isomorphism $\varphi: \mathcal{P}_{\alpha} \xrightarrow{\sim} \mathcal{P}_{\beta}$ of polarized displays such that $\rho_{\alpha}=\varphi \circ \rho_{\beta}$. We must show that $\alpha=\beta$.

By (4.29) the modules P_{α} and P_{β} are graded $W(k[\epsilon])$-modules. As φ is \mathcal{O}_{E}-invariant, it preserves the grading. We denote by $\tilde{e}_{\alpha, i}, \tilde{f}_{\alpha, i}$ the basis of \mathcal{P}_{α} as in (4.29) and similarly for \mathcal{P}_{β}. With respect to these bases, φ is given by a matrix

$$
\left(\begin{array}{cc}
A & 0 \tag{4.33}\\
0 & B
\end{array}\right) \in \mathrm{GL}_{6}(W(k[\epsilon]))
$$

The polarizations on P_{α} and P_{β} with respect to the above bases are given by the matrix (4.30). As φ respects the polarizations, we obtain ${ }^{t} A B^{\sigma}={ }^{t} B A^{\sigma}=I_{3}$. Thus $A=A^{\sigma^{2}}$ and $B=B^{\sigma^{2}}$. In particular, the matrices A and B do not depend on ϵ, i.e., A and B are elements of $\mathrm{GL}_{3}(W(k))$. As $\mathcal{P}_{\alpha} \otimes_{W(k[\epsilon])} W(k) \cong \mathcal{P}_{\xi}$ and $\mathcal{P}_{\beta} \otimes_{W(k[\epsilon])} W(k) \cong \mathcal{P}_{\xi}$, the base change of the isomorphism φ induces an isomorphism $\bar{\varphi}$ of \mathcal{P}_{ξ}. Since A and B do not depend on ϵ, the morphism $\bar{\varphi}$ is given by the matrix (4.33). Since $\left(\mathcal{P}_{\xi}, \rho_{\xi}\right)$ has no nontrivial automorphisms, this shows that $A=B=I_{3}$.

Now let $(\underline{a}, x, y) \in k^{p+3}$ be the coordinates of ξ. The computation of the tangent space of $T_{\mathbf{M}}$ (Proposition 4.11) shows that $d a_{i}=0$ for $i=0, \ldots, p$. Thus the coordinates of α and β are given by $\left(\underline{a}, x_{\alpha}, y_{\alpha}\right)$ and $\left(\underline{a}, x_{\beta}, y_{\beta}\right)$ in $(k[\epsilon])^{p+3}$, with $x_{\alpha} \equiv x_{\beta} \equiv x \bmod (\epsilon)$ and $y_{\alpha} \equiv y_{\beta} \equiv y \bmod (\epsilon)$. Since φ is equal to the identity, we obtain that $\tilde{f}_{\alpha, 2}=\tilde{f}_{\beta, 2}$, hence $x_{\alpha}=x_{\beta}$ and $y_{\alpha}=y_{\beta}$. Therefore, $\alpha=\beta$ which proves the claim.

5 The Global Structure of $\mathcal{N}^{\text {red }}$ for $\operatorname{GU}(1,2)$

We use the notation of Section 4 In this section we will construct a scheme \mathcal{T} by gluing together open subsets of the varieties $T_{\mathbf{M}}$ for every superspecial point $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$. We will prove that \mathcal{T} is isomorphic to the supersingular locus $\mathcal{N}_{0}^{\text {red }}$.

As the intersection behaviour of the sets $\mathcal{V}(\Lambda)(k)$ is given by the simplicial complex \mathcal{B}_{0} of Section 3, we will inductively glue together the varieties T_{M} using the complex \mathcal{B}_{0}. For $\Lambda \in \mathcal{L}_{0}^{(l)}$ we will, for simplicity, write Λ instead of $\{\Lambda\}$ for the corresponding vertex of Λ in \mathcal{B}_{0}.

As in Remark 1.8 let C be the $\left(\mathbb{O}_{p^{2}}\right.$-vector space N_{0}^{τ} with perfect skew-hermitian form $\{\cdot, \cdot\}$. Denote by G the unitary group of $(C,\{\cdot, \cdot\})$ with respect to the exten$\operatorname{sion}\left(\mathbb{O} p_{p^{2}} / \mathbb{O}_{p}\right.$.

Lemma 5.1 Let $\mathbf{M} \neq \mathbf{M}^{\prime}$ be in $\mathcal{L}_{0}^{(1)}$ such that the corresponding vertices in \mathcal{B}_{0} have a common neighbour Λ (Definition 3.3). Then there exists an element $\left.g \in G(\mathbb{O})_{p}\right)$ such that $g \mathbf{M}=\mathbf{M}^{\prime}$ and such that Λ is invariant under g.

Proof Let \mathcal{G} be the unitary group of $(\Lambda,\{\cdot, \cdot\})$ with respect to $\mathbb{Z}_{p^{2}} / \mathbb{Z}_{p}$. Then G is isomorphic to the generic fibre of \mathcal{G}. Let $V=\Lambda / p \Lambda$ and let $\pi: \Lambda \rightarrow V$ be the natural projection. Then $\mathcal{G}_{\mathbb{F}_{p}}$ is equal to the unitary group of $(V,(\cdot, \cdot))$. Since \mathcal{G} is smooth over Spec \mathbb{Z}_{p}, the canonical map $\varphi: \mathcal{G}\left(\mathbb{Z}_{p}\right) \rightarrow \mathcal{G}\left(\mathbb{F}_{p}\right)$ is surjective. As Λ is a common neighbour of \mathbf{M} and \mathbf{M}^{\prime}, the lattices \mathbf{M} and \mathbf{M}^{\prime} are contained in $\mathcal{V}(\Lambda)\left(\mathbb{F}_{p^{2}}\right)$ (Proposition 3.4). They correspond to subspaces U, U^{\prime} of V of dimension 2 satisfying $U^{\perp} \subset U$ and $\left(U^{\prime}\right)^{\perp} \subset U^{\prime}$, respectively. As (\cdot, \cdot) is a nondegenerate skew-hermitian form on V, there exists an element $\bar{g} \in \mathcal{G}\left(\mathbb{F}_{p}\right)$ with $\bar{g}(U)=U^{\prime}$. Let g be a lift of \bar{g} in $\mathcal{G}\left(\mathbb{Z}_{p}\right)$. As $\mathbf{M}=\pi^{-1}(U)$ and $\mathbf{M}^{\prime}=\pi^{-1}\left(U^{\prime}\right)$, the automorphism g of Λ satisfies the claim.

Let $\mathbf{M}, \mathbf{M}^{\prime}, \Lambda$ and g be as in Lemma 5.1. We fix a basis e_{1}, \ldots, f_{3} of \mathbf{M} as in Lemma4.2. Then Λ is equal to Λ_{i} for some i with $0 \leq i \leq p$. We define

$$
\begin{array}{ll}
e_{j}^{\prime}=g e_{j} & \text { for } j=1,2,3, \tag{5.1}\\
f_{j}^{\prime}=F^{-1}\left(g e_{j}\right) & \text { for } j=1,3, \\
f_{2}^{\prime}=F^{-1}\left(p g\left(e_{2}\right)\right) . &
\end{array}
$$

Let $e_{\lambda_{i}, \mu_{i}}^{\prime}=p^{-1}\left(\left[\lambda_{i}\right] e_{1}^{\prime}+\left[\mu_{i}\right] e_{3}^{\prime}\right)$ and let $\Lambda_{i}^{\prime}=\left\langle e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{\lambda_{i}, \mu_{i}}^{\prime}\right\rangle$.
Lemma 5.2 The elements $e_{1}^{\prime}, \ldots, f_{3}^{\prime}$ form a basis of \mathbf{M}^{\prime} which satisfies the conditions of Lemma 4.2 Furthermore, Λ is equal to Λ_{i}^{\prime}.
Proof This follows from Lemma 5.1
For $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$ consider the affine variety $T_{\mathbf{M}}$ and its closed subvarieties $T_{\mathbf{M}, i}$ as in (4.13) and (4.14). Geometrically, we will glue to each $\mathbb{F}_{p^{2}}$-rational point of T_{M} a variety $T_{\mathbf{M}^{\prime}}$ such that $T_{M, i}$ and $T_{\mathbf{M}^{\prime}, i}$ coincide on the open subsets of non- $\mathbb{F}_{p^{2}}$-rational points. We will prove that the scheme \mathcal{T} obtained by iterating this process is isomorphic to $\mathcal{N}_{0}^{\text {red }}$.

Let $\mathcal{T}_{\mathbf{M}}=T_{\mathbf{M}} \backslash\left\{\mathbb{F}_{p^{2}}\right.$-rational points $\left.\neq 0\right\}$. It is an open subvariety of $T_{\mathbf{M}}$. Denote by $\mathcal{T}_{\mathbf{M}, i}$ the intersection of $T_{\mathbf{M}, i}$ with $\mathcal{T}_{\mathbf{M}}$. Then $\mathcal{T}_{\mathbf{M}, i}$ is a closed subvariety of $\mathcal{T}_{\mathbf{M}}$. Furthermore, let $\mathcal{T}_{\mathbf{M}, i}^{\circ}=\mathcal{T}_{\mathbf{M}, i} \backslash\{0\}=T_{\mathbf{M}, i} \backslash\left\{\mathbb{F}_{p^{2}}\right.$-rational points $\}$. We will always identify $T_{\mathbf{M}, i}$ with T_{i} via 4.15).

Remark 5.3 The variety $\mathcal{T}_{\mathbf{M}, i}^{\circ}$ is equal to $T_{i}^{\circ}=\operatorname{Spec} R_{i}^{\circ}$ with

$$
R_{i}^{\circ}=\mathbb{F}_{p^{2}}\left[a_{i}, b_{i},\left(a_{i}^{p^{2}-1}-1\right)^{-1},\left(b_{i}^{p^{2}-1}-1\right)^{-1}\right] /\left(a_{i}^{p} \lambda_{i}^{p}+a_{i} \lambda_{i}-b_{i}^{p+1} \lambda_{i}^{p+1}\right),
$$

where we denote the indeterminates of R_{i} by a_{i}, b_{i} instead of a, b.
We will now inductively glue together the varieties $\mathcal{T}_{\mathbf{M}}$ with $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$ along the open subsets $\mathcal{T}_{\mathbf{M}, i}^{\circ}$. We choose a starting point $\widehat{\mathbf{M}} \in \mathcal{L}_{0}^{(1)}$. For each $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$, we denote by $u_{\mathbf{M}}$ the distance of \mathbf{M} to $\widehat{\mathbf{M}}$ (Remark 3.8). Let \mathcal{J} be the set of pairs ($\mathbf{M}, \mathbf{M}^{\prime}$) such that $\mathbf{M}, \mathbf{M}^{\prime} \in \mathcal{L}_{0}^{(1)}$ and such that \mathbf{M} and \mathbf{M}^{\prime} have a common neighbour Λ. We assume that $u_{\mathrm{M}}<u_{\mathrm{M}^{\prime}}$.

For the rest of this section we fix the following elements. For each $\left(\mathbf{M}, \mathbf{M}^{\prime}\right) \in \mathcal{J}$, we choose an element $\left.g \in G(\mathbb{O})_{p}\right)$ such that $g(\mathbf{M})=\mathbf{M}^{\prime}$ and $g(\Lambda)=\Lambda$, where Λ is the common neighbour of \mathbf{M} and \mathbf{M}^{\prime}. We choose a basis of $\widehat{\mathbf{M}}$ as in Lemma4.2. For each $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$ we choose inductively a basis e_{1}, \ldots, f_{3} of \mathbf{M} satisfying the conditions of Lemma 4.2 such that for each $\left(\mathbf{M}, \mathbf{M}^{\prime}\right) \in \mathcal{J}$ the chosen basis of \mathbf{M}^{\prime} is given by (5.1). This is possible, as \mathcal{B}_{0} is a tree by Proposition 3.7

For $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$ consider the morphism $\Phi_{\mathbf{M}}: T_{\mathbf{M}} \rightarrow \mathcal{N}_{0}^{\text {red }}$ of (4.31) with respect to the fixed basis e_{1}, \ldots, f_{3} of \mathbf{M}. We denote by the same symbol $\Phi_{\mathbf{M}}$ its restriction to $\mathcal{T}_{\mathbf{M}}$. Let $\Phi_{\mathbf{M}, i}$ be the restriction of $\Phi_{\mathbf{M}}$ to $\mathcal{T}_{\mathbf{M}, i}$.

Let $\left(\mathbf{M}, \mathbf{M}^{\prime}\right) \in \mathcal{J}$ and let the common vertex Λ of \mathbf{M} and \mathbf{M}^{\prime} be of the form $\Lambda=\Lambda_{i}$ with respect to the chosen bases of \mathbf{M} and \mathbf{M}^{\prime}.

Lemma 5.4 There exists an isomorphism $\theta_{g}: T_{\mathbf{M}, i}^{\circ} \xrightarrow{\sim} T_{\mathbf{M}^{\prime}, i}^{\circ}$ such that the restriction of the map $\Psi_{\mathbf{M}, i}(k)$ of (4.7) to $T_{\mathbf{M}, i}^{\circ}(k)$ is equal to $\Psi_{\mathbf{M}^{\prime}, i}(k) \circ \theta_{g}$.

Proof Denote by $Y_{\Lambda_{i}}^{\circ}$ the open subvariety of $Y_{\Lambda_{i}}$,

$$
Y_{\Lambda_{i}}^{\circ}=Y_{\Lambda_{i}} \backslash\left\{\mathbb{F}_{p^{2}} \text {-rational points }\right\}
$$

Then the morphism (4.6) induces by Remark4.7(i) an isomorphism $\delta_{\mathrm{M}, i}: T_{i}^{\circ} \xrightarrow{\sim} Y_{\Lambda_{i}}^{\circ}$ and similarly for $\delta_{\mathbf{M}^{\prime}, i}$. Note that $\delta_{\mathbf{M}, i}$ and $\delta_{\mathbf{M}^{\prime}, i}$ depend on the chosen bases of \mathbf{M} and \mathbf{M}^{\prime} respectively. We use the notation of the proof of Lemma 5.1. The element $(\bar{g})^{-1} \in \mathcal{G}\left(\mathbb{F}_{p}\right)$ induces an isomorphism on $Y_{\Lambda_{i}}$ that preserves the set of $\mathbb{F}_{p^{2}}$-rational points. There exists an automorphism θ_{g} of T_{i}° such that the following diagram of isomorphisms commutes

The above triangle commutes by definition of g and the choice of the basis of \mathbf{M}^{\prime}. Thus $\delta_{\mathbf{M}, i}=\delta_{\mathbf{M}^{\prime}, i} \circ \theta_{g}$. As $T_{\mathbf{M}, i}^{\circ}$ and $T_{\mathbf{M}^{\prime}, i}^{\circ}$ are equal to T_{i}° by Remark5.3, we obtain an isomorphism $\theta_{g}: T_{\mathbf{M}, i}^{\circ} \xrightarrow{\sim} T_{\mathbf{M}^{\prime}, i}^{\circ}$. The claim follows from diagram (4.7).

Proposition 5.5 Let $\theta_{g}^{(p)}$ be the Frobenius pullback of the isomorphism θ_{g} of Lemma5.4 Then the diagram

commutes.
Proof It is sufficient to prove the claim on k-rational points. Lemma 4.16 shows that on k-rational points $\Phi_{\mathbf{M}, \sigma(i)}$ is equal to $\Psi_{\mathbf{M}, i}(k) \circ \operatorname{Fr}_{T_{\mathbf{M}, \sigma(i)}^{\circ}}$ Similarly, we obtain $\Phi_{\mathbf{M}^{\prime}, \sigma(i)}=\Psi_{\mathbf{M}^{\prime}, i}(k) \circ \mathrm{Fr}_{T_{\mathbf{M}^{\prime}, \sigma(i)}^{\circ}}^{\circ}$. As $\theta_{g}^{(p)}$ is defined over $\mathbb{F}_{p^{2}}$, we obtain

$$
\operatorname{Fr}_{T_{M^{\prime}, \sigma(i)}^{\circ}}^{\circ} \circ \theta_{g}^{(p)}=\theta_{g} \circ \operatorname{Fr}_{T_{\mathrm{M}, \sigma(i)}^{\circ}}^{\circ}
$$

Thus $\Phi_{\mathbf{M}^{\prime}, i} \circ \theta_{g}^{(p)}=\Psi_{\mathbf{M}^{\prime}, i}(k) \circ \theta_{g} \circ \operatorname{Fr}_{T_{\mathrm{M}, \sigma(i)}^{\circ}}$, and the claim follows from Lemma5.4
Proposition 5.6 There exists a reduced scheme \mathcal{T} locally of finite type over $\mathbb{F}_{p^{2}}$ of dimension 1 and a morphism $\Phi: \mathcal{T} \rightarrow \mathcal{N}_{0}^{\text {red }}$ that satisfies the following conditions:
(i) For each $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$, the scheme $\mathcal{T}_{\mathbf{M}}$ can be identified with an open subscheme of \mathcal{T} such that the restriction of Φ to \mathcal{T}_{M} is equal to Φ_{M}.
(ii) The open subschemes $\mathcal{T}_{\mathbf{M}}$ with $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$ form an open covering of \mathcal{T}.
(iii) Let $\mathbf{M}, \mathbf{M}^{\prime} \in \mathcal{L}_{0}^{(1)}$. The open subschemes $\mathcal{T}_{\mathbf{M}}$ and $\mathcal{T}_{\mathbf{M}^{\prime}}$ of \mathcal{T} intersect if and only if \mathbf{M} and \mathbf{M}^{\prime} have a common neighbour in \mathcal{B}_{0}. In this case, there exists an integer i such that the intersection $\mathcal{T}_{\mathbf{M}} \cap \mathcal{T}_{\mathbf{M}^{\prime}}$ is equal to the open subschemes $\mathcal{T}_{\mathbf{M}, i}^{\circ}$ and $\mathcal{T}_{\mathbf{M}^{\prime}, i}^{\circ}$ of $\mathcal{T}_{\mathbf{M}}$ and $\mathcal{T}_{\mathbf{M}^{\prime}}$ respectively.

Proof We glue the schemes $\mathcal{T}_{\mathbf{M}}$ together along the open subsets $\mathcal{T}_{\mathbf{M}, i}^{\circ}$ by induction over the distance $u_{\mathbf{M}}$ of \mathbf{M} from $\widehat{\mathbf{M}}$. Let α be an even nonnegative integer. Assume that the schemes $\mathcal{T}_{\mathbf{M}}$ with \mathbf{M} of distance $u_{\mathbf{M}} \leq \alpha$ have been glued together to a scheme \mathcal{T}_{α} with morphism Φ_{α} satisfying condition (i) and the condition corresponding to (iii) of the proposition. Let $\mathbf{M}^{\prime} \in \mathcal{L}_{0}^{(1)}$ be of distance $\alpha+2$. As \mathcal{B}_{0} is a tree, there exists exactly one element $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$ of distance α such that \mathbf{M} and \mathbf{M}^{\prime} have a common neighbour Λ in \mathcal{B}_{0}. Let $\Lambda=\Lambda_{i}$ with respect to the chosen bases of \mathbf{M} and \mathbf{M}^{\prime}. We glue together \mathcal{T}_{α} and $\mathcal{T}_{\mathbf{M}^{\prime}}$ along the open subschemes $\mathcal{T}_{\mathbf{M}, \sigma(i)}^{\circ}$ and $\mathcal{T}_{\mathbf{M}^{\prime}, \sigma(i)}^{\circ}$, respectively, via the isomorphism $\theta_{g}^{(p)}$ of Proposition 5.5. The same proposition shows that the morphisms Φ_{α} and Φ_{M} glue together to a morphism.

As \mathcal{B}_{0} is a tree and the glueing is defined inductively, no cocycle condition has to be checked.

For $\Lambda \in \mathcal{L}_{i}^{(3)}$ let $\mathbf{M} \in \mathcal{L}_{0}^{(1)}$ be a neighbour of Λ in \mathcal{B}_{0}. Let $\Lambda=\Lambda_{i}$ with respect to the chosen basis of \mathbf{M}. Denote by \mathcal{T}_{Λ} the closure of the open subvariety $\mathcal{T}_{\mathbf{M}, i}$ in \mathcal{T}.

Proposition 5.7 The variety \mathcal{T}_{Λ} only depends on Λ and is isomorphic to Y_{Λ}. The scheme \mathcal{T} is connected and the varieties \mathcal{T}_{Λ} with $\Lambda \in \mathcal{L}_{0}^{(3)}$ are its irreducible components.

Proof As \mathcal{B}_{0} is a tree, the scheme \mathcal{T} is connected. The claim follows from the construction of \mathcal{T}.

Denote by Φ_{Λ} the restriction of Φ to the irreducible component \mathcal{T}_{Λ}. As \mathcal{T}_{Λ} is isomorphic to Y_{Λ} by Proposition 5.7] it is projective. By construction and Lemma 4.16, the morphism Φ_{Λ} is universally injective and the image of Φ_{Λ} on k-rational points is equal to $\mathcal{V}(\Lambda)(k)$. The moduli space $\mathcal{N}_{0}^{\text {red }}$ is separated Remark 1.2 hence Φ_{Λ} is finite. We denote by $\mathcal{V}(\Lambda)$ the scheme theoretic image of Φ_{Λ}. To show that Φ_{Λ} induces an isomorphism onto $\mathcal{V}(\Lambda)$, we need the following lemma.

Lemma 5.8 Let $f: X \rightarrow X^{\prime}$ be a morphism of reduced schemes of finite type over an algebraically closed field k. We assume that f is finite, universally bijective and that the tangent morphism is injective at every closed point. Then f is an isomorphism.

Proof Obviously, the morphism f is a homeomorphism. We will show that

$$
f_{x}^{\#}: \mathcal{O}_{X^{\prime}, f(x)} \rightarrow \mathcal{O}_{X, x}
$$

is surjective for every closed point x of X. Then f will be a closed immersion and, as X^{\prime} is reduced, f will be an isomorphism.

We may assume that $X=\operatorname{Spec} R$ and $X^{\prime}=\operatorname{Spec} R^{\prime}$ are affine. Denote by \mathfrak{m} a maximal ideal of R and by $\mathfrak{m}^{\prime}=f(\mathfrak{m})$ its image in R^{\prime}. The morphism

$$
f_{R_{\mathfrak{m}^{\prime}}^{\prime}}: \operatorname{Spec}\left(R \otimes_{R^{\prime}} R_{\mathfrak{m}^{\prime}}^{\prime}\right) \rightarrow \operatorname{Spec} R_{\mathfrak{m}^{\prime}}^{\prime}
$$

is finite, hence $R \otimes_{R^{\prime}} R_{\mathfrak{m}^{\prime}}^{\prime}$ is a semi-local ring. As $f_{R_{m^{\prime}}^{\prime}}$ is universally bijective, $R \otimes_{R^{\prime}} R_{\mathfrak{m}^{\prime}}^{\prime}$ is a local ring and we obtain $R_{\mathfrak{m}}=R \otimes_{R^{\prime}} R_{\mathfrak{m}^{\prime}}^{\prime}$. Thus $R_{\mathfrak{m}}$ is a finite $R_{\mathfrak{m}^{\prime}}^{\prime}-$ module.

Furthermore, the tangent morphism at \mathfrak{m} is injective, hence the morphism

$$
\mathrm{m}^{\prime} /\left(\mathrm{m}^{\prime}\right)^{2} \rightarrow \mathrm{~m} / \mathfrak{m}^{2}
$$

is surjective. We obtain a surjective morphism $\hat{R}_{m^{\prime}}^{\prime} \rightarrow \hat{R}_{\mathfrak{m}}$. Since $R_{\mathfrak{m}}$ is a finite $R_{\mathfrak{m}^{\prime}}^{\prime}-$ module, $\hat{R}_{\mathfrak{m}}=R_{\mathfrak{m}} \otimes_{R_{m^{\prime}}^{\prime}} \hat{R}_{\mathfrak{m}^{\prime}}^{\prime}$. Therefore, the morphism $f_{\mathfrak{m}}^{\#}: R_{m^{\prime}}^{\prime} \rightarrow R_{\mathfrak{m}}$ is surjective.

Theorem 5.9 The morphism Φ is an isomorphism which induces an isomorphism of \mathcal{T}_{Λ} onto $\mathcal{V}(\Lambda)$ for every $\Lambda \in \mathcal{L}_{0}^{(3)}$.

Proof By Proposition 4.17 and Proposition 5.6, the tangent morphism of Φ_{Λ} is injective at every closed point. Therefore, the morphism Φ_{Λ} induces an isomorphism of \mathcal{T}_{Λ} onto $\mathcal{V}(\Lambda)$ by Lemma 5.8 .

Now we will prove that Φ is an isomorphism. By construction of Φ, the $\mathbb{F}_{p^{2}}$-rational points of \mathcal{T} correspond to the superspecial points of $\mathcal{N}_{0}^{\text {red }}$ and the intersection behaviour of the varieties $\mathcal{V}(\Lambda)$ is equal to the intersection behaviour of the irreducible components \mathcal{T}_{Λ} of \mathcal{T}. Thus Φ is universally bijective and the varieties $\mathcal{V}(\Lambda)$ are the irreducible components of $\mathcal{N}_{0}^{\text {red }}$. We obtain that Φ is an isomorphism locally at every point of \mathcal{T} which is not $\mathbb{F}_{p^{2}}$-rational.

Let x be an $\mathbb{F}_{p^{2}}$-rational point of \mathcal{T}, and let $\mathbf{M}=\Phi(x)$ be the corresponding superspecial point. The variety \mathcal{T}_{M} is an open neighbourhood of x in \mathcal{T}. Denote by $\overline{\mathcal{T}}_{M}$ the closure of $\mathcal{T}_{\mathbf{M}}$ in \mathcal{T}, and denote by Z_{M} the image of $\overline{\mathcal{T}}_{\mathbf{M}}$ under Φ, i.e., the union of the varieties $\mathcal{V}(\Lambda)$ that contain \mathbf{M}. The induced morphism $\left.\Phi\right|_{\mathcal{J}_{M}}: \overline{\mathcal{T}}_{\mathbf{M}} \rightarrow Z_{\mathbf{M}}$ is bijective and injective on tangent spaces, by Propositions 4.17 and 5.6 . The morphism $\left.\Phi\right|_{\overline{\mathcal{T}}_{\mathrm{M}}}$ is universally closed as its restriction to every irreducible component is finite, hence $\left.\Phi\right|_{\bar{T}_{M}}$ is finite. By Lemma 5.8 it is an isomorphism, which proves the claim.

Let i be an even integer and let $\Lambda \in \mathcal{L}_{i}^{(3)}$. The isomorphism $\Psi_{i}: \mathcal{N}_{i} \xrightarrow{\sim} \mathcal{N}_{0}$ of (1.15) maps $\mathcal{V}(\Lambda)(k)$ to a set $\mathcal{V}\left(\Lambda^{\prime}\right)(k)$ for a lattice $\Lambda^{\prime} \in \mathcal{L}_{0}^{(3)}$ (Remark 2.3(iv)). We denote by $\mathcal{V}(\Lambda)$ the preimage of the variety $\mathcal{V}\left(\Lambda^{\prime}\right)$ by Ψ_{i}.

Theorem 5.10 The schemes $\mathcal{N}_{i}^{\text {red }}$ with $i \in \mathbb{Z}$ even are the connected components of $\mathcal{N}^{\text {red }}$ which are all isomorphic to each other. The varieties $\mathcal{V}(\Lambda)$ with $\Lambda \in \mathcal{L}_{i}^{(3)}$ are the irreducible components of $\mathcal{N}_{i}^{\text {red }}$.

The singular points of $\mathcal{N}^{\text {red }}$ are the superspecial points. Each $\mathcal{V}(\Lambda)$ contains $p^{3}+1$ superspecial points and each superspecial point is the intersection of $p+1$ irreducible components $\mathcal{V}(\Lambda)$. Two irreducible components intersect transversally in at most one superspecial point, and the intersection graph of $\mathcal{N}_{i}^{\text {red }}$ is a tree.

Each variety $\mathcal{V}(\Lambda)$ is isomorphic to the Fermat curve \mathcal{C} (Remark4.7). The superspecial points of $\mathcal{V}(\Lambda)$ correspond to the $\mathbb{F}_{p^{2}}$-rational points of \mathcal{C}.

The scheme $\mathcal{N}^{\text {red }}$ is equidimensional of dimension 1 and of complete intersection.
Proof We first consider the case $i=0$. The incidence relation of the varieties $\mathcal{V}(\Lambda)$ follows from Proposition 3.7 The geometric statements follow from Theorem 5.9, Proposition 5.7, and Lemma 4.14

Now consider the general case. The varieties $\mathcal{V}(\Lambda)$ with $\Lambda \in \mathcal{L}_{i}^{(l)}$ correspond to the varieties $\mathcal{V}(\Lambda)$ with $\Lambda \in \mathcal{L}_{0}^{(l)}$ under the isomorphism Ψ_{i}. The claim follows from the case $i=0$.

6 The Structure of the Supersingular Locus of \mathcal{M} for $\operatorname{GU}(1,2)$

Let \mathcal{M} be the moduli space of abelian varieties defined in the introduction. In this section, we carry over our results on the moduli space \mathcal{N} to \mathcal{M} in the case of $G U(1,2)$.

We use the notation of the introduction. In particular, we now denote by E an imaginary quadratic extension of $\left(\mathbb{O}\right.$ such that p is inert in E and denote by E_{p} the completion of E with respect to the p-adic topology. Consider the supersingular locus $\mathcal{M}^{\text {ss }}$ of the special fibre $\mathcal{M}_{\mathbb{F}_{p^{2}}}$ of \mathcal{M}. It is a closed subscheme of $\mathcal{M}_{\mathbb{F}_{p^{2}}}$ which contains an $\overline{\mathbb{F}}_{p}$-rational point [BW, Lemma 5.2]. We view $\mathcal{M}^{\text {ss }}$ as a scheme over $\overline{\mathbb{F}}_{p}$. We say that a point of $\mathcal{M}^{\text {ss }}$ is superspecial if the underlying abelian variety is superspecial. Let $\left(A \otimes_{\mathbb{Z}}\right.$
$\left.\mathbb{Z}_{(p)}, \iota \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}, \bar{\lambda}, \bar{\eta}\right)$ be an $\overline{\mathbb{F}}_{p}$-valued point of $\mathcal{M}^{\text {ss }}$ with corresponding p-divisible group $(\mathbb{X}, \iota, \lambda)$. Let \mathcal{N} be the moduli space of quasi-isogenies of Definition 1.1 with respect to $(\mathbb{X}, \iota, \lambda)$.

Let J be the group of similitudes of the isocrystal N of \mathbb{X} with additional structure as in (1.13). We denote by $I(\mathbb{O})$) the group of quasi-isogenies in $\operatorname{End}_{\mathcal{O}_{E}}(A) \otimes(\mathbb{O}$ which respect the homogeneous polarization $\bar{\lambda}$. It is a subgroup of J. Using the level structure of A, one can define an injective morphism of $I(\mathbb{O})$ into $G\left(\mathbb{A}_{f}^{p}\right)$ [RZ, 6.15]. By [RZ, Theorem 6.30], the set $I(\mathbb{O}) \backslash G\left(\mathbb{A}_{f}^{p}\right) / C^{p}$ is finite. Denote by $g_{1}, \ldots, g_{m} \in G\left(\mathbb{A}_{f}^{p}\right)$ representatives of the different elements of $I(\mathbb{O}) \backslash G\left(\mathbb{A}_{f}^{p}\right) / C^{p}$. For every integer j with $1 \leq j \leq m$, let Γ_{j} be the group $\Gamma_{j}=I(\mathbb{O}) \cap g_{j}^{-1} C^{p} g_{j}$. We view Γ_{j} as a subgroup of J.

We recall the uniformization theorem of Rapoport and Zink in case of GU(1, 2). We will formulate this theorem only for the underlying schemes, not for the formal schemes.

There exists an isomorphism of schemes over $\operatorname{Spec} \overline{\mathbb{F}}_{p}$:

$$
\begin{equation*}
I\left((\mathbb{O}) \backslash\left(\mathcal{N}^{\mathrm{red}} \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right) \xrightarrow{\sim} \mathcal{M}^{\mathrm{ss}}\right. \tag{6.1}
\end{equation*}
$$

The left-hand side is isomorphic to the disjoint union of the quotients $\Gamma_{j} \backslash \mathcal{N}^{\text {red }}$ for $1 \leq j \leq m$. Each group $\Gamma_{j} \subset J$ is discrete and cocompact modulo center. If C^{p} is small enough, Γ_{j} is torsion free.

Indeed, the proof of [RZ, Theorem 6.30] shows that (6.1) is an isomorphism if G satisfies the Hasse principle, i.e., if the kernel of the Hasse map with respect to G,

$$
\begin{equation*}
\mathrm{H}^{1}(\mathbb{O}, G) \rightarrow \prod_{v \text { place of } \mathbb{Q}} \mathrm{H}^{1}\left(\mathbb{O}_{\nu}, G\right) \tag{6.2}
\end{equation*}
$$

is trivial. By [$\mathrm{K} 2, \S 7$], the kernel of (6.2) is equal to the kernel of the Hasse map with respect to the group $\operatorname{Res}_{E / \mathbb{Q} \mathbf{Q}}\left(\mathbb{G}_{m}\right)$. But $\left.H^{1}(\mathbb{O}), \operatorname{Res}_{E / \mathbb{Q}}\left(G^{\prime}\right)\right)$ is trivial, thus $\operatorname{Res}_{E / \mathbb{Q} 2}\left(G_{m}\right)$, and hence G, satisfy the Hasse principle.

The decomposition into the schemes $\Gamma_{j} \backslash \mathcal{N}^{\text {red }}$ follows from the proof of [RZ, Theorem 6.23]. The properties of the subgroups Γ_{j} are proved as well.

Let J^{0} be the subgroup of J as in Remark 1.16 (ii), and denote by Γ_{j}^{0} the intersection of Γ_{j} with J^{0}. Consider the morphism $\Psi: \coprod_{j=1}^{m} \mathcal{N}^{\text {red }} \rightarrow \mathcal{N}^{\text {ss }}$ induced by 6.1).

Theorem 6.1 Let C^{p} be small enough. The morphism Ψ is surjective and an isomorphism locally at each point. The restriction of Ψ to each irreducible component $\mathcal{V}(\Lambda)$ of $\mathcal{N}^{\text {red }}$ is a closed immersion, and the images of two irreducible components of $\mathcal{N}^{\text {red }}$ in $\mathcal{N}^{\text {ss }}$ intersect in at most one superspecial point.

Proof We must show that $\Psi_{j}: \mathcal{N}^{\text {red }} \rightarrow \Gamma_{j} \backslash \mathcal{N}^{\text {red }}$ is an isomorphism locally at each point for every integer j with $1 \leq j \leq m$. We use the notation of Remark 1.16 Let $g \in J$ and let $\alpha=v_{p}(c(g))$. By Remark 1.16(iii) the action of g defines an
isomorphism of \mathcal{N}_{i} with $\mathcal{N}_{i+\alpha}$ for every integer i. Note that α is even (Lemma 1.17) and that \mathcal{N}_{i} is empty if i is odd (Lemma 1.7). The schemes $\mathcal{N}_{i}^{\text {red }}$ with i even are the connected components of $\mathcal{N}^{\text {red }}$ (Theorem 5.10), which are all isomorphic to each other (Proposition 1.18). Thus we obtain

$$
\begin{equation*}
\Gamma_{j} \backslash \mathcal{N}^{\mathrm{red}} \xrightarrow{\sim} \coprod_{\left(\Gamma_{j} J^{0}\right) \backslash J} \Gamma_{j}^{0} \backslash \mathcal{N}_{0}^{\mathrm{red}} \tag{6.3}
\end{equation*}
$$

In particular, the index of $\left(\Gamma_{j} J^{0}\right)$ in J is finite as $\mathcal{M}^{\text {ss }}$ is of finite type over Spec $\overline{\mathbb{F}}_{p}$.
We now want to understand the action of Γ_{j}^{0} on $\mathcal{N}_{0}^{\text {red }}$. As in Remark 1.16 (i), we view J as the group of similitudes of $(C,\{\cdot, \cdot\})$. For $l=1,3$ the group Γ_{j}^{0} acts on the set $\mathcal{L}_{0}^{(l)}$ (Definition [2.2). We will show that the action of Γ_{j}^{0} on $\mathcal{L}_{0}^{(l)}$ has no fixed points.

Indeed, for $\Lambda \in \mathcal{L}_{0}^{(l)}$ denote by $\operatorname{Stab}(\Lambda)$ the stabilizer of Λ in J^{0}. This is a compact open subgroup of J^{0}, hence $\Gamma_{j}^{0} \cap \operatorname{Stab}(\Lambda)$ is finite. If C^{p} is small enough, Γ_{j}^{0} has no torsion. Thus the intersection of Γ_{j}^{0} with $\operatorname{Stab}(\Lambda)$ is trivial.

We have proved that each element of Γ_{j}^{0} maps every irreducible component $\mathcal{V}(\Lambda)$ of $\mathcal{N}_{0}^{\text {red }}$ with $\Lambda \in \mathcal{L}_{0}^{(3)}$ onto a different irreducible component. Furthermore, it fixes no superspecial points. As two irreducible components of $\mathcal{N}_{0}^{\text {red }}$ intersect in at most one superspecial point, the action of Γ_{j}^{0} on $\mathcal{N}_{0}^{\text {red }}$ has no fixed points. Thus the morphism $\mathcal{N}_{0}^{\text {red }} \rightarrow \Gamma_{j}^{0} \backslash \mathcal{N}_{0}^{\text {red }}$ is an isomorphism locally at every point.

The action of Γ_{j}^{0} on $\mathcal{L}_{0}^{(1)}$ and $\mathcal{L}_{0}^{(3)}$ induces an action of Γ_{j}^{0} on the simplicial complex \mathcal{B}_{0} of Definition 3.1 As \mathcal{B}_{0} describes the incidence relation of the irreducible components and the superspecial points of $\mathcal{N}_{0}^{\text {red }}$, we can choose C^{p} small enough such that for every $g \in \Gamma_{j}^{0}$ and every $\Lambda \in \mathcal{L}_{0}$ the distance $u(\Lambda, g \Lambda)$ (Remark 3.8) is greater than or equal to 6 . In this case, the restriction of the morphism $\mathcal{N}_{0}^{\text {red }} \rightarrow \Gamma_{j}^{0} \backslash \mathcal{N}_{0}^{\text {red }}$ to every irreducible component is a closed immersion and the images of two irreducible components of $\mathcal{N}_{0}^{\text {red }}$ in $\Gamma_{j}^{0} \backslash \mathcal{N}_{0}^{\text {red }}$ intersect in at most one point. This proves the theorem.

Corollary 6.2 Let C^{p} be small enough. The supersingular locus $\mathcal{M}^{\text {ss }}$ is locally isomorphic to $\mathcal{N}^{\text {red }}$. It is equidimensional of dimension 1 and of complete intersection.

The singular points of $\mathcal{N}^{\text {ss }}$ are the superspecial points. Each superspecial point is the pairwise transversal intersection of $p+1$ irreducible components. The irreducible components are isomorphic to the Fermat curve \mathcal{C} (Remark 4.7) and contain $p^{3}+1$ superspecial points. Two irreducible components intersect in at most one superspecial point.

Proof The claim follows from Theorem6.1 and Theorem 5.10 .
Proposition 6.3 Let $C_{J, p}$ and $C_{J, p}^{\prime}$ be maximal compact subgroups of J such that $C_{J, p}$ is hyperspecial and $C_{J, p}^{\prime}$ is not hyperspecial, i.e., $C_{J, p}$ is the stabilizer in J of a lattice $\Lambda \in \mathcal{L}_{0}^{(3)}$ and $C_{J, p}^{\prime}$ is the stabilizer in J of a lattice $M \in \mathcal{L}_{0}^{(1)}$. If $C^{J, p}$ is small enough, we
have

$$
\begin{aligned}
\#\left\{\text { irreducible components of } \mathcal{M}^{\mathrm{ss}}\right\} & =\#\left(I((\mathbb{O})) \backslash\left(J / C_{J, p} \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right)\right), \\
\#\left\{\text { superspecial points of } \mathcal{M}^{\mathrm{ss}}\right\} & =\#\left(I\left((\mathbb{O}) \backslash\left(J / C_{J, p}^{\prime} \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right)\right),\right. \\
\#\left\{\text { connected components of } \mathcal{M}^{\mathrm{ss} s}\right\} & =\#\left(I(\mathbb{O}) \backslash\left(J^{0} \backslash J \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right)\right) \\
& =\#\left(I(\mathbb{O}) \backslash\left(\mathbb{Z} \times G\left(\mathbb{A}_{f}^{p}\right) / C^{p}\right)\right) .
\end{aligned}
$$

All numbers are finite.
Proof All numbers are finite as $\mathcal{M}^{\text {ss }}$ is of finite type over Spec $\overline{\mathbb{F}}_{p}$.
The number of connected components follows from (6.1) and the decomposition (6.3), since $\mathcal{N}_{0}^{\text {red }}$ is connected.

To compute the number of irreducible components and superspecial points, we have to count these objects in $\Gamma_{j}^{0} \backslash \mathcal{N}_{0}^{\text {red }}$. The number of irreducible components is equal to the number of orbits of the action of Γ_{j}^{0} on $\mathcal{L}_{0}^{(3)}$. The group J^{0} acts transitively on $\mathcal{L}_{0}^{(3)}$ by Lemma 1.14 hence the number of irreducible components of $\Gamma_{j}^{0} \backslash \mathcal{N}_{0}^{\text {red }}$ is equal to $\#\left(\Gamma_{j}^{0} \backslash J^{0} / C_{J, p}\right)$. An easy calculation shows the above formula.

A similar argument proves the claim in case of the superspecial points.
Remark 6.4 The numbers in Proposition 6.3 can be expressed in terms of class numbers.

Acknowledgements I want to thank everyone who helped me while writing this paper. Special thanks go to M. Rapoport for his advice and his interest in my work. I want to express my gratitude to U. Görtz and E. Viehmann for helpful discussions on this subject. I am indebted to T. Wedhorn for enduring all my questions. Furthermore, I thank S. S. Kudla, T. Zink and the referee for useful remarks on an earlier version of this paper.

References

[BG] E. Bachmat and E. Z. Goren, On the non-ordinary locus in Hilbert-Blumenthal surfaces. Math. Ann. 313(1999), no. 3, 475-506. doi:10.1007/s002080050270
[BW] O. Bültel and T. Wedhorn, Congruence relations for Shimura varieties associated to some unitary groups. J. Inst. Math. Jussieu 5(2006), 229-261.
[DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields. Ann. of Math. 103(1976), no. 1, 103-161. doi:10.2307/1971021
[Gn] E. Z. Goren, Hilbert modular varieties in positive characteristic. In: The Arithmetic and Geometry of Algebraic Cycles. CRM Proc Lecture Notes 24, American Mathematical Society, Providence, RI, 2000, pp. 283-303.
[GO] E. Z. Goren and F. Oort, Stratifications of Hilbert modular varieties. J. Algebraic Geom. 9(2000), no. 1, 111-154.
[Ka] C. Kaiser, Ein getwistetes fundamentales Lemma für die GSp ${ }_{4}$. Bonner Mathematische Schriften 303. Universität Bonn, Mathematisches Institut, 1997.
[KO1] T. Katsura, F. Oort, Supersingular abelian varieties of dimension two or three and class numbers. In: Algebraic Geometry. Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, pp. 253-281.

[KO2]

 ——, Families of supersingular abelian surfaces. Compositio Math. 62(1987), no. 2, 107-167.[Kb] N. Koblitz, p-adic variation of the zeta-function over families of varieties defined over finite fields. Compositio Math. 31(1975), no. 2, 119-218.
[K1] R. E. Kottwitz. Stable trace formula: cuspidal tempered terms. Duke Math. J. 51(1984), no. 3, 611-650. doi:10.1215/S0012-7094-84-05129-9
[K2] , Points on some Shimura varieties over finite fields. J. Amer. Math. Soc. 5(1992), 373-444. doi:10.2307/2152772
[KR1] S. S. Kudla and M. Rapoport, Arithmetic Hirzebruch-Zagier cycles. J. Reine Angew. Math. 515(1999), 155-244.
[KR2] , Cycles on Siegel threefolds and derivatives of Eisenstein series. Ann. Sci. École Norm. Sup. 33(2000), no. 5, 695-756.
[LO] K.-Z. Li and F. Oort, Moduli of supersingular abelian varieties. Lecture Notes in Mathematics 1680, Springer-Verlag, Berlin, 1998.
[Lu1] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius. Invent. Math. 38(1976), no. 2, 101-159. doi:10.1007/BF01408569
[Lu2] On the finiteness of the number of unipotent classes. Invent. Math. 34 (1976), no. 3, 201-213. doi:10.1007/BF01403067
[Ri] M. Richartz: Klassifikation von selbstdualen Dieudonnégittern in einem dreidimensionalen polarisierten supersingulären Isokristall. Bonner Mathematische Schriften 311, Universitát Bonn, 1998.
[RZ] M. Rapoport and T. Zink, Period spaces for p-divisible groups. Annals of Mathematics Studies 141, Princeton University Press, Princeton, NJ, 1996.
[St] H. Stamm, On the reduction of the Hilbert-Blumenthal-moduli scheme with $\Gamma_{0}(p)$-level structure. Forum Math. 9(1997), no. 4, 405-455. doi:10.1515/form.1997.9.405
[Ti] J. Tits, Reductive groups over local fields. In: Automorphic Forms, Representations and L-Functions. Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence, RI, 1979, pp. 29-69.
[Yu] C.-F. Yu, On the supersingular locus in Hilbert-Blumenthal 4-folds. J. Algebraic Geom. 12(2003), no.4, 653-698.
[Zi1] T. Zink, Cartiertheorie kommutativer formaler Gruppen. Teubner-Texte zur Mathematik 68. B. G, Teubner Verlagsgessellschaft, Leipzig, 1984.
[Zi2] , The display of a formal p-divisible group. In: Cohomologies p-adiques et applications arithmétiques, I. Astérisque No. 278 (2002), 127-248.

Mathematisches Institut, Universität Bonn, Beringstr. 1, 53115 Bonn, Germany
(Current address) c/o Torsten Wedhorn, Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
e-mail: ivollaard@gmx.de

[^0]: Received by the editors January 17, 2007.
 Published electronically January 26, 2010.
 AMS subject classification: 14G35, 11G18, 14K10.

