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ABSTRACT. Almost every aspect of the analytical theory of the motion of 
the Moon has been reinvestigated lately. This paper is a review of 
these investigations. 

The improvement upon the I.L.E. (the best known earlier theory based 
upon the work of Brown) is spectacular, but it is still too early to 
assess the exact value of these theories with respect to numerical 
integration. 

INTRODUCTION 

For the last ten years, there has been a new interest and new results 
about analytical theories of the Moon. 

The new interest evidently comes from the challenge presented by the 
new types of observations, especially the laser ranging. 

The new results were made possible by the techniques of algebraic 
manipulations on computers. These techniques are still in their 
infancy and we may predict that in the long run they will have a very 

ideep impact on Celestial Mechanics. 
I 
\After the monumental work of Delaunay (1867) and that of Brown (1908), 
j the theory of the motion of the Moon was dead as a research field for 
'two reasons : the accuracy of Brown's solution was for some time 
superior to the accuracy of the observations ; the work necessary to 
improve upon this solution (without the help of a computer) was of the 
order of a scientist's lifetime. 

With the coming of the space age, it became obvious that the first 
reason was no longer valid (see, for instance, Garthwaite et al. 1970). 
Even the modern adjustment of Brown(s theory, known as I.L.E. 
(Eckert et al. 1954) was not accurate enough to be of any help in the 
reduction of the data of spacecraft landed on the Moon. 
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It was later shown that computers could be used to perform the 
tremendous algebraic computations involved in analytical theories 
(Barton, 1967, Eckert et al.1966, Deprit et al. 1970 a and b, 1971). 

The construction of a theory of the motion of the Moon at the level 
of accuracy of the new observations thus became a challenge for 
Celestial Mechanicians. 

For several years, the work in this field was almost exclusively 
directed towards the solution of the Main Problem (three body problem 
Earth, Moon and Sun) although it was suspected that the largest 
inaccuracies were coming from the treatment of the planetary pertur­
bations. ; 

The reasons for this are twofold. First, tools, such as algebraic ! 
manipulators and perturbation schemes, had to be developed and experi- | 
mented on a simplified problem. Secondly,the treatment of the 
planetary perturbations require a very accurate tube of solutions of the 
Main Problem (hence a nominal solution and its partial derivatives 
with respect to the internal parameters. 

We will review in Section 2 the present status of the solution of the 
Main Problem. 

In the last few years, new results have been published about pertur­
bations by the oblateness of the Earth (and Moon) and by the Planets. 
They will be described in Secion 3. 

These new results make it possible now to realistically test the 
accuracy of the new analytical theories (Chapront and Chapront-Touze : 
these proceedings). These preliminary tests are very encouraging. 

THE MAIN PROBLEM 

All the solutions are obtained as Fourier series in the Delaunay 
angles : D, 1', 1, F. They differ according to their treatment of 
the coefficients of these series. 

Purely analytical solutions have their coefficients expanded as 
Taylor series in the parameters m (ratio of the mean motion of the Sun 
and Moon), e (eccentricity of the Moon), y (sine of half the incli­
nation) and e' (eccentricity of the Sun). The convergence of these 
series with respect to the parameter m is very poor. A significant 
example of it is the A.L.E. (Analytical Lunar Ephemeris) (Deprit 1971 
and Henrard 1973). The expansions were carried to order 10 in e and 
Y and order 24 in m. 

Partly analytical solutions give a numerical value to the parameter m 
and expand the coefficients in power series of e, e', and y. The E.L.E. 
solution (Gutzwiller, 1979) has been started by M.J. Eckert and 
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S. Bellesheim and completed after the death of W.J. Eckert by 
M.C. Gutzwiller and S. Bellesheim. The expansions have been carried 
to the order 6 in e, e', and y• A. more recent solution by Schmidt 
(1980) pushes the expansions to order 10. 

Semi-analytical solutions bypass the poor convergence with respect 
to m and to a lesser extent with respect to the other parameters e, 
e', and y not by giving a numerical value to one or more of these 
parameters, but by expanding the coefficients around nominal values 
which are closer to the real values. The expansions are in power 
of increments 6m, <5e, 6y , 6e'. Such a solution (known as SALE -
Semi-Analytical Lunar Ephemeris) has been developed by the author 
(Henrard, 1979). 

Semi-numerical solutions give numerical values to the parameter. 
To be useful, the solutions (as well as the partly analytical solutions) 
should be completed by at least the first partial derivatives with 
respect to the parameters which have been given a numerical value. 

This is not the case for the Eckert-Smith solution (1966), but this is 
the case for the E.L.P. (Ephemeride Lunaire Parisienne) of Chapront-
Touze (1980). 

Comparisons have been made between those theories and for two of them 
(SALE and E.L.P.) comparisons have been made with numerical integration 
(Kinoshita 1982 a and b). 

From these comparisons, it results that E.L.P. and Schmidt's solution 
are accurate, at least at level of 10 cm. To assess if one of them is 
more accurate than that, the truncature level at which they are 
published should be lowered. 

By comparison, SALE has discrepancies of the order of 1.5 meters, 
A.L.E. and E.L.E. of the order of 10 meters and I.L.E. of the order 
of 30 meters. 

CORRECTIONS TO THE MAIN PROBLEM 

The corrections are mainly due to the shape of the Earth and to the 
planets. The effects of the planets is usually divided into direct, 
indirect and secular effects. Relativity corrections, the effects of 
the shape of the Moon and of tides and cross products between all 
those corrections should also be considered. 

The effect of the shape of the Earth has been investigated up to the 
second-order in J„ by the author (Henrard 1981) and up to the first-
order by Chapront-Touze (1982). For the first-order, the two solutions 
agree to a few centimeters. Second-order terms are of the order of 
6 meters, while nutation effects (neglected by Henrard) are of the 
order of 4 meters in Chapront-Touze. 
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By comparison, discrepancies between these solutions and Brown's 
solution used in I.L.E. are of the order of 42 meters. 

The effect of the planets is certainly the most difficult part in the 
theory of the motion of the Moon. This is due to the fact that with 
each planet we introduce a new frequency to the basic four frequencies 
of the Main Problem and these frequencies can combine to generate 
very long-period terms, which are very difficult to compute. 

On top of that, the Fourier series expansions of the distance Earth-
planet are poorly convergent at least for Venus and Mars and produce 
many terms in the solution. 

Direct perturbations take into account the effects of the planets j 
directly upon the Moon. A first-order model (assuming the planets on | 
elliptic orbits around the Sun) has been investigated by Standaert \ 
(1982 a, b and c) and by Chapront and Chapront-Touze (1982). Standaert l-' 
gives a second-order solution of this model while Chapront and 
Chapront-Touze propose a first-order solution. 

At the first-order, the largest periodic terms in the difference be­
tween the two solutions have an amplitude of 5 meters (for a period 
of 5 000 years) and 1.5 meters (for a period of 500 years). The 
next one is down to an amplitude of 0.6 meters. This is quite an 
improvement when compared to Brown's solution, which shows several 
discrepancies of the order of 100 meters (the largest one having an 
amplitude of 1 300 meters). 

The second-order corrections of Standaert contains several terms with 
an amplitude of 7 meters. Together they can amount to a correction 
of 60 meters. 

For the indirect and the secular perturbations which take into account 
the effects of the planets upon the center of mass of the system 
Earth-Moon, we have only the solution by Chapront and Chapront-Touze 
(1982) which proposes corrections on Brown's solution of the same 
order as for the direct perturbation. 

Although we do not have a specific check on the accuracy of this part 
of the solution, we do know that it is valid at least at the order 
of 10 meters because of the comparison of the full solution with 
numerical integration (see Chapront's paper in these proceedings). 

Some of the other perturbations have also been investigated. Brumberg 
(1972) and Lestrade (1982) have proposed corrections due to relativity. 
Henrard (1981) has proposed corrections due to the shape of the Moon. 
Chapront and Chapront-Touze have introduced tidal effects and first-
order corrections to the model of direct planetary perturbations 
(which induce a kind of external second-order correction on the motion 
of the Moon, by contrast with Standaert's internal second-order cor­
rections mentioned above. 
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CONCLUSIONS 

As exemplified by the paper of Chapront and Chapront-Touze in these 
proceedings, analytical theories are now able to reproduce realisti­
cally the motion of the Moon with an accuracy of several meters, an 
improvement by a factor of 100 or 1 000 upon the I.L.E. 

This accuracy can still be improved somewhat by the inclusion in the 
theory of several second-order effects which have not yet been com­
puted. 

An improvement by a factor of 10 to 100 which would make analytical 
theories more than competitive with numerical integration would still 
require a major effort. 

Indeed, the number of terms in the theory (mainly from planetary per­
turbations) increase drastically when the level of truncation is 
lowered (see Standaert 1982). 
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