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Abstract. A foliation (M, F) is said to be 2-calibrated if it admits a closed

2-form ω making each leaf symplectic. By using approximately holomorphic

techniques, a sequence Wk of 2-calibrated submanifolds of codimension-2 can

be found for (M, F , ω). Our main result says that the Lefschetz hyperplane

theorem holds for the pairs (F, F ∩Wk), with F any leaf of F . This is applied

to draw important consequences on the transverse geometry of such foliations.

§1. Introduction and statement of the main result

A foliation F by surfaces on a 3-dimensional closed manifold M is called

taut if for every leaf there exists a loop through it that is everywhere

transverse to F . This topological definition is equivalent to the following

differential geometric one: there exists a closed 2-form inducing an area form

on each leaf [11]. Tautness implies strong topological restrictions on the pair

(M, F): by the work of Novikov we know that the fundamental group of any

leaf injects into the fundamental group of the ambient manifold, and that

every loop C t F must be nontrivial in homotopy.

The straightforward generalization of tautness to arbitrary dimension

requires the existence, through any leaf, of a loop everywhere transverse

to the foliation. However, in deep contrast to the 3-dimensional case, these

objects are quite flexible, as shown by the h-principle proved by Meigniez [8].

In [6], David Mart́ınez Torres proposed the following alternative generaliza-

tion of taut foliations to higher dimensions:

Definition 1. A codimension-1 foliation F2n of M2n+1 is said to admit

a 2-calibration if there exists a closed 2-form ω such that the restriction of
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ωn to the leaves of F is nowhere vanishing. A triple (M, F , ω), where ω is

a 2-calibration for F , is referred to as a 2-calibrated foliation.

Definition 2. A submanifold W ↪→ (M, F , ω) is a 2-calibrated subman-

ifold if it is everywhere transverse to F and it intersects each leaf of F in a

symplectic submanifold with respect to ω.

As in the symplectic and contact settings, Donaldson’s approximately

holomorphic techniques [2] can be applied to study 2-calibrated foliations.

In particular, they can be used for the construction of 2-calibrated divisors:

Proposition 1. [6, Corollary 1.2] Let (M2n+1, F ; ω) be a 2-calibrated

foliation on a closed manifold with ω of integral class. Then, for any integer

k large enough, there are 2-calibrated submanifolds W 2n−1
k representing the

Poincaré dual of [kω].

In addition, the maps

i∗ : πj(Wk) → πj(M)

i∗ :Hj(Wk, Z) → Hj(M, Z)

are isomorphisms for j < n− 1 and surjections for j = n− 1.

The submanifolds Wk in the proposition will be called Donaldson divisors.

The second part of the statement is the 2-calibrated Lefschetz hyperplane

theorem: much like in the projective and the symplectic cases, the divisors

recover some of the topology of the ambient. The purpose of this note is to

prove the following analogous result:

Theorem 1. Let (M2n+1, F , ω) be a 2-calibrated foliation on a closed

manifold. Let W be a Donaldson divisor of dimension 2n− 1. Then, for

every leaf F of F it holds that1

πk(F, F ∩W ) = {1}, 0 6 k 6 n− 1.

This result says that, despite the fact that a leaf F of F might be

noncompact, the symplectic Lefschetz hyperplane theorem holds for the

pair (F, F ∩Wk). It should be remarked that the case of π0 was already

proved in [6, 7], where the question was tackled constructing 2-calibrated

1For A⊂B, we have π0(B, A) = π0(B)/π0(A). From the definition, this extends the
long exact sequence for the pair to the π0-level, see [5, p. 476].
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Lefschetz pencils. In fact, it is clear that the relative π1 can be computed

out of [7]. The method of proof in this note is new, not an adaptation of the

Lefschetz pencil techniques, and yields a much shorter and simpler proof for

the π0 and the π1 case as well.

The following theorem states an important consequence of Theorem 1.

Theorem 2. Let (M2n+1, F , ω) be a 2-calibrated foliation on a closed

manifold. Then there exists a closed 3-dimensional 2-calibrated submanifold

(W, FW =W ∩ F , ω|W ) ↪→M satisfying the following equivalent properties:

(i) the map between holonomy groupoids induced by the inclusion

ι : Hol(FW )→Hol(F)

is an essential equivalence;

(ii) any total transversal T for (W, FW ) is also a total transversal for

(M, F), and the holonomy pseudogroups H(F , T ) and H(FW , T ),

induced on T by F and FW , respectively, coincide.

Proof. This follows by first observing that, if W is a submanifold

transverse to F , then, for either condition (i) or (ii) to hold (see [10] for

background material on essential equivalences and holonomy groupoids), it

suffices that for each leaf F ∈ F

π0(F, F ∩W ) = π1(F, F ∩W ) = {1}.

Theorem 1 can be applied as long as n > 1. Doing so iteratively yields

a descending chain of Donaldson divisors M2n+1 =W0 ⊃W 2n−1
1 ⊃ · · · ⊃

W 3
n−1 satisfying

π0(F ∩W 2(n−k)+1
k , F ∩W 2(n−k)−1

k+1 ) = {1},

and

π1(F ∩W 2(n−k)+1
k , F ∩W 2(n−k)−1

k+1 ) = {1}.

This proves the claim.

Note that a 3-dimensional 2-calibrated submanifold as in Theorem 2 is a

classical 3-dimensional taut foliation. The map ι : Hol(FW )→Hol(F) being

an essential equivalence implies not just that the map induced on leaf spaces

W/FW →M/F is a homeomorphism (cf. [7]), but that both foliations have

the same transverse geometry.
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To spell this out more precisely, this implies in particular that:

(i) The homeomorphism on leaf spaces preserves the growth type of the

leaves [4].

(ii) There is a bijection between the transverse geometric structures on

(W, FW ) and those on (M, F). These are, for instance: holonomy invari-

ant transverse (Radon) measures, Riemannian metrics—in general,

structures defined by (invariant) sheaves over the Haefliger groupoid

Γ1
∞—and real analytic structures (i.e., reductions to Γ1

ω).

(iii) There is an isomorphism between the periodic, Hochschild and peri-

odic cyclic homologies of the convolution algebra of the holonomy

groupoids [1].

§2. Ingredients of the proof

Our proof of Theorem 1 follows Donaldson’s proof of the Lefschetz hyper-

plane theorem for approximately holomorphic divisors. His proof followed

the Andreotti–Frankel proof in the affine/projective case: in the complement

of a divisor, the modulus of its defining approximately holomorphic section

can be regarded, after a small perturbation, as a Morse function with critical

points of index at least n, which implies that the ambient manifold is

obtained from the divisor by attaching handles of index at least n. It readily

follows that the relative homology and homotopy groups of degree less than

n vanish.

However, in the foliated case the critical points of this function come

in S1 families and a noncompact leaf will, in general, have infinitely many

critical points. Hence, the relative homotopy type of a leaf with respect to

the divisor is not readily understood.

We shall first review the essentials of the approximately holomorphic

machinery that we need for the proof of Theorem 1. Then we discuss some

conditions for Morse functions in open manifolds that will guarantee a nice

behavior for their gradient flow.

2.1 The approximately holomorphic theory for 2-calibrated

foliations

Let M2n+1 be a closed manifold endowed with a 2-calibrated foliation

(F , ω). After a small perturbation, we may assume without loss of generality

that [ω] is a rational class; by scaling the class, we may also assume that it

is integral. We let L→M be the prequantum line bundle associated to ω;
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this is a Hermitian line bundle with a compatible connection ∇ whose

curvature is −2πiω.

We let ∇F denote the component of ∇ tangential to F . After choosing an

almost complex structure J compatible with ω, the tangential connection

can be further decomposed into its complex linear and antilinear parts,

yielding ∇F = ∂ + ∂̄.

According to [6, Corollary 1.2], upon choosing the almost complex

structure J , it is possible to construct a family sk :M →Lk of sections

of the kth tensor powers of L, for k large enough, such that Wk := s−1k (0)

are closed, 2-calibrated submanifolds of codimension two.

To state the conditions that are required for the sequence sk, we fix a

metric g on M which over the leaves satisfies g = ω(·, J ·). Further, we define

a family of scaled metrics gk = kg.

Definition 3.

(1) A sequence of sections sk :M →Lk is said to be approximately holo-

morphic if there is a universal constant C > 0 such that:

|sk|gk , |∇sk|gk <C; |∂̄sk|gk , |∇∂̄sk|gk <Ck−1/2,

for k large enough.

(2) A sequence of sections sk :M →Lk is said to be ν-transverse to zero

along the foliation F if at any point either |sk|gk > ν or |∇Fsk|gk > ν.

To every such an approximately holomorphic transverse to zero sequence

sk one associates a sequence of functions fk :M \Wk→ R by fk = log |sk|2.
The Lefschetz hyperplane theorem for Donaldson-type submanifolds [2, 6]

states:

Proposition 2. Fixing a leaf F , the function fk : F \ (Wk ∩ F )→ R,

which might not be Morse, has only critical points of index at least n.

This proposition, when applied to a closed leaf, implies Theorem 1

immediately—as seen in [2, 7]—for Donaldson divisors.

2.2 Gradient flows and the topology of open manifolds

The study of flows which behave well on open manifolds already appears

in the literature on foliation theory [3]. For the sake of completeness, we

review these facts tailored to the applications we have in mind.
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Let f be a Morse function on a manifold M . For any a ∈ R set Ma =

{x ∈M | f(x) 6 a}, and denote by Crita(f) the subset of critical points of

f lying in M\Ma.

Let a be a regular value for f and let b > a. Assume for the moment

that M is compact. It is customary to study the relative topology of the

pair (Mb, Ma) using minus the gradient flow of f with respect to some

fixed metric g. The key point is that the following dichotomy holds: for any

x ∈Mb\Ma the trajectory of −∇gf starting at x either enters Ma in finite

time, or converges to one of the finitely many critical points in Crita(f).

If M is no longer compact but f is proper, then of course the study of

the relative topology of the pair (Mb, Ma) goes exactly as in the compact

case. There might be cases—as in our setting coming from approximately

holomorphic geometry—that the natural Morse functions to be used are not

proper, and one needs to impose an appropriate form of the above dichotomy

for trajectories of −∇gf :

Lemma 1. Let f be a Morse function on a manifold M and let g be a

metric on M so that ∇gf is complete. Let a be a regular value, b > a, and

assume that the following holds:

(1) For every compact subset X ⊂Mb, there exist finitely many critical

points c1, . . . , ciX in Crita(f) such that the following dichotomy holds:

a trajectory of −∇gf starting at x ∈X either reaches Ma in finite time,

or converges to a critical point in {c1} ∪ · · · ∪ {ciX}.
(2) Every c ∈ Crita(f) has index > j.

Then we have that πk(Mb, Ma) = 0, for k = 0, . . . , j − 1.

Proof. Let us start by making the following observation: if X is as in

assumption (1) and the collection {c1} ∪ · · · ∪ {ciX} is empty, then we claim

that X is taken in finite time to Ma by the flow φ of −∇gf . Indeed, for every

x ∈X there exists a time tx > 0 such that f(φtx(x))< a; further, since for

fixed t, φt is continuous, there is a small ball Bg(x, εx) centered at x such

that φtx(Bg(x, εx))⊂Ma. Then, the result follows by compactness of X.

Now, let N be a compact manifold and h : (N, ∂N)→ (Mb, Ma) be a

smooth map. Let U be a relatively compact neighborhood of h(N). Then

assumption (1) implies that trajectories starting at points in Ū can only

enter Ma in finite time or converge to one of the finitely many critical points

{c1, . . . , ciŪ }.
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Observe that there is a small relatively compact neighborhood V of h(∂N)

such that the flow of −∇gf sends V into Ma: this follows if V ⊂ U is selected

so that f(V ) lies below the critical values {f(c1), . . . , f(ciŪ )}.
We now construct h′, an arbitrarily small perturbation of h relative to V .

Proceeding inductively over the finite list {c1, . . . , ciŪ }, as in [9], we obtain

h′ that is transverse to the ascending disks of the critical points and that

satisfies h′(N)⊂ U .

If N has dimension at most j − 1 then, by hypothesis (2), transversality to

the ascending disks means empty intersection. The hypotheses of the claim

at the start of the proof are satisfied and it follows that πk(M,Ma) = 0, for

k = 0, . . . , j − 1.

The following result describes quantitative conditions on the gradient

vector field granting the dichotomy in point (1) of Lemma 1.

Proposition 3. Let f be a Morse function, g be a complete metric on

M , and a < b ∈ R. Assume that there exist real constants D, E > 0 and open

subsets Ci ⊂Mb, i ∈ I, such that:

(1) for any pair i, i′ ∈ I, i 6= i′, we have dg(Ci, Ci′)>D;

(2) the diameter of the sets Ci is at most E;

(3) there exist real numbers δ1, δ2 > 0, such that

δ2 > |∇g(f)(p)|> δ1, ∀p ∈Mb

∖(⋃
i∈I
Ci

)
.

Then −∇gf is complete and the dichotomy in point (1) of Lemma 1 for

−∇gf holds.

Essentially, the proposition states that the critical points of f come in

families, indexed by I and contained in the sets Ci, that are far from each

other. In order to prove Proposition 3, let us introduce some notation and

prove an auxiliary lemma. Given any x ∈M , we denote by γx the positive

half of the flow line that contains x. Denote by φt the flow of f at time t.

Let γtx designate the segment of the curve γx between x and φt(x). Then:

Lemma 2. Under the assumptions of Proposition 3, there is a constant

R, independent of t ∈ R and x ∈Mb, such that dg(φt(x), x)>R implies

f(φt(x))< a.
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Proof. For every curve γ we denote by γ̃ the (possibly disconnected)

curve:

γ̃ =

{
p ∈ γ : p /∈

⋃
i∈I
Ci

}
,

that is, the union of segments of γ that are disjoint from the sets Ci.
Given any curve γ ⊂B(x, R) starting at x and intersecting the boundary

of B(x, R) at y, we can associate to it another curve, which we denote by

η = ηγ , using the following procedure:

(1) list, in order, all the sets Ci that γ intersects. Remove all the consecutive

repetitions of the same Ci, listing just the first one in each series of

repetitions. Write {Cij}j∈[1,..k] for this finite list;

(2) mark the entry and exit points ej and fj of γ into each Cij . In the case

of consecutive repetitions of the same Ci, just mark the first entry point

and the last exit point of the series. For simplicity, denote f0 = x and

ek+1 = y;

(3) call η the piecewise smooth curve formed by connecting these marked

points in the order they appear. From ej to fj , take the shortest geodesic

between the two points. From fj to ej+1, take the shortest path not

intersecting any Ci. Denote these paths by l(ej , fj) and l(fj , ej+1),

respectively.

Assume R>E +D. If k = 0, 1, it is immediate that

length(η̃)

length(η)
>

D

E +D
;

otherwise, the following estimate holds:

length(η̃)

length(η)
=

∑k
j=0 length(l(fj , ej+1))∑k

j=0 length(l(fj , ej+1)) +
∑k

j=1 length(l(ej , fj))

>

∑k−1
j=1 length(l(fj , ej+1))∑k−1

j=1 length(l(fj , ej+1)) + kE

>
(k − 1)D

(k − 1)D + kE
>

D

2(E +D)
.

For any radius r > E +D, denote by τ the time at which the curve γx
first intersects ∂B(x, r). Denote this intersection point by y. Consider the
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segment γτx and its associated curve η = ηγτx . Use the fact that over γ̃τx we

have a lower bound for the gradient |∇gf |> δ1 > 0:

|f(y)− f(x)| > δ1 length(γ̃τx) > δ1 length(η̃) > δ1 length(η)
D

2(E +D)

> r
δ1D

2(E +D)

which implies that, if r is taken to be large enough, |f(y)− f(x)|> b− a,

and hence y ∈Ma.

Proof of Proposition 3. Let X ⊂Mb be a compact set. Let R be the

universal constant given by Lemma 2. Denote by X(R) the R-neighborhood

of X, which is a relatively compact set. Lemma 2 implies that any trajectory

starting at X either reaches the interior of Ma—which is equivalent to saying

that it reaches Ma in finite time—or it remains in X(R) for all time.

It must be shown that if a trajectory γx remains within X(R) for all

times then it must converge to a critical point. Since X(R) is relatively

compact and f is a Morse function, there is a finite number k of critical

points in its closure. Each of those critical points {ci}ki=1 has an arbitrarily

small neighborhood Vi which corresponds to a ball in the standard Morse

model around ci. In particular, a trajectory that intersects Vi must intersect

just once, either converging to ci or escaping from Vi eventually. From this

it follows that there is a time t0 > 0 such that γx(t) /∈ Vi, for all t > t0
and every i. Since the gradient |∇gf |> δ > 0 is bounded from below in

X(R) \
⋃
i=1..k Vi, this shows that f(γx(t))< a for t large enough, which is

a contradiction.

§3. Proof of Theorem 1

Fix some leaf F ∈ F . All we need to do now is to check that, for a suitable

choice of Morse function and metric on F , the hypotheses of Proposition 3

are satisfied for F . Our candidate is the restriction to the leaf of the function

fk = log |sk|2, and the restriction to the leaf of any Riemannian metric on M .

We shall prove a couple of preliminary lemmas, for which we need to

recall some notation. Given a function f , defined on a manifold endowed

with a codimension one foliation (M, F), the tangential differential dFf is

the composition of the differential with the projection T ∗M → (TF)∗. The

points in which dFf vanishes are the tangential critical points of f , which

we denote by ΣF (f). Of course, ΣF (f) are nothing but the critical points

of the restriction of f to each leaf of F .
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Lemma 3. For every k large enough, the 2-calibrated submanifold

Wk ⊂M has a tubular neighborhood that contains a full regular level set

of fk = log |sk|2 and which is also disjoint from ΣF (fk).

Proof. It is enough to check that hk = ‖sk‖2 satisfies the lemma, since

log is an increasing monotone function.

We claim that the neighborhood U = {x ∈M | ‖sk(x)‖< ν} of the sub-

manifold Wk does not intersect ΣF (fk). Assume that p ∈ U . By the

ν-transversality along F of the section sk, there is a unitary vector field

v ∈ TpF such that ‖∇vsk(p)‖> ν. By asymptotic holomorphicity, for k

large, we have that the unitary vector field Jv ∈ TpF satisfies ‖∇Jvsk(p)−
i∇vsk(p)‖=O(k−1/2). Therefore, the map ∇Fsk(p) is surjective. We con-

clude that p 6∈ ΣF (fk).

Lemma 4. Let F , a leaf of F , be fixed. After a perturbation of the

sequence sk, preserving transversality to zero and approximately holomor-

phicity, it can be assumed that:

(1) the restrictions of the fk to F are Morse functions;

(2) ΣF (fk) is a finite union of disjoint circles in general position with

respect to F . Their tangency points are turning points, that is, birth–

death type singularities for the restriction of fk to the corresponding

leaf.

Proof. According to [3], after an arbitrarily small Cr perturbation, r > 2,

the set of tangential critical points ΣF (fk) can be assumed to fit into a

1-dimensional manifold that is transverse to F everywhere but at the finite

collection of turning points c1, . . . , cd. Every other point is a nondegenerate

critical point for the restriction of fk to the corresponding leaf. The turning

points satisfy the following relevant property: in a small foliated chart, a

plaque not containing the turning point intersects ΣF (fk) either in the

empty set or in two tangential critical points.

Assertion (1) in the lemma follows by showing that none of the c1, . . . , cd
belong to the fixed leaf F : if any of them do, a Cr-small isotopy, transverse

to F at the turning point, can be used to move it to a nearby leaf. This is

described in detail in [3].

These Cr perturbations of fk can be taken to be the result of a Cr

perturbation of sk. Indeed, let εk be a Cr perturbation of fk. The function

εk can be assumed to be identically zero away from an arbitrary small

neighborhood of ΣF (fk) so, by Lemma 3, the following expression is
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well defined:

s̃k = sk
√

1 + εk/fk,

since fk is bounded from below in the support of εk. It is clear that

‖s̃k‖= fk + εk.

The asymptotic holomorphicity of the sequence s̃k can be readily checked:

∇s̃k =∇sk
√

1 + εk/fk + sk
fk∇εk − εk∇fk
2f2k
√

1 + εk/fk
,

where the second term is Cr-small and the first is Cr-close to ∇sk. A similar

computation for the higher order derivatives concludes the claim.

We can finally address the proof of the theorem.

Proof of Theorem 1. Fix a leaf F and assume that we have all the

data needed for developing approximately holomorphic geometry in M2n+1.

The metrics gk induce complete metrics in F . Given an approximately

holomorphic sequence sk, with corresponding Donaldson-type submanifolds

Wk, an application of Lemma 4 yields a new approximately holomorphic

sequence, still denoted by sk, that induces Morse functions (fk)|F in F \Wk.

By Lemma 3, Wk has an ε-neighborhood containing a regular level

ak. Lemmata 3 and 4 together mean that ΣF (fk) has a small tubular

neighborhood of positive radius not intersecting the level ak.

By Lemma 4, the manifold ΣF (fk) is transverse to F except in a finite

number of turning points c1, . . . , cd. Fix a closed geodesic arc Ti through

each ci, transverse to the foliation. Let B2n(0, r)⊂ R2n be the closed ball of

radius r. For r > 0 sufficiently small, the exponential map for the leafwise

metric gFk yields disjoint foliated charts φi : Ui→ [0, 1]×B2n(0, r) satisfying

φi(Ti) = [0, 1]× {0}. Having fixed r, by taking the Ti sufficiently short—

effectively shrinking Ui in the vertical direction—it can be assumed that:

φi(Σ
F (fk) ∩ Ui)⊂ [0, 1]×B2n(0, r/2).

Consider the family of open arcs Ij ∼= (0, 1)⊂ ΣF (fk), j ∈ [1, 2, . . . , l],

and circles Ij ∼= S1 ⊂ ΣF (fk), j ∈ [l + 1, 2, . . . , m], comprising ΣF (fk) \
(
⋃
i=1..d Ui). For sufficiently small 0< s < r, the exponential map for the

metric gFk defines disjoint charts ψj : Vj → Ij ×B2n(0, s). The union of the

Ui and the Vj covers ΣF (fk).

The subsets Ci, as in Proposition 3, can be defined and they come in two

families:
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(1) s/2-neighborhoods, in the metric gFk , of the points x ∈ Ij ∩ F , for any j,

(2) r/2-neighborhoods, in the metric gFk , of the points x ∈ Ti ∩ F , for any i.

By construction, the gFk —diameter of the Ci is bounded above by r/2.

Further, the gFk —distance between any two sets Ci and Ci′ is bounded below

by s. Therefore, conditions (1) and (2) in Proposition 3 hold. Condition (3)

follows immediately from the fact that the union of the Ci is the intersection

of a neighborhood of ΣF (fk) with the leaf F .

An application of Lemma 1 shows that the relative homotopy groups

πj(F, F ∩Wk) vanish for j < n and for k large enough, since we already did

the index computation in Proposition 2.
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Álvaro Del Pino

Universidad Autónoma de Madrid and

Instituto de Ciencias Matemáticas
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