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1. Introduction

Let Tn denote a tree with n(S 2) labelled points: we assume Tn is rooted at a
given point x, say the point labelled 1 (see [3] for definitions not given here). If
we remove some edge e of Tn, then Tn falls into two subtrees one of which, say
Tk, contains the root x. If k ^ 2 we can remove some edge of Tk and obtain an
even smaller subtree of Tn that contains x. If we repeat this process we will even-
tually obtain the subtree consisting of x itself. Let A = A(rn) denote the number of
edges removed from Tn before the root x is isolated. Our main object here is to
determine the expected value n(n) and variance <T2(«) of A(rn) under the assump-
tions (1) Tn is chosen at random from the set of n"~2 trees with n labelled points
that are rooted at point x, and (2) at each stage the edge removed is chosen at
random from the edges of the remaining subree containing x. It follows from our
results that /i(«) ~ {\nn)* and o2(ri) ~ Q—\-n)n as n tends to infinity. We also
consider the corresponding problem for forests of rooted trees and for trees in
which the degree of the root is specified. We are indebted to Professor Alistair
Lachlan for suggesting the original problem to us.

2. Some identities

In what follows we shall make use of certain properties of the function
oo n

.^i (n-1)!
it can be shown that

(1) Y=xer

and that

(2) y = f>'-'-1_^_
•=* (n-h)\

for h = 1, 2, • • •. These relations can be established by Lagrange's inversion for-
mula (see [4; p. 301] or [5]) or by purely combinatorial arguments (see [2]). It
follows from (1) that

(3) y = r/jc(i-y).
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3. The mean and variance of X(TH)

If 0 g / s; n - 1 , let P(n, /) denote the probability that X(Tn) equals / under the
assumptions stated earlier. We adapt the convention that P{n, 0) equals one if n = 1
and zero otherwise.

Suppose we remove one of the n — 1 edges of a random tree Tn and obtain
a subtree Tk containing the root x. There are (/J_i) possible choices for the
k—\ points of Tk other than x and, having chosen these points, there are k*~2 possi-
ble trees Tk. There are {n-kf~k~2 trees that could be formed on the remaining
n—k points and the edge we removed could have joined any of the k points of
Tk to any of the remaining n—k points. Consequently,

(4) P(n> 0 = , n - / l ( r
(n —l)n k=i \fe—

for 1 g / ^ « - l .
If /i(«) denotes the expected value of A, then

by equation (4), for n = 2, 3, • • • (ju(l) = 0, by definition). Let

. , " . n_2 x"

(Since n(n) ^ n—1, this certainly converges if |JC| < e"1, as do all other generating
functions we consider here.) If we multiply relation (5) by (n — \)n"~2x"j{n— 1)!
and sum over n, we obtain the relation

xM'-M = xM'Y+xY'Y

between M and Y. This may be rewritten, using (3), as

{M/Y)' = Y'(\-Y)~l.

We conclude, therefore, that

(6) M = -Yln{\-Y) = £ -YJ+l.

(The constant of integration must be zero since n(l) = 0.) When we equate the
coefficients of x" in (6), using (2), we obtain the following formula for n(«). (In
what follows we adopt the convention that (m)0 = 1 and (m)r = m(m — 1)- • •
(m — r+l) for positive integers r.)
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THEOREM 1. If n ^ 2, then

;= i j nJ

Instead of determining the variance of X directly, we determine T(«), the ex-
pected value of X(l— 1). The variance o2(n) of X is then given by the formula
<j2(n) = T(«)+n(n) — fi2 (n). It follows from equation (4) that

(7) = , * ._, " l
(n —l)n fc=i

for n = 2, 3, • • • (T(1) = 0, by definition). If we let

S = »n-2

.f2 w (n-1)!
then (7) implies that

xS'-S = xS'Y+2xM'Y.

This may be rewritten, using (3) and (6), as

(S/Y)' = 2Y'{Y(l-Y)-2-ln(l-Y)- (l-Y)-1}.

Consequently,

S = F{2y(l - Y)'1 +2/«(l - Y) + ln2(l - Y)}

j ;
where at = 0 and

j-i i

i = l

for j = 2, 3, • • •. If we equate the coefficients of x" in (8) we obtain the following
formula for i(n).

THEOREM 2. If n ̂  2, then

«) = 2 X i - - + - 0 + i ) v —
j=i \ j j / nJ

We shall discuss the asymptotic behaviour of fi{n) and o2{n) in § 6.
We remark that the recurrence relation (4) can also be used to express the

generating functions

I = 1, 2, • • •, in terms of Y. For example,
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and P3 = (Y3-HY4 + ^Y5-^Y%

from which it follows, using (2), that

f>(n,l) = (n-l)"-3/n"~2,

P(n,2) = (5n + l)(n-2)(n-l)"-5/2nB-2
)

and P(n, 3) = (103«2+73n + 4)(n-3)(n-2)(«-l)"-7/24n'1-2.

These generating function relations, however, seem to be too complicated in
general to be particularly useful by themselves.

4. Cutting down random forests

If 1 ^ t ^ n, then there are tnn~'~l forests Fn of t trees with a total of n la-
belled points such that t given points, say the points labelled 1,2, • • -,t, belong to
different trees (see [1] or [5]). We may consider these t points as roots of the trees
in Fn. Let n(n, t) and <r2(n, t) denote the mean and variance of the number X of
edges that must be removed from a random forest Fn of / rooted trees before isolat-
ing the t roots, where at each stage the edge removed is chosen at random from
the edges of the remaining subtrees containing the / roots.

The argument used to establish equation (5) can easily be extended to show
that

/ \ 1 "^ (n-t\ ,,._,, ,,„_*,
III Vt t \ = > I I tw I M K 1
1*1 fI • * / ~~ / I I (/v I ft — /v I

^ ' (n-t)tnn-t-1
kJr+i\k-t) V '

for 1 ^ t ^ n — 1 (n(n, t) = 0 otherwise). If we let
^r = X M«. Of" : ^r ,

then it follows from this recurrence relation that

xM't-tMt = xM; Y + X(Y')' • Y,

or equivalently, that

(MJY')' = tY'{X-Y)-1.

Therefore,

M, = -tY'ln(l-Y) = t f -Yj+t

This implies the following generalization of theorem 1.
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THEOREM 3. It 1 ^ ( ^ B - 1 , then

1

Let T(«, t) denote the expected value of k(X — 1) for forests Fn of t rooted trees
so that o2(n, t) = %{n, t) + fi(n, t) — H2(n, t). The argument that led to equation
(7) can be extended to show that

?(n, t) = z— Z I ) fkk '{n — k)" 1{x(k,t) + 2fi(k,i)}
(n-t)tnn ' x *=<+

for 1 g ^ n-l.Ifwelet

o

S,= I

then it follows from this recurrence relation that

xS't - tSt = xS't Y + 2xM't Y,

or equivalently, that

(SJY'Y = 2tY'{Y(l-Y)-2-t\n(l-Y)-(l-Y)-1}.

Therefore,

S, = tYt{2Y(l-Y)~1+2\n(l-Y) + tln2(l-Y)}

j j

This implies the following generalization of theorem 2.

THEOREM 4. / / 1 ^ t ^ n-1, ?Aen

T(B,O = 2 Z ( i - - + — 0 + 0 —r^-

Notice that M, = tY'~1M1 and 5, = tY'~iSi; thus one can express the
numbers fi(n, t) and x(n, t) in terms of the numbers n(m) = \i(m, 1) and
T(W) = T(W, 1), for 2 ̂  m ^ n - ? + l .

5. Cutting down trees whose roots have specified degrees

If 1 g f g n - 1 , then there are ( " l ^ C n - l ) " " ' " 1 trees Tn in which the
point x is joined to exactly t other points (see [2]); let D(n, t) and V(n, t) denote
the mean and variance of the number A of edges that must be removed from such
a tree before isolating the root x.
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It is not difficult to show that

if 1 ^ f ^ M — 1 (otherwise D(n, t) = 0). The argument is essentially the same
as that used to establish equation (5) except for one added complication. We ob-
tain a subtree Tk containing the root x by removing some edge e of the random tree
Tn (in which x is joined to t other points). If e is not incident with x, then x is
joined to t other points of Tk and e joins one of the k — 1 points of Tk other than x
to one of the n—k points not in Tk; but if e is incident with x, then x is joined only
to t— 1 other points of Tk and e joins x to one of the n—k points not in Tk. The
two sums on the right hand side of equation (9) correspond to these two possibi-
lities.

If we let

n=t+i

then equation (9) implies that

or equivalently, that

D; = —-— Y1'1- y'(i - y)~ * +i>(-! y
0-1)!

for ? = 1, 2, • • •. Since Dt(0) = 0 for all t and Do = 0, by definition, it follows
by induction that

Dt = - ^ - Y'-'lnn-Y) = —*— V -
0-1)! 0-1)! A ;

This implies the following result.

THEOREM 5. I/O ^ t ^ n - 1 ,

J = I j n

COROLLARY 5.1. If 1 ^ t ^ n-\,
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This corollary follows from theorems 3 and 5. As t increases, for fixed values
of n, D(n + l, t+1) increases to n while /i(n, t) eventually decreases to 1.

Other recurrence relations can also be written. For example, it is not difficult
to see that

" ' 1 , a) fl"1"1 ' ' ' fl'"^1 + 1 '

where the sum is over all solutions in positive integers to the equation at + • • •
+ a, = n - 1 .

Let U(n, t) denote the expected value of A(l — 1) for trees Tn in which the root
x is joined to exactly t other points so that V(n, t) = U(n, t)+D(n, t)—D2(n, t).
It can be shown, by essentially the same arguments as have been used before, that

{ "Z (rl)fc) (kir\krk-\U(k, t){

+2D(k, t))+]E (fclD^Ij) (k-l)k-'(n-krk-\U(k, t-l)+2D(k, t-

for 1 ^ t ^ n-1 (otherwise U(n, t) = 0). If we let

then it follows from this recurrence relation that

xU't = xU'tY + 2xD'tY+Ut-x Y + 2D,_1 Y,

or equivalently, that

u't = —?— y- r(i-y)"2 —̂ y'"2y7n(i-y)-(i-y)"1 + c/t_1y

for f = 1, 2, • • •. Since U,(0) = 0 for all t and C/o = 0, by definition, it follows by
induction that

U, = — ^ ( 2 2

( t 1
2 y A- J

\ j
y +

(t-l)\j-o\ j + 1 j + 2
This implies the following result.
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THEOREM 6. If 1 5S t ^ n — \, then

COROLLARY 6.1. / /"I :S f <| «— 1,

J-z j n]

This corollary follows from theorems 4 and 6.
Notice that

(t-l)\-D, = r - 1 ^ ! and ( / - I ) ! - U, = y*-1t71 + ( f - l ) r - 2 l n 2 ( l - r ) ;

thus one can express the numbers D(n, t) and U(n, t) in terms of the numbers
D(m, 1) and U(m, 1) for 2 ^ w ^ n - r + 1. .

6. Asymptotic results

We now determine the asymptotic behaviour of ju(n, t) and D(n, t) for large n
provided that t is not too large. Some of the following inequalities will be valid
only when n is larger then some absolute constant but we will not repeat this
qualification every time.

Let 0 ^ t g n - 1 ; then

K~iH
where

Since 1 — x < e x for x > 0, it follows that for all &

in particular, if k S: AT = 2(« log n)*, then

, 1

I
Therefore,

n-t-l

and

*=o fc+1 * ~~ k = o fc + 1 n2 K
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Consequently, if n is sufficiently large and O g r | » - 1 , then

(10) D(n + l,t + l) ^ (|7w)* + if(logn + loglogn + 4 ) + l .

On the other hand, 1 -x ^ e~xl^~x) if 0 < x < 1; thus if

t + k ^ (nlognf = N,
then

c > e-(
t+k + 1'>2/2(n-N)

Hence,

e~x2l2dx

where a = (t+l)f(n-Nf and j3 = NJ(n-N)*. Now

Ke~x2l2dx = / T V 2 ' 2

("e'xl'2dx ^ a,
Jo

and (1 —z)* > 1 —\z for small z; therefore,

\nf-{n log «)-*-

^(i7in)*-(logn)*-r.

If f + Jfc+1 ^ 2(n/logn)i = M, then

cfc^ e-M2/2(B-M) ^ 1-3/logn;

so if t ^ ^M, then

• c 4 £ t ( l - 3 / l o g n ) £
k = 0 fc+1 k = O k+l

^ i?(logn-loglog«-3).

Consequently, if n is sufficiently large and 0 g t :§ (n/log n)*, then

(11) D(n +1, t +1) ^ (inii)*+i((!og » - log log n - 5) - (log n)*.

When we combine inequalities (10) and (11) we obtain the following result.

THEOREM 7. If 0 ^ » ^ («/logw)*, then

D(n + 1, t+1) = (i«n)*+if(log » + O(log log n)) + 0((log »)*)

OJ n -» oo.
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It follows from corollary 5.1 that if 1 ^ t ^ (n/logn)*, the conclusion of
theorem 7 remains valid if D(n+1, t+1) is replaced by n(n, t). Thus, for example,

D(n + l, 1) = (iTtn

D(n + 1,2) = (i7rn

and n(n) = (i7tn)*+i log n+O((log n)*).

The average number of points joined to the root x in a random tree Tn is

2(n-l)/w = 2(1 -w"1)

so perhaps it is not too surprising that /i(n) is asymptotically equal to D(n, 2).
We now determine the asymptotic behaviour of the variance o2(n) of A

for ordinary rooted trees Tn. If we use the identity

k=i n

then it follows from theorems 1 and 2 that

If sn denotes the last sum, then

k n

= {i log B + O ( 1 ) H « ) + " Z log (fen"*) •
k

since (k+\)jk%2 and (n-l\[nk < exp(-£2/2n) and so, if divided by «*,
the sum is bounded by an approximate Riemann sum for

log x • e *2/2 dx.
' o

Consequently,
i:

This and the estimate for n(n) given by theorem 7 imply the following result.

THEOREM 8. o2(n) = (2-$n)n + O{{n log rif) as n -* oo.
A similar argument, the details of which we omit, shows that if t ^ n*/log «

then
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V(n + l, t + l) = (2-i7c)n + O((n* log log n) + O((n log nf)

and if t ^ (n/log «)* then

323

as n -> oo.
The above asymptotic formulae hold if F(« +1, t +1) is replaced by o2(n, t).

7. Numerical results

The entries in the following tables were computed by Mr. J. Hubert.

' / . •

1

2
3
4

5
6
7
8
9

2

1

3

1.6667
1

4

2.1875
1.75
1

T A B L E 1:

5

2.624
2.36
1.8
1

Values of u(n,

6

3.0046

2.8796
2.4722
1.8333
1

0

7

3.3451

3.3357
3.0554
2.5510
1.8571
1

8

3.6551
3.7444
3.5728
3.1836

2.6094
1.875
1

9

3.9409
4.1163
4.0394
3.7508

3.2812
2.6543
1.8889
1

10

4.2072

4.4586
4.4656
4.2662

3.8894
3.358
2.69
1.9
1

TABLE 2: Values of D(«, t)

10

1
2
3
4
5
6
7
8
9

1 1.5
2

1.8889
2.5

3

2.2188
2.9167
3.5
4

2.5104
3.28
3.9333
4.5
5

References

2.7747
3.6056
4.3194
4.9444
5.5

6

3.0181
3.9026
4.6700
5.3469
5.9524
6.5
7

3.2450
4.1772
4.9925
5.7164
6.3672

6.9583
7.5
8

3.4583
4.4336
5.2923
6.0591

6.7514
7.3827
7.9630
8.5

9
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