ON ELEMENTARY ABELIAN CARTESIAN GROUPS

ANTHONY B. EVANS

ABSTRACT. J. Hayden [2] proved that, if a finite abelian group is a Cartesian group satisfying a certain "homogeneity condition", then it must be an elementary abelian group. His proof required the character theory of finite abelian groups. In this note we present a shorter, elementary proof of his result.

Hayden [2] proved that, if a finite abelian group is a *cartesian group* satisfying a certain "homogeneity condition", then it must be an elementary abelian group.

His proof required the character theory of finite abelian groups. In this note we present a shorter, elementary proof of his result.

Let G be an abelian group of order n. G is called a cartesian group if there exist bijections $\theta_1, \ldots, \theta_{n-2}$: $G \to G$ such that $\theta_i(0) = 0$ for $i = 1, \ldots, n-2$, the mappings $\eta_i: x \to \theta_i(x) - x$ are bijections for $i = 1, \ldots, n-2$, and the mappings $\delta_{ij}: x \to \theta_i(x) - \theta_j(x)$ are bijections for $i, j = 1, \ldots, n-2$, $i \neq j$. From these mappings we can construct an affine plane of order n as follows. The points of the plane are ordered pairs of elements of G, lines being given by the equations x = c, y = c, y = x + b, and $y = \theta_i(x) + b$ for $i = 1, \ldots, n-2$. This plane is (∞, l_{∞}) -transistive and it is well-known that any (∞, l_{∞}) -transistive plane can be constructed from some cartesian group (see Dembowski [1, p. 129]).

If G is an abelian cartesian group and $\theta_1, \ldots, \theta_{n-2}$ are corresponding bijections, then we say that condition (H) is satisfied if the following is satisfied.

(*H*) $\theta_i(rx) = r\theta_i(x)$ for $i = 1, ..., n - 2, x \in G, r \in N, (r, n) = 1$.

If A is an (∞, l_{∞}) -transistive plane, then we say that A satisfies condition (H') if it satisfies the following.

(*H'*) $H_r: (a, b) \rightarrow (ra, rb), r \in N, (r, n) = 1$, are all homologies of the plane with axis I_{∞} and center (0, 0).

Hayden [2] showed these two conditions to be equivalent and so we can paraphrase his theorem as follows.

THEOREM. Let G be an abelian cartesian group of order n and let A be a corresoponding (∞, I_{∞}) -transistive plane. If A satisfies condition (H'), then G is elementary abelian.

PROOF. As H_r is a homology of the plane, if the mapping $x \rightarrow rx$, $x \in G$, (r, n) = 1, fixes any nonidentity element of G, then it must fix all elements of G. There are three

Received by the editors September 7, 1989.

AMS subject classification: 51E15, 05B25.

[©]Canadian Mathematical Society 1991.

cases to consider.

CASE 1. *n* odd, not a power of a prime. Let $p_1 < p_2$ be the two smallest prime divisors of *n*. Then $r = p_1 + 1$ is relatively prime to *n* and $x \rightarrow rx$ fixes all elements of order p_1 and no element of order p_2 . A contradiction.

CASE 2. *n* even, not a power of 2. Let $2 < p_1 < \cdots < p_n$ be the prime divisors of *n*. Then $r = 2p_1 \dots p_n - 1$ is relatively prime to *n* and $x \rightarrow rx$ fixes only the identity and elements of order 2. A contradiction.

CASE 3. *n* is a power of a prime *p*. As the case *n* a prime is trivial, we shall assume that *n* is not a prime. Then r = p + 1 is relatively prime to *n* and $x \rightarrow rx$ fixes only the identity and elements of order *p*. Hence all elements of order *G* are of order *p* and so *G* is elementary abelian.

NOTE. In the proof we needed only one value of r, relatively prime to n, for which the mapping $x \rightarrow rx$ fixed some but not all of the nonidentity elements of G, to obtain the desired conclusion. This leads naturally to many similar results involving smaller homology groups.

REFERENCES

1. P. Dembowski, Finite geometries. Springer-Verlag, New York, 1968.

2. J. Hayden, Elementary abelian cartesian groups, Can. J. Math. XL(6)(1988), 1315-1321.

Department of Mathematics and Statistics Wright State University Dayton, Ohio 45435 U. S. A.