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ON ELEMENTARY ABELIAN CARTESIAN GROUPS 

ANTHONY B. EVANS 

ABSTRACT. J. Hayden [2] proved that, if a finite abelian group is a Carte
sian group satisfying a certain "homogeneity condition", then it must be an 
elementary abelian group. His proof required the character theory of finite 
abelian groups. In this note we present a shorter, elementary proof of his 
result. 

Hayden [2] proved that, if a finite abelian group is a cartesian group satisfying a 
certain "homogeneity condition", then it must be an elementary abelian group. 

His proof required the character theory of finite abelian groups. In this note we present 
a shorter, elementary proof of his result. 

Let G be an abelian group of order n. G is called a cartesian group if there exist 
bijections 6\,..., Qn-ï. G —• G such that 0/(0) = 0 for / = 1, . . . , n — 2, the mappings 
r\i'.x—+ 6i(x) —x are bijections for i — 1 , . . . , n—2, and the mappings by : x —> 6i(x)—Oj(x) 
are bijections for ij — 1,... ,n — 2, i ^ j . From these mappings we can construct an 
affine plane of order n as follows. The points of the plane are ordered pairs of elements 
of G, lines being given by the equations x = c, y = c, y — x + b, and y — 6[(x) + b 
for / = 1, . . . , n — 2. This plane is (oo, /oo)-transistive and it is well-known that any 
(oo, /oo)-transistive plane can be constructed from some cartesian group (see Dembowski 
[1, p. 129]). 

If G is an abelian cartesian group and 6\,..., 9n-2 are corresponding bijections, then 
we say that condition (H) is satisfied if the following is satisfied. 

(H) 6i(rx) = r6i(x) for / = 1,. . . , n - 2, x G G, r G N, (r, n) = 1. 
If A is an (oo, /oo)-transistive plane, then we say that A satisfies condition (//') if it 

satisfies the following. 
(//') Hr: (a, b) —-» (ra, rb), r G N,(r,n) = 1, are all homologies of the plane with axis 

/oo and center (0,0). 
Hayden [2] showed these two conditions to be equivalent and so we can paraphrase 

his theorem as follows. 

THEOREM. Let G be an abelian cartesian group of order n and let A be a corre-
soponding (oo, l^-transistive plane. If A satisfies condition (//'), then G is elementary 
abelian. 

PROOF. As Hr is a homology of the plane, if the mapping x —-> rjc, x G G, (r, n) = 1, 
fixes any nonidentity element of G, then it must fix all elements of G. There are three 
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cases to consider. 

CASE 1. n odd, not a power of a prime. Let p\ < /?2 be the two smallest prime 
divisors of n. Then r = p\ + 1 is relatively prime to n and x —• rx fixes all elements of 
order p\ and no element of order pi. A contradiction. 

CASE 2. n even, not a power of 2. Let 2 < p\ < • • • < pn be the prime divisors of 
«. Then r = 2p\ ...pn — l is relatively prime to n and x —• rx fixes only the identity and 
elements of order 2. A contradiction. 

CASE 3. n is a power of a prime p. As the case n a prime is trivial, we shall assume 
that n is not a prime. Then r = p + 1 is relatively prime to « and x -—• rx fixes only the 
identity and elements of order /?. Hence all elements of order G are of order p and so G 
is elementary abelian. 

NOTE. In the proof we needed only one value of r, relatively prime to n, for which 
the mapping JC —+ rx fixed some but not all of the nonidentity elements of G, to obtain 
the desired conclusion. This leads naturally to many similar results involving smaller 
homology groups. 
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