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SUMMARY

Wehrhahn (1975) introduced the method of probability generating
function to study the distribution of charge differences between homo-
logous proteins in a population but considered only the special case where
the population starts with a single allele. Some of his results, however,
contained errors. In this paper, all the formulae are presented in general,
correct yet much simpler forms. It is also shown that the method of
diffusion equations (Ohta & Kimura, 1973) can produce the same results.
Numerical computations show that the difference between the one-step
and two-step models of charge changes is practically negligible. The
results obtained have also been applied to study Nei's genetic distance.
Numerical computations indicate that the genetic distance computed
from electrophoretic data is about 10 % smaller than the expected number
of amino acid substitutions involving charge changes in the early stage of
divergence of populations and may give a serious underestimate in
comparisons between species.

1. INTRODUCTION

For more than ten years, electrophoresis has been the dominant technique for
studying the genetic variability of natural populations. However, electrophoresis
does not have the resolving power required by the so-called infinite allele model
(Wright, 1949; Kimura & Crow, 1964). To meet the practical need, Ohta &Kimura
(1973) have recently proposed the so-called stepwise mutation model for the study
of electrophoretic variants in natural populations. Although this model may not
be very realistic for some enzymes (Johnson, 1974; Li, 1976), it is perhaps the
simplest model that can ever be constructed for this purpose and it has been
studied quite extensively (e.g. Nei & Chakraborty, 1973; Ewens & Gillespie, 1974;
Ohta & Kimura, 1974; Wehrhahn, 1975; Brown, Marshall & Albrecht, 1975;
Avery, 1975; Kimura & Ohta, 1975). Among these studies, only Wehrhahn (1975)
has studied the population in transient states. However, his formulation was not
general because he assumed that all the alleles in the initial population are identical
in electrophoretic state. Additionally, in deriving his final results, he further
assumed that all the individuals in the initial population are unrelated.
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Furthermore, several of Wehrhahn's mathematical formulae seem to involve errors.
In this paper, I shall remove Wehrhahn's first assumption and derive all formulae in
general yet readily computable forms. Generality is necessary in order that the
results can be applied in a study of Nei's (1972) genetic distance, the second of
the aims of this paper. I shall also show that Wehrhahn's second assumption is
redundant.

The general distribution of charge differences between two proteins chosen at
random can be obtained either by the method of diffusion equations (Ohta &
Kimura, 1973) or by the method of probability generating function (Wehrhahn,
1975). I shall use the latter approach since it is simpler. However, I shall also show
that the former approach leads to the same results. I shall then apply these results
to study Nei's genetic distance.

2. DISTRIBUTION OF CHARGE DIFFERENCES

Consider a randomly mating population of effective size N. Following Ohta &
Kimura, let the entire sequence ofallelic states be expressed as ... A_2, A_x, Ao, A1}

A2, A mutation creates a one-step or, at most, two-step change. In each
generation an allele can mutate one or two steps to the right with probabilities
V-L and v2, respectively, or to the left with probabilities v_x and v_2, respectively.
Let ux = v1 + v_1, u2 = v2 + v_2 and u = wx + u2. Wehrhahn showed that the
distribution of the number of steps between two proteins is given by the following
probability generating function

H(Z) = exp{-2u+u2Z-2 + u1Z-1 + u1Z + u2Z
2} (1)

if the two genes which produce these two proteins were derived from the same gene
in the previous generation. A similar result has been obtained earner by Nei &
Chakraborty (1973). Now let Pk(t) be the probability that at generation t a
randomly chosen allele is k steps ahead of another and

G(Z, t) = S Pk(t)Z* (2)
fc=-CO

be its probability generating function with the general initial condition O(Z, 0).
Note that in generation t +1 the difference in steps between two randomly chosen
proteins follows the distribution H(Z) if the two genes which produce these two
proteins were derived from replication of a gene in generation t, but follows the
distribution G(Z, t)H(Z) if they were derived from two genes in generation t. Thus

(3)

The solution of (3) is approximately given by
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where a(Z) = - \ + u2Z-* + u1Z-1 + ulZ + UzZ* and A = l/2N + 2u. Wehrhahn's
equation (8) is the special case G(Z, 0) = 1 where all genes are initially identical
in electrophoretic state. Since no assumption on the relationship of the individuals
in the initial population has been made in deriving equation (4), it is clear that
Wehrhahn's second assumption is redundant. Equation (4) can also be derived by
using an argument similar to that of Wehrhahn instead of through equation (3).

(i) One-step model

If only one-step mutations can occur, u2 = 0 and u = ux. Note that

G(Z, oo) = - l/2iVa(Z)

where Zx = (1 + 4iVw - V(l + 8iVw))/4iVw. This is formula (14) of Wehrhahn (1975),
though he inadvertently omitted the absolute value sign on the power of Zx.
Therefore, ?kp ( 0 0 > = t (k *0)' (6)

and P_fc(oo) = Pk(co). Formula (6) was first obtained by Ohta & Kimura. In
addition, it can be shown that

G(Z, O)ef><** = e~A* 2 S /<(2trf)Pfc_i(0)Z*, (7)
fc= — oo i = — oo

where Ik{x) is a modified Bessel function of the first kind and denned as

Ik(2ut) =
8 = 0

where k > 0 and i_fe(<) = Ik(x). To compute the last term of equation (4),
Wehrhahn (his formulae (18) and (19)) wrote

ea(Z)t .

2Na(Z) ''

I t should be noted that an indefinite integral should not be used here, because in
computation one does not know the upper and lower limits of integration. (The
same comment applies to his formula (25).) The correct form reads

co [" oo

- p T S W\ e-*»Jfc(2^)dS. (8)
&=-oo i t

However, it is obvious that (8) is too complicated to be of practical value. A much
simpler alternative is given by

ea(Z)t co oo

Thus,
Pk(t) = Pfc(oo) + e-« 2 /f(2««)[Pfc-i(0)-Pft_i(oo)]. (9)

i
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The recursion relationship Ii+X{x) = — 2iIi(x)lx+Ii_1(x) makes numerical compu-
tations of (9) fairly easy, though caution should be taken against rounding errors.
When ut is small, It(2vt) « {utffi! (i p 0), while when ut is large e-^I^ut) is
small. Therefore (9) can be approximated by

Pk(t) = Pfc(oo) + [Pfc(0) -P*(oo)]e-«. (10)

In particular, the homozygosity is approximately given by

P0(t) = P0(co) + [P0(0) -P0(co)]e-«. (11)

When P0(0) = 1, that is, all genes are initially identical in electrophoretic state,
formula (11) is identical with formula (20) of Wehrhahn.

(ii) Two-step model

In this case both ux and u2 are not zero. For k > 0,

and for k < 0, Pfc(oo) = P_fc(oo), where

C =

W2 = ( - tH-

and Z2 = (TT8

This is identical with Wehrhahn's formula (24), though he inadvertently puts a
plus sign in front of the second term of (12). However, Wehrhahn (personal com-
munication) did use the correct formula to calculate expected difference fre-
quencies for his fig. 2. A simpler alternative to (12) is

where

and

4:Nu ^ 1, V ( ^ i - 4 ) » Wt, V( W1-4) » - W2 and

P o ( c o ) = i ^
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Finally,

Pk{t) = Pfc(co) + e-« £ /i(2«2«)/^2i(2%0[Pft-i(0)-P^i(co)]. (15)

As u2-+0, formula (15) reduces to (9), as it should. Furthermore, it may be
approximated by

Pk(t) = P*(<x>) + [Pk(0) -Pk(co)le-". (16)

Table 1 shows the value of P0(t) for the following models: (1) the infinite allele
model, (2) the one-step model, and (3) the two-step model, assuming P0(0) = 1.
Note that P0(t) for the infinite allele model is given by the same formula as (11)

Table 1. Homozygosity under various mutational models with P0(0) = 1

Generation ... 102 104 105 108 10' or oo

u = 10"', 42Vw = 0-1

Infinite allele model 0-99998 0-9980 0-9820 0-9192 0-9091
One-step model:

Formula (9) 0-99998 0-9980 0-9821 0-9217 0-9129
Formula (11) 0-99998 0-9981 0-9828 0-9225 0-9129

Two-step model:
Formula (15) 0-99998 0-9980 0-9821 0-9212 0-9122
Formula (16) 0-99998 0-9981 0-9827 0-9219 0-9122

M = 10~8, 4Nu = 1

Infinite allele model 0-99980 0-980 0-835 0-509 0-500
One-step model:

Formula (9) 0-99980 0-980 0-842 0-585 0-577
Formula (11) 0-99983 0-983 0-861 0-585 0-577

Two-step model:
Formula (15) 0-99980 0-980 0-841 0-573 0-567
Formula (16) 0-99983 0-983 0-857 0-575 0-567

N — 250000. ux = u in one-step model, ut = 0-9M and u2 = 0-lw
in two-step model.

but with P0(oo) = l/(4:Nu+l) (Malecot, 1948). The total mutation rate u is
assumed to be the same for all three models. Three interesting properties emerge
from Table 1. First, the difference between the one-step and two-step models is
practically negligible unless 4Nu is larger than 1. This conclusion holds even under
the unfavourable condition u% = 0-l« although in practice u2 seems to be less
than 0-lu (Nei & Chakraborty, 1973). Second, the approximate formulae (11) and
(16) hold rather well. Third, the difference in P0(t) between the one-step and
infinite allele models is practically negligible if 4Nu is small-say around 0-1 or
less. When 4Nu is large, the difference is still smal 1 in the early generations
though it increases with time.
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3. METHOD OF DIFFUSION APPROXIMATION

I now show that the method of diffusion equations also yields the same results.
Ohta & Kimura (1973) assumed that only one-step mutations can occur. If two-
step mutations are also considered, their equations (4) and (5) become, in the
present notation,

S), (17)

where 8ki0 = 0 if k #= 0 and #OtO = 1. It follows that

That is, ,
) (18)

with the initial condition G(Z, 0). Since at the steady state

G(Z, t) = 0,

it follows from (18) that

On the other hand, the transient part of the solution of (18) is given by

[G(Z,0)-G(Z,oo)]ea^t, (20)

which approaches zero as time goes to infinity. Therefore,

G(Z,t) = G(Z,ao) + [G(Z, 0)-G(Z,oo)]ea^t, (21)

which is identical with (4). Thus, the two methods lead to the same solution.

4. NEI'S GENETIC DISTANCE

I shall now apply Wehrhahn's (1975) result on population divergence and the
above result to study Nei's genetic distance.

Let xi and yi be the frequencies of the ith allele At (i runs from — oo to oo) in
populations X and Y, respectively. Nei's (1972) genetic distance is denned as

D =-loge (JXMJXJY)), (22)

where Jx, Jr, and Jxr are the averages of 2xf, %y\, and ^xiyi over all loci,
respectively (or the expectations at a locus). Nei & Chakraborty (1973) study the
genetic distance defined as D = —]ogeJxr with the initial condition Jj r (0) = 1,
which means that both populations are initially completely homozygous for the
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same allele. This definition is inferior to that denned by (22) because it does not
take into account the effect of polymorphism within populations (Nei, 1972).
However, if the degree of polymorphism is not high, the difference between these
two definitions is small. For a comparison of the following result with that of Nei &
Chakraborty (1973), readers may refer to Chakraborty & Nei (1976).

Now suppose that at t = 0 a population splits into two populations and there-
after no migration occurs between them. Since each population evolves inde-
pendently, Jx and Jr can be computed from the formulae given above while
JXY c a n De calculated as follows. Let W0(Z) = ~LQkZ

k be the probability gener-
ating function of the distribution of charge differences for the ancestral popula-
tion at the time of divergence and Dk(t) be the probability that at generation t an
allele in one population is h steps to the right of an allele in another population.
The probability generating function E(Z, t) = ZDk(t)Z

k is then given by

E(Z, t) = W0(Z)H(Zf (23)

where H(Z) is given by (1) (see Wehrhahn's formula (37)). It follows that for the
one-step model

JXY(t) = e-2«* | Q-i
t=-00

and for the two-step

JXY

model
00

(t) = e-
2"* 2 Q,

00

i 2

, ft^(2«<)
•CO

/r(2«2<)/i+2r(2«10-

(24)

(25)

In the following I shall consider only the one-step model since it is known from
the earlier result that the effect of two-step mutations is practically negligible
unless u2t is very large (see also Nei & Chakraborty, 1973).

One important initial case for consideration is that where the sizes of the
ancestral and the two descendent populations are more or less the same and the
ancestral population was at steady state at the time of separation. I choose to
consider this simple case because then the genetic distance under the infinite
allele model increases linearly with time. It thus becomes very easy to examine
the difference between the models of infinite alleles and stepwise mutation.

In this situation it may be assumed that

1 ZW
J* = Jr = Po(«>)=j{1 + 8Nu) and Q - - ^ - ^ .

It then follows that

A ^ (26)

D = 2ut-\oge £ Zf Jt{2ut). (27)
i=-co
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Table 2 shows the value of D for the infinite allele model and one-step model.
Under the above assumptions D = 2ut in the case of the infinite allele model
(Nei, 1972). This value represents the expected number of amino acid substitutions
which occurred in either population, each substitution resulting in a charge
change. Table 2 reveals two interesting features. First, as pointed out by Nei
(1971) and Nei & Chakraborty (1973), the difference in D between the two models
increases with time or, in other words, the detectability of protein differences by
electrophoresis declines as the divergence time increases. This is because a difference

Generation

Infinite allele
model

One-step model

Infinite allele
model

One-step model

Table 2.
103

ux = u =
000020

000019

00020

00015

Genetic
105

= 10-', 41
0020

0019

= 10-8, 4
0-20

0137

distance
108

VM = 0-1
0-20

0-18

Nu = 1
2 0

0-82

10'

2 0

111

2 0 0

1-88

108

2 0 0

2-32

2000

302

in net charge between two proteins, one from each population, may be cancelled
out by a second mutation occurring in either protein. Secondly, the amount of
genetic variability has some effect on detectability. For example, when 2ut = 2,
the value of D given by (27) is 1-11 if u = 10~7 and 4Nu = 0-1 but only 0-82 if
u = 10~6 and ±Nu = 1. This is because, as shown earner, when the genetic
variability is low the difference between the two models is very small. It then follows
that the actual number of alleles (in the sense of the infinite allele model) in an
electrophoretic state is small on the average and therefore the reduction in the
detectability of electrophoresis should also be small. In natural populations 4tNu
is generally of the order of 0-15 or less while estimates of genetic distance between
subspecies are usually around the order of 0-1 or larger (Nei, 1975). On the other
hand, the genetic distance between species is around the order of 1, subject to a
large variation (Nei, 1975). Therefore, the case of 4Nu = 0-1 in Table 2 indicates
that the difference between the two models is about 10 percent in the early stage
of divergence (up to the subspecies level) and becomes quite large at the species
level. Beyond the species level the ability of electrophoresis to detect protein
differences between taxa is so small that it is only of limited practical value.

This study was supported by U.S. Public Health Service Grant GM-20293.1 thank Drs M.
Nei and P. Fuerst for discussions.
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