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On the Digits of Sumsets

Christian Mauduit, Joël Rivat, and András Sárközy

Abstract. LetA andB be large subsets of {1, . . . ,N}. We study the number of pairs (a, b) ∈A×B
such that the sum of binary digits of a + b is ûxed.

1 Introduction

_roughout this paperwewill use the following notation: N,N0,R, andC denote the
set of positive integers, non-negative integers, real numbers, and complex numbers,
respectively, and ∥x∥denotes the distance from x to thenearest integer. Wewilldenote
the sum of digits of an integer n ≥ 0 written in base g by sg(n) and will write s2(n) =
s(n).

_ere aremore than 40 papers inwhich arithmetic properties of sumsets of “dense”
sets of positive integers have been studied (most of these papers appeared in the last
40 years). A list of these papers is presented in [2]. In particular, in [16] the ûrst and
third authors studied the arithmetic structure of the set

(1.1) Ur(N) = {n ∶ n ∈ N, n ≤ N , sg(n) ≡ r mod m}
(for ûxed g, r, m and large N), and they showed that these sets contain “many” sums
a + b with a ∈ A, b ∈ B, whereA,B are “dense” subsets of {1, . . . ,N}.

_eorem A If g ∈ N, g ≥ 2, m ∈ N, (m, g − 1) = 1, r ∈ Z and A,B ⊂ {1, . . . ,N},
then we have

∣ ∣ {(a, b) ∈ A ×B, sg(a + b) ≡ r mod m}∣ − ∣A∣∣B∣
m

∣ ≤ 2γN λ( ∣A∣∣B∣) 1/2
,

where λ = λ(g ,m) and γ = γ(g ,m) are deûned by

λ = 1
2 log g

log
g sin(π/2m)
sin(π/2mg) (< 1), γ = γ(g ,m) = g2

gλ − 1
.

So if (∣A∣ ∣B∣)1/2 ≫ N λ , then the set of the numbers sg(a + b) meets every residue
class modulo m, and if (∣A∣ ∣B∣)1/2N−λ → +∞, then the numbers sg(a + b) are well
distributedmodulo m.
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_e study of the arithmetic structure of the set (1.1) was relatively easy, since this
set is “dense”; i.e., for ûxed g, r,m, it contains a positive proportion of the integers up
to N . _us the ûrst and third authors wrote in [17]:

Since the integers characterized by a simple digit property have a very speciûc
structure and they can be studied very eõciently by the generating function
principle, one expects that it can be proved thatmuch “thinner” sets of this type
all have a nice arithmetic structure. _e most natural way to construct “thin”
sets of this type is to consider the sets

(1.2) Vk = {n ∶ n ∈ N, n ≤ N , sg(n) = k}
where k ∈ N, 0 ≤ k ≤ (g − 1)((logN)/(log g) + 1).

Indeed, we showed in [17] that for every k we have

∣Vk ∣ ≪g N(logN)−1/2 ,

so that these sets aremuch thinner than the set in (1.1). Motivated by this considera-
tion, our goal in [17] was to study the arithmetic structure of the sets Vk in (1.2). We
succeeded in proving some results similar to the ones proved in the easier situation
studied in [16]. However, as we wrote in [17] (here we change the notation slightly):

. . . one would like to prove the Vk analogue of our result _eorem A. Unfortu-
nately, we have not been able to prove such a theorem. . .

_us, in particular, we have not been able to prove the following conjecture:

Conjecture 1.1 If ε > 0, N > N0(ε), A,B ⊂ {1, 2, . . . ,N} and ∣A∣ , ∣B∣ > εN , then
there are integers a, b such that a ∈ A, b ∈ B and

sg(a + b) = ⌊(g − 1)ν/2⌋ ,

where ν = ν(N) ∈ N is deûned by gν ≤ N ≤ gν+1 − 1.

_e set of the integers n such that

sg(n) = ⌊ g − 1
2

⌊ log n
log g

⌋⌋

can be generated by an inûnite automaton (or an inûnite substitution of constant
length g) on the alphabet {0, . . . , g − 1} (see [10] for a precise deûnition of inûnite
automata and inûnite substitutions). Fouvry andMauduit [6] described the statistical
properties of this set, and the goal of this paper is to studymore deeply the statistical
properties in order to be able to understand how it intersects sumsets.

_e paper [17] appeared in 1997, and no advance has been made towards this con-
jecture since then. However,many papers have been published on integers character-
ized by digit properties [3–6,8,9,11–15,19]. In some of these papers (mostly in [6,8,12])
there are new ideas, methods, and results that can be used for attacking Conjecture
1.1. Indeed, by adapting, extending, and combining these ideas, we have been able
to prove the conjecture. In order to shorten the discussion here we will restrict our-
selves to the g = 2 special case. (_e case g > 2 could be handled similarly; however,
there are certain technical diõculties; thus, we expect that the proof would bemuch
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longer.) In this paper our goal is to present the proof of the following slightly more
general form of the g = 2 case of the conjecture.

_eorem 1.2 For any L > 0 and ε > 0 there is a number N0 = N0(L, ε) such that if
N ∈ N, N > N0, k ∈ N,

∣ k − logN
2 log 2

∣ < L(logN)1/4 ,(1.3)

A,B ⊂ {1, 2, . . . ,N},

then, writing ρ = ( log 2
8 ) 1/2, we have

∣ ∣ {(a, b) ∶ a ∈ A, b ∈ B, s(a + b) = k} ∣ − ( log 4
π

)
1/2 ∣A∣∣B∣

(logN)1/2 ∣

< N
(logN)1/2 exp((ρ − ε)(log logN)1/2)(∣A∣ ∣B∣)1/2 .

Note that if ν is deûned as in Conjecture 1.1 (with g = 2), then we have log N
2 log 2 =

ν
2 +O(1) so that (1.3) holds with ⌊ν/2⌋ in place of k. It follows from _eorem 1.2 that
if

(∣A∣ ∣B∣)1/2 > ( π
log 4

)
1/2 N
exp((ρ − ε)(log logN)1/2) ,

then there are a ∈ A, b ∈ B with

(1.4) s(a + b) = ⌊ν/2⌋ ,
and, indeed (applying_eorem 1.2with ε

2 in place of ε) it also follows that the number
of solutions of (1.4) in a and b is about as large as expected:

∣ {(a, b) ∶ a ∈ A, b ∈ B, s(a + b) = k}∣ = (1 + o(1))( log 4
π

)
1/2 ∣A∣ ∣B∣

(logN)1/2 .

In Section 6 we will also present an estimate from the opposite side.

2 Structure of the Proof of the Theorem

We will use the circlemethod. Deûne the positive integer ν by

(2.1) 2ν−1 ≤ 2N < 2ν .

Now deûne Vk by

(2.2) {n ∶ n ≤ 2ν − 1, s(n) = k};
for α ∈ R, write

(2.3) F(α) = ∑
n∈Vk

e(nα), G(α) = ∑
a∈A

e(aα), H(α) = ∑
b∈B

e(bα),

and consider the integral

(2.4) J = ∫
1/2

−1/2
G(α)H(α)F(−α)dα.
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_en

J = ∫
1/2

−1/2
∑
a∈A
∑
b∈B
∑

n∈Vk

e((a + b − n)α)dα(2.5)

= ∑
a+b−n=0

a∈A, b∈B, n∈Vk

1 = ∑
a∈A, b∈B
s(a+b)=k

1

= ∣{(a, b) ∶ a ∈ A, b ∈ B, s(a + b) = k}∣ .
_us, it suõces to estimate the integral J. In order to do this we will ûrst estimate
F(α) deûned in (2.3) for “large” ∥α∥ in Section 3. Next we will estimate it for “small”
∥α∥ in Section 4; ûnally, we will complete the proof of the theorem by using these
estimates in Section 5.

3 Estimate of F(α) for Large ∥α∥
_e study of the trigonometric product∏ν−1

j=0 ∣sin π2 j a
d ∣ for (d , a, ν) ∈ N×N

2
0 plays an

important role inmany works concerning the sumof digits function. For example the
main results from [7] and [18] are based on the fact that this trigonometric product is
uniformly bounded by (

√
3/2)ν−1. Results from [12,16,17] are based on upper bounds

uniform in a of the kind e−cν/ log d with c > 0, and those from [11] on the upper bound
on average

1
d ∑0≤a<d

∑
0≤ j<ν

∣ sin π2 j a
d
∣ ≤ (

√
3

2
)

ν
√

3
d log(3/2)/ log 2 .

_e situation becomes much more complicated when the rational number a/d is re-
placed by a real number α. In Lemma 3.4 we give an explicit upper bound for the
trigonometric product

ν−1
∏
j=0

∣cos π(θ + 2 jα)∣ = 2−ν
ν−1
∏
j=0

∣ 1 + e(θ + 2 jα)∣

with (θ , α) ∈ R2 depending on ∥θ∥ and on the ûrst non zero digit in the dyadic ex-
pansion of the real number α and in Lemma 3.6we give a L1 estimate for this trigono-
metric product.

Lemma 3.1 For (θ , α) ∈ R2 we have

∥θ + α∥2 + ∥θ + 2α∥2 ≥ 1
5 ∥θ∥

2 ,(3.1)

∣ 1 + e(θ + α)∣ ⋅ ∣ 1 + e(θ + 2α)∣ ≤ 4 e−2c∥θ∥2(3.2)

with
(3.3) c = π2/20.

Remark Taking α = −3θ/5we observe that (3.1) is optimal and (3.3) is also optimal
(compare Taylor expansions in (3.2) when α = −3θ/5).

Proof We want to determine theminimum mθ of α ↦ ∥θ + α∥2 + ∥θ + 2α∥2 when
α runs over R. By symmetry and periodicity we can assume that 0 ≤ θ ≤ 1/2. Put t =
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θ+α and g(t) = ∥t∥2+∥2t − θ∥2. We havemθ = g(t0) for some t0 ∈ [−1/2, 1/2]. Since
mθ ≤ g(θ/2) = θ2/4, we can assume that both t0 ∈ [−θ/2, θ/2] and ∥2t0 − θ∥ ≤ θ/2.
For t ∈ [−1/2, (2θ − 1)/4] we have −3/2 ≤ 2t − θ ≤ −1/2, thus g(t) = t2 + (2t − θ + 1)2,
so that in this interval g(t) ≥ g(2(θ − 1)/5) = (1− θ)2/5. For t ∈ [(2θ − 1)/4, θ/2] we
have g(t) = t2 + (2t − θ)2, so that in that interval g(t) ≥ g(2θ/5) = θ2/5. Observing
that θ2 ≤ (1 − θ)2, we conclude that the minimum is reached for t0 = 2θ/5 and get
equation (3.1).
For x ∈ [−1/2, 1/2], we have

0 ≤ cos(πx) ≤ 1 − π2x2

2
+ π4x4

24
≤ 1 − π2x2

2
+ π4x4

8
− π6x6

48
≤ e− π2 x2

2 .

Observing that ∣1 + e(u)∣ = 2 cos(π ∥u∥), we deduce from the inequality above that

∣1 + e(θ + α)∣ ⋅ ∣1 + e(θ + 2α)∣ ≤ 4 e−
π2
2 (∥θ+α∥

2
+∥θ+2α∥2) ,

and applying (3.1), we get (3.2).

Lemma 3.2 For (θ , α) ∈ R2, ν ∈ N, and c deûned by (3.3), we have

(3.4) 2−ν
ν−1
∏
j=0

∣ 1 + e(θ + 2 jα)∣ ≤ e−c∥θ∥
2
(ν−2∥ν/2∥) ≤ ec/4e−c∥θ∥

2ν .

Proof Notice that ν − 2 ∥ν/2∥ is an even integer 2ν′ with 2ν′ ≤ ν ≤ 2ν′ + 1. Hence,

2−ν
ν−1
∏
j=0

∣ 1 + e(θ + 2 jα)∣ ≤ 2−2ν′
ν′−1
∏
j=0

∣ 1 + e(θ + 22 jα)∣ ∣ 1 + e(θ + 22 j+1α)∣

and applying Lemma 3.1 with α replaced by 2 jα for j = 0, . . . , ν′ − 1, we get the result.

Lemma 3.3 For 0 ≤ θ0 ≤ 1
2 , α ∈ R, ν ∈ N, and c deûned by (3.3), we have

(3.5) 2−ν ∫
∥θ∥≥θ0

ν−1
∏
j=0

∣ 1 + e(θ + 2 jα)∣dθ ≤
√

π ec/4 e
−cθ2

0ν
√
cν

.

Proof By (3.4) it is enough to observe that

∫
∥θ∥≥θ0

e−c∥θ∥
2νdθ = 2 e−cθ

2
0ν ∫

1/2

θ0

e−c(θ
2
−θ2

0)νdθ ,

and writing θ = θ0 + t, we have

∫
1/2

θ0

e−c(θ
2
−θ2

0)νdθ ≤ ∫
+∞

0
e−c(t

2
+2θ0 t)νdt ≤ ∫

+∞

0
e−c t

2νdt =
√

π
2
√
cν
,

which gives (3.5).

Lemma 3.4 Let ν1 ∈ N, (θ , α) ∈ R2 such that ∥θ∥ < 1
4 and 2−ν1 ≤ ∥α∥ < 21−ν1 . For

ν ≥ ν1 and c deûned by (3.3), we have

(3.6) 2−ν
ν−1
∏
j=0

∣1 + e(θ + 2 jα)∣ ≪ ∥θ∥e−c∥θ∥
2ν + 2ν1−ν + exp(−σ(θ)√ν − ν1) ,
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where σ(θ) =
√
− 1

2 (log 2) log( sin π(∥θ∥ + 1
4 )) .

Proof If ν1 = 1, i.e. ∥α∥ = 1/2 then for j = 0 we observe that
1
2 ∣ 1 + e(θ +

1
2 )∣ = ∣ sin πθ∣ ≤ π ∥θ∥

and for 1 ≤ j ≤ ν − 1 we have 1
2 ∣1 + e(θ + 2 jα)∣ = 1

2 ∣1 + e(θ)∣ ≤ e−c∥θ∥2 (using (3.2)
with α = 0), andwe obtain that (3.6) is satisûed. _erefore,we can assume that ν1 ≥ 2.
By periodicity, we can assume that −1/2 < α < 1/2. _en if −1/2 < α < 0, observing

that ∣1 + e(θ + 2 jα)∣ = ∣1 + e(−θ − 2 jα)∣ , we can replace (θ , α) by (−θ ,−α), so that
we can assume that 0 ≤ α < 1/2. We can write

α =
∞

∑
i=1
a i2−i

with a1 = ⋅ ⋅ ⋅ = aν1−1 = 0, aν1 = 1 and a i ∈ {0, 1} for i ≥ ν1 + 1.
In the word a1 ⋅ ⋅ ⋅ aν+1, let us consider the length ℓ1 of the largest subword of the

shape 01 ⋅ ⋅ ⋅ 1. _is means that ℓ1 is the greatest element of {2, . . . , ν − ν1 + 3} with the
property that there exist an integer j0 with 0 ≤ ν1 − 2 ≤ j0 ≤ ν + 1− ℓ1 ≤ ν − 1 such that
a j0+1 = 0 and a j0+2 = ⋅ ⋅ ⋅ = a j0+ℓ1 = 1 (taking j0 = ν1 − 2 and ℓ1 = 2 show that the set of
such ℓ1’s is not empty). Under these conditions we have

∥2 j0α − 1
2∥ = ∥ ∑

i≥ j0+2
a i2 j0−i − ∑

i≥ j0+2
2 j0−i∥ = ∑

i≥ j0+ℓ1+1
(1 − a i)2 j0−i ≤ 2−ℓ1 .

For ∥θ∥ ≤ 1
4 we have

∥θ + 2 j0α − 1
2∥ ≤ ∥θ∥ + ∥2 j0α − 1

2∥ ≤ ∥θ∥ + 2−ℓ1 ≤ 1
4 +

1
4 =

1
2 ;

thus, observing that the sinus is increasing over [0, π/2] we obtain for ∥θ∥ ≤ 1
4 :

1
2 ∣1 + e(θ + 2 j0α)∣ = sin π ∥θ + 2 j0α − 1

2∥ ≤ sin π(∥θ∥ + 2−ℓ1) .
Applying (3.4) to the products for 0 ≤ j < j0 and for j0 < j ≤ ν − 1, we get

(3.7) 2−ν
ν−1
∏
j=0

∣1 + e(θ + 2 jα)∣ ≤ sin π(∥θ∥ + 2−ℓ1) ec/2e−c∥θ∥
2
(ν−1) .

In the special case where aν1 = aν1+1 = ⋅ ⋅ ⋅ = aν+1 = 1, we have j0 = ν1 − 2 and
ℓ1 = ν − ν1 + 3 and we get (3.6). From now on we can assume that there exists
i ∈ {ν1 + 1, . . . , ν + 1} such that a i = 0. In the word a1 ⋅ ⋅ ⋅ aν+1, let us consider the
length ℓ0 of the largest subword of the shape 10 ⋅ ⋅ ⋅ 0. _at means that ℓ0 is the greatest
element of {2, . . . , ν−ν1+2}with the property that there exist j0 ∈ {ν1−1, . . . , ν+1−ℓ0}
such that a j0+1 = 1 and a j0+2 = ⋅ ⋅ ⋅ = a j0+ℓ0 = 0. _en

∥2 j0α − 1
2∥ = ∑

i≥ j0+ℓ0+1
a i2 j0−i ≤ ∑

i≥ j0+ℓ0+1
2 j0−i = 2−ℓ0

and as above we obtain for ∥θ∥ ≤ 1
4 :

(3.8) 2−ν
ν−1
∏
j=0

∣1 + e(θ + 2 jα)∣ ≤ sin π(∥θ∥ + 2−ℓ0) ec/2e−c∥θ∥
2
(ν−1) .
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Let ℓ = ℓ0+ ℓ1. Sincemax(ℓ0 , ℓ1) ≥ ℓ/2, combining (3.7) and (3.8),we get for ∥θ∥ ≤ 1
4 :

(3.9) 2−ν
ν−1
∏
j=0

∣1 + e(θ + 2 jα)∣ ≤ sin π(∥θ∥ + 2−ℓ/2) ec/2e−c∥θ∥
2
(ν−1) .

In the word aν1−1 ⋅ ⋅ ⋅ aν+1, we observe that each subword of length ℓ contains the sub-
word 10. Since there is no subword 0 ⋅ ⋅ ⋅ 0 of length ≥ ℓ0, there need be a 1 in the ûrst
ℓ0 positions, and then there need be a 0 in the next ℓ1 positions. _is implies that
the number κ of integers j ∈ {0, . . . , ν − 1} such that (a j+1 , a j+2) = (1, 0) is at least
the number of disjoint intervals of ℓ integers in [ν1 − 1, ν + 1] and therefore satisûes
κ ≥ ⌊(ν − ν1 + 3)/ℓ⌋. For such j we have

∥2 jα − 1
2∥ = ∑

i≥ j+3
a i2 j−i ≤ 1

4 ,

so that picking only those j’s in the product as above, we get for ∥θ∥ ≤ 1
4

2−ν
ν−1
∏
j=0

∣ 1 + e(θ + 2 jα)∣ ≤ ( sin π(∥θ∥ + 1
4 ))

κ ≪ ( sin π(∥θ∥ + 1
4 ))

(ν−ν1)/ℓ .

In order to combine this bound with (3.9) we ûrst observe that the right-hand side of
(3.9) is estimated by ∥θ∥e−c∥θ∥2ν + 2−ℓ/2, and this implies

2−ν
ν−1
∏
j=0

∣1 + e(θ + 2 jα)∣ ≪ ∥θ∥e−c∥θ∥
2ν +min(2−ℓ/2 , ( sin π(∥θ∥ + 1

4 ))
(ν−ν1)/ℓ) .

_e term 2−ℓ/2 is decreasing with ℓ, while for ∥θ∥ < 1
4 we have 0 < sin π(∥θ∥ + 1

4 ) < 1
so that the other term is increasing with ℓ. _eminimum of these two bounds can be
estimated by a uniform bound in ℓ by taking the worst possible value of ℓ (where the
two bounds involving ℓ are equal):

−ℓ2
2

log 2 = (ν − ν1) log sin π(∥θ∥ + 1
4 ),

and ûnally we get (3.6).

Lemma 3.5 For c deûned by (3.3), 0 < θ0 < 1
4 , 1 ≤ ν1 ≤ ν, 2−ν1 ≤ ∥α∥ < 21−ν1 , we

have

2−ν ∫
∥θ∥≤θ0

ν−1
∏
j=0

∣1+ e(θ + 2 jα)∣dθ ≪ 1 − e−cθ2
0ν

ν
+ θ02ν1−ν + θ0 exp(−σ(θ0)

√
ν − ν1) .

Proof Applying (3.6), it is enough to observe that σ(θ) ≥ σ(θ0) for ∥θ∥ ≤ θ0 and
integrate.

Lemma 3.6 For 1 ≤ ν1 ≤ ν and 2−ν1 ≤ ∥α∥ < 21−ν1 , we have

2−ν ∫
1/2

−1/2

ν−1
∏
j=0

∣1 + e(θ + 2 jα)∣ dθ ≪

1
ν + ( log ν

ν ) 1/2
exp(−( log 2

2 + O(
√

log ν
ν ))√ν − ν1) .
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Proof Without loss of generality we can assume that ν ≥ 30/c, where c is deûned by
(3.3). We combine Lemmas 3.3 and 3.5, and take

θ0 =
√

log(1 +
√
cν)

cν
,

which is admissible, since for 30 ≤ cν, we have

0 < θ0 ≤ ( log(1 +
√

30)
30

)
1/2

< 1
4 .

For this choice of θ0 we have

e−cθ
2
0ν

√
cν

= 1 − e−cθ2
0ν

cν
= 1
cν +

√
cν

≪ 1
ν

and we observe that

σ(θ0) =
√
− 1

2 (log 2) log( sin( π
4 + O(

√
ν−1 log ν))) = log 2

2
+ O(

√
ν−1 log ν),

so that 2ν1−ν ≪ exp(−σ(θ0)
√ν − ν1), and we get the expected estimate.

Remark _e term 1
ν is optimal apart from the implied constant. Indeed, taking

α = 1/2, we have

2−ν ∫
1/2

−1/2

ν−1
∏
j=0

∣1 + e(θ + 2 jα)∣ dθ = ∫
1/2

−1/2
∣sin πθ∣ ∣cos πθ∣ν−1 dθ = 2

πν
.

We are now ready to estimate ∣F(α)∣ for large ∥α∥.

Lemma 3.7 For ν1 ∈ N, ν1 ≤ ν, and 2−ν1 ≤ ∥α∥ < 21−ν1 , we have

(3.10) ∣F(α)∣ ≪ N( 1
ν + ( log ν

ν ) 1/2
exp(−( log 2

2 + O(
√

log ν
ν ))√ν − ν1)) .

Proof Clearly, we have

F(α) = ∑
n∈Vk

e(nα) = ∑
0≤n≤2ν−1
s(n)=k

e(nα)

=
2ν−1

∑
n=0

e(nα)∫
1/2

−1/2
e((s(n) − k)θ) dθ

= ∫
1/2

−1/2

2ν−1

∑
n=0

e(nα + (s(n))θ) e(−kθ) dθ ,

so that

∣F(α)∣ ≤ ∫
1/2

−1/2
∣
2ν−1

∑
n=0

e(nα + (s(n))θ)∣dθ = ∫
1/2

−1/2
∣
ν−1
∏
j=0

(1 + e(θ + 2 jα))∣dθ .

Applying Lemma 3.6 and using (2.1), we get (3.10).
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4 Estimate of F(α) for Small ∥α∥
We will need the following lemma.

Lemma 4.1 Assume that the function b∶N→ R satisûes the conditions

(4.1)
1
2
µ + b(µ) ∈ N for every µ ∈ N

and

(4.2) there is a K ≥ 1 such that for every µ ∈ N we have ∣b(µ)∣ ≤ Kµ1/4 ,

and deûne the set Eb by

Eb = {n ∶ n ∈ N, s(n) = 1
2
⌊ log n
log 2

⌋ + b(⌊ log n
log 2

⌋)} .

Write

(4.3) η = ( log 4
π

)
1/2

.

_en we have

Eb(x) ∶= ∣Eb ∩ [1, x]∣ = η x
(log x)1/2 + OK(

x
log x

)

uniformly for x ≥ 2.

Proof _is is the g = 2 special case of [6,_eorem 1.1].

Lemma 4.2 If L, N , and k are deûned as in the theorem, ν, Vk and η are deûned by
(2.1), (2.2) and (4.3), then we have

(4.4) Vk(x) = ∣Vk ∩ [1, x]∣ = η x
(log x)1/2 + OL(

N
logN

) .

uniformly for 2 ≤ x ≤ 2ν − 1.

Proof If x ≤ N
log N , then (4.4) holds trivially, thus wemay restrict ourselves to

N
logN

< x ≤ 2ν − 1(< 4N)

(where the last inequality follows from (2.1)). Deûne the integer ν2 by

(4.5) 2ν2 ≤ N
logN

< 2ν2+1 ,

and deûne the function b∶N→ R in the following way. Let

(4.6) b(µ) = k − 1
2
µ if µ ∈ N, ν2 ≤ µ ≤ ν

and

(4.7) b(µ) =
⎧⎪⎪⎨⎪⎪⎩

1
2 for µ odd,
1 for µ even,

if µ ∈ N and µ /∈ [ν2 , ν].

https://doi.org/10.4153/CJM-2016-007-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-007-2


604 C. Mauduit, J. Rivat, and A. Sárközy

For this function b, condition (4.1) holds trivially. Equation (4.2) also holds trivially
for µ /∈ [ν2 , ν] for any ûxed K and large enough N , while if

(4.8) ν2 ≤ µ ≤ ν,
then by (2.1), (4.5), and (4.8) we have

N
2 logN

< 2ν2 ≤ 2µ ≤ 2ν ≤ 4N ,

whence

(4.9)
logN
log 2

− log logN
log 2

+ O(1) < ν2 ≤ µ ≤ ν < logN
log 2

+ O(1).

It follows from (1.3), (2.1), (4.6), (4.8), and (4.9) that for N large enough, we have

∣b(µ)∣ = ∣ k − 1
2
µ∣ ≤ ∣ k − 1

2
logN
log 2

∣ + 1
2
∣ logN
log 2

− µ∣

< L(logN)1/4 + 1
2
log logN

log 2
+ O(1)

< (L + 1)(logN)1/4 ,

so that (4.2) holds with K = L + 1 and the function b deûned by (4.6) and (4.7). _us,
by Lemma 4.1, we have

Eb(x) = η
x

(log x)1/2 + OK(
x

log x
)(4.10)

= η x
(log x)1/2 + OL(

x
log x

) (for 2 ≤ x ≤ 2ν).

Assume now that 2ν2 ≤ n ≤ 2ν ._enwriting µ = ⌊ log n
log 2 ⌋, clearlywe have ν2 ≤ µ ≤ ν;

thus, by (4.6) we have

b(µ) = b(⌊ log n
log 2

⌋) = k − 1
2
µ = k − 1

2
⌊ log n
log 2

⌋ ,

whence

(4.11) k = 1
2
⌊ log n
log 2

⌋ + b(⌊ log n
log 2

⌋) (for 2ν2 ≤ n ≤ 2ν).

It follows from (4.11) and the deûnitions of Vk and Eb that

Vk ∩ [2ν2 , 2ν − 1] = Eb ∩ [2ν2 , 2ν − 1].
_us, for 2ν2 ≤ x ≤ 2ν − 1, we have

Vk(x) − Vk(2ν2) = Eb(x) − Eb(2ν2),
whence, by (4.5), (4.10), and the deûnitions of Vk and Eb ,

Vk(x) = Eb(x) + Vk(2ν2) − Eb(2ν2) = η x
(log x)1/2 + OL(

x
log x

) + O(2ν2)

= η x
(log x)1/2 + OL(

x
log x

) + O( N
logN

) = η x
(log x)1/2 + OL(

N
logN

) .
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Lemma 4.3 Write

(4.12) ϕ(α) = η 1
(logN)1/2

2ν−1

∑
n=1

e(nα).

_en, using the same assumptions and notations as in Lemma 4.2, we have

(4.13) ∣F(α) − ϕ(α)∣ = OL(
N

logN
(N ∥α∥ + 1))

uniformly for all α.

Proof By partial summation, we write

F(α) = ∑
n∈Vk

e(nα) =
2ν−1

∑
n=1

(Vk(n) − Vk(n − 1)) e(nα)

=
2ν−2

∑
n=1

Vk(n)(e(nα) − e((n + 1)α)) + Vk(2ν − 1) e((2ν − 1)α) .

_en by Lemma 4.2, we get

F(α) =
2ν−2

∑
n=2

(η n
(log n)1/2 + OL(

N
logN

))(e(nα) − e((n + 1)α))

+ (η 2ν − 1
(log(2ν − 1))1/2 + OL(

N
logN

)) e((2ν − 1)α) + O(1),

so that, reversing the partial summation we obtain

F(α) = η
2ν−1

∑
n=3

( n
(log n)1/2 −

n − 1
(log(n − 1))1/2 ) e(nα)

+ OL(
N

logN
(

2ν−2

∑
n=2

∣ 1 − e(α)∣ + 1)) + O(1).

_us,

(4.14) F(α) = η
2ν−1

∑
n=3

( 1
(log n)1/2 + O( 1

(log n)3/2 )) e(nα)

+ OL(
N

logN
(N ∥α∥ + 1)) ,

where we used (2.1) and ∣1 − e(α)∣ ≤ 2π∥α∥. A little computation shows that we have

2ν−1

∑
n=3

1
(log n)1/2 e(nα) =

1
(logN)1/2

2ν−1

∑
n=3

e(nα) + O( N
logN

) ,(4.15)

2ν−1

∑
n=3

1
(log n)3/2 = O( N

(logN)3/2 ) .(4.16)

Equation (4.13) follows from (4.12), (4.14), (4.15), and (4.16).
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5 Completion of the Estimate of the Integral J

We will prove the following lemma.

Lemma 5.1 Under the assumptions in the theorem and using the notation above, we
have

(5.1) ∣F(α) − ϕ(α)∣ = OL(
N

(logN)1/2 exp((ρ − ε
2 )(log logN)1/2))

uniformly for all α.

Proof Deûne τ by

τ = (logN)1/2

N exp((ρ − ε
3 )(log logN)1/2) .

Assume ûrst that ∥α∥ ≤ τ. _en if N is large enough in terms of L and ε, then it
follows from (4.13) in Lemma 4.3 that

∣F(α) − ϕ(α)∣ = OL(
N

logN
(N ∥α∥ + 1)) ≤ OL(

N
logN

(Nτ + 1))

= OL(
N

(logN)1/2 exp((ρ − ε
3 )(log logN)1/2)) (for ∥α∥ ≤ τ),

so that now (5.1) holds whenever ∥α∥ ≤ τ.
Assume now that

(5.2) ∥α∥ > τ.

Clearly, we have

(5.3) ∣F(α) − ϕ(α)∣ ≤ ∣F(α)∣ + ∣ϕ(α)∣.

First, we will estimate ∣F(α)∣ by using Lemma 3.7. Deûne the positive integer ν1 as in
Lemma 3.7:

(5.4) 2−ν1 ≤ ∥α∥ < 21−ν1 .

_en by (2.1), (5.2), and (5.4) we have

2ν−ν1 = 2ν ⋅ 2−ν1 > 2N ⋅ 1
2 ∥α∥ > Nτ

whence, by the deûnition of τ,

ν − ν1 >
log(Nτ)
log 2

= 1
log 2

( 1
2
log logN − ( ρ − ε

3
)(log logN)1/2)

= log logN
2 log 2

( 1 − 2( ρ − ε
3
)(log logN)−1/2) .

It follows that

√
ν − ν1 >

(log logN)1/2

(2 log 2)1/2 ( 1 −
ρ − ε

3

(log logN)1/2 + O( 1
log logN

))
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and

(5.5) ( log 2
2

+ o(1))√ν − ν1 > (( log 2
8

)
1/2
+ o(1))((log logN)1/2 + O(1)) =

(ρ + o(1))(log logN)1/2 .

By (2.1), (5.4), and (5.5) we get from Lemma 3.7 that

∣F(α)∣ ≪ N( 1
logN

+ (log logN)1/2

(logN)1/2 exp(−(ρ + o(1))(log logN)1/2))(5.6)

≪ N
(logN)1/2 exp((ρ − ε

2 )(log logN)1/2) .

Moreover, by (4.12), (5.2), and the inequality ∣1 − e(α)∣ ≥ 4 ∥α∥ we have

∣ϕ(α)∣ = η 1
(logN)1/2 ∣

1 − e((2ν − 1)α)
1 − e(α) ∣(5.7)

≪ 1
(logN)1/2 ⋅

1
∥α∥ < 1

(logN)1/2 ⋅
1
τ

=
N exp((ρ − ε

3 )(log logN)1/2)
logN

.

By (5.3), (5.6), and (5.7) it follows that (5.1) also holds in the case (5.2).

Nowwe are ready to complete the proof of the theorem. _e integral J in (2.4) can
be rewritten in the form

(5.8) J = J1 + J2 ,

where

J1 = ∫
1/2

−1/2
G(α)H(α)ϕ(−α)dα, J2 = ∫

1/2

−1/2
G(α)H(α)(F(−α) − ϕ(−α))dα.

Here we clearly have

J1 = ∫
1/2

−1/2
∑
a∈A

e(aα)∑
b∈B

e(bα) η
(logN)1/2

2ν−1

∑
n=1

e(−nα)dα(5.9)

= η
(logN)1/2 ∑

a∈A
∑
b∈B

2ν−1

∑
n=1
∫

1/2

−1/2
e((a + b − n)α)dα

= η
(logN)1/2 ∑

a∈A
∑
b∈B

1 = η
(logN)1/2 ∣A∣ ∣B∣ ,

and by Lemma 5.1 we have

∣J2∣ ≤ OL(
N

(logN)1/2 exp((ρ − ε
2 )(log logN)1/2)) ∫

1/2

−1/2
∣G(α)H(α)∣ dα.
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IfN is large enough in terms of L and ε, then by using the Cauchy–Schwarz inequality
we get that

∣J2∣ ≤
N

(logN)1/2 exp((ρ − ε)(log logN)1/2)(∫
1/2

−1/2
∣G(α)∣2 dα∫

1/2

−1/2
∣H(α)∣2 dα)

1/2
(5.10)

= N
(logN)1/2 exp((ρ − ε)(log logN)1/2)

( ∣A∣∣B∣) 1/2
.

By (2.5), (5.8), (5.9), and (5.10) we have

∣ ∣ {(a, b) ∶ a ∈ A, b ∈ B, s(a + b) = k}∣ − η
(logN)1/2 ∣A∣∣B∣∣ =

∣J − J1∣ = ∣J2∣ <
N

(logN)1/2 exp((ρ − ε)(log logN)1/2)
( ∣A∣∣B∣) 1/2

,

which completes the proof of the theorem.

6 Estimates From the Opposite Side

Onemight like to know how far_eorem1.2 could be improved upon. In otherwords,
what can be said from the opposite side? In this direction we will show the following
theorem.

_eorem 6.1 For N ∈ N, N →∞ there are sets

(6.1) A, B ⊂ {0, 1, 2, . . . ,N}

such that

(6.2) ∣A∣ = ∣B∣ = N exp(− 4
(log 2)1/2 (logN)1/2 log logN + O(1))

and

∣{(a, b) ∶ a ∈ A, b ∈ B, s(a + b) ≤ 1
2
logN
log 2

+ ( 1
(log 2)1/2 −

C
log logN

)(logN)1/2 log logN}∣

< ∣A∣ ∣B∣ exp(−2(log logN)2 + O(log logN))

(where C is a positive absolute constant large enough).

It can easily be deduced from this theorem that for these setsA,B, except for “very
few” sums a+ b with a ∈ A, b ∈ B, the sum of digits of the sums a+ b is much greater
than expected. For any c > 0 and largeN , there aremuch less than ∣A∣∣B∣

(log N)c pairs (a, b)
with

s(a + b) ≤ 1
2
logN
log 2

+ ( 1
(log 2)1/2 −

C
log logN

)(logN)1/2 log logN .

https://doi.org/10.4153/CJM-2016-007-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-007-2


On the Digits of Sumsets 609

Proof Write

ν = ⌊ logN
log 2

− 4
(log 2)1/2 (logN)1/2 log logN⌋ ,(6.3)

µ = ⌊ 4
(log 2)1/2 (logN)1/2 log logN − 1⌋ ,(6.4)

and let

A = {m ⋅ 2µ + (2µ − 1) ∶ 0 ≤ m < 2ν−1},
B = {n ⋅ 2µ ∶ 0 ≤ n < 2ν−1}.

_en by (6.3) and (6.4), it follows from

(6.5) a = m ⋅ 2µ + (2µ − 1) ∈ A, b = n ⋅ 2µ ∈ B

that we have

0 < a + b < 2ν−1 ⋅ 2µ + (2µ − 1) + 2ν−1 ⋅ 2µ = 2µ+ν + (2µ − 1)

≤ 2
log N
log 2 −1 + 2O((log N)1/2 log log N) < 1

2
N + o(N) < N

for N large enough, so that both (6.1) and A +B ⊂ {1, 2, . . . ,N} hold. Moreover, we
have

(6.6) ∣A∣ = ∣B∣ = 2ν−1 ,

whence (6.2) follows from (6.3).
It also follows from (6.5) that

(6.7) a + b = (m + n) ⋅ 2µ + (2µ − 1),

whence, by the q-additive property of the sum of digits function, we have

s(a + b) = s((m + n) ⋅ 2µ + (2µ − 1)) = s((m + n) ⋅ 2µ) + s(2µ − 1)(6.8)
= s(m + n) + s(1 . . . 1) = s(m + n) + µ (with 0 < m + n < 2ν).

We will call an integer 0 ≤ t < 2ν “bad” if

s(t) ≥ ν
2
− (log ν)ν1/2 ,

and denote the set of these bad integers t by T. Indeed, if a sum a+b with a, b of form
(6.5) is such that m + n = t is a “bad” number, then by (6.7) and (6.8) we have

s(a + b) = s(t) + µ ≥ ( ν
2
− (log ν)ν1/2) + µ,
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while by (6.3) and (6.4), we have

ν
2
+ µ ≥ 1

2
logN
log 2

− 2(logN)1/2

(log 2)1/2 log logN + 4(logN)1/2

(log 2)1/2 log logN − 3

= 1
2
logN
log 2

+ 2(logN)1/2

(log 2)1/2 log logN − 3,

log ν ≤ log
logN
log 2

+ log( 1 − 4(log 2)1/2

(logN)1/2 log logN) = log logN + O(1),

ν1/2 ≤ (logN)1/2

(log 2)1/2 ( 1 − 4(log 2)1/2

(logN)1/2 log logN)
1/2

= (logN)1/2

(log 2)1/2 + O(log logN).

_us,

(log ν)ν1/2 ≤ (logN)1/2

(log 2)1/2 log logN + O((logN)1/2),

s(a + b) ≥ 1
2
logN
log 2

+ (logN)1/2

(log 2)1/2 log logN + O((logN)1/2),

so that s(a + b) is “large” for such a pair (a, b):

(6.9) s(a + b) > 1
2
logN
log 2

+ ( 1
(log 2)1/2 −

C
log logN

)(logN)1/2 log logN

where C is a positive absolute constant large enough. _us, if a + b is a “good” sum,
i.e., the opposite of (6.9) holds, then
(6.10) m + n = t
satisûes s(t) < ν

2 − (log ν)ν1/2 , so that t ∈ {0, 1, . . . , 2ν − 1} ∖ T. _e number of these
t’s is 2ν − ∣T∣ , and if such a t is ûxed, and m, n (with 0 ≤ m, n < 2ν−1) satisfy (6.10),
then m, n, and thus also a, b (with a ∈ A, b ∈ B) unique determine each other. _us,
the number of solutions of both (6.10) in (m, n) and (6.7) in (a, b) is at most

min(∣A∣ , ∣B∣) = ∣A∣ = ∣B∣ =
√

∣A∣∣B∣.
_us, the number of “good” pairs (a, b) for which the opposite of inequality (6.9)
holds is at most the product of the number of such t’s multiplied by the upper bound

∣{(a, b) ∶ a ∈ A, b ∈ B, s(a + b) ≤ 1
2
logN
log 2

(6.11)

+ ( 1
(log 2)1/2 −

C
log logN

)(logN)1/2 log logN}∣

≤
√

∣A∣∣B∣(2ν − ∣T∣).
It remains to give a lower bound for ∣T∣. In order to do this we need two lemmas.

Lemma 6.2 Let X1 , . . . , Xν be independent random variables such that P(X j = 1) =
1
2 and P(X j = 0) = 1

2 for j = 1, . . . , ν. _en for any t > 0, we have

P( ∣X1 + ⋅ ⋅ ⋅ + Xν − ν
2 ∣ > t) < 2 exp(−2 t2/ν).
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Proof _is is a special case of the so called “Chernoò bounds”; i.e., apply [1, Corol-
lary A.1.2] to the random variables 1 − 2X1 , . . . , 1 − 2Xν with a = 2t.

Lemma 6.3 For ν ∈ N and ξν > 0 we have
card{0 ≤ n < 2ν , ∣ s(n) − ν

2 ∣ > ξν
√

ν} < 2ν+1 exp(−2 ξ2ν).

Proof Apply Lemma 6.2 with t = ξν
√

ν.

Using Lemma 6.3 (with log ν in place of ξν), we get that

∣T∣ = ∣ {0 ≤ t < 2ν , s(t) ≥ ν
2
− (log ν)

√
ν} ∣(6.12)

≥ ∣{0 ≤ t < 2ν}∣ − ∣{0 ≤ t < 2ν , ∣ s(t) − ν
2
∣ > (log ν)

√
ν}∣

> 2ν − 2ν+1 exp(−2(log ν)2).
It follows from (6.6), (6.11), and (6.12) that

∣{(a, b) ∶ a ∈ A, b ∈ B, s(a + b) ≤ 1
2
logN
log 2

+ ( 1
(log 2)1/2 −

C
log logN

)(logN)1/2 log logN}∣

≤
√

∣A∣∣B∣ 2ν+1 exp(−2(log ν)2)
≤ ∣A∣ ∣B∣ exp(−2(log logN)2 + O(log logN))

We have seen that there are large subsets A, B ∈ {1, 2, . . . ,N} with the property
that

(6.13) s(a + b) = ⌊ ν
2
⌋ (= ⌊ 1

2
logN
log 2

⌋)

has much less solutions than expected. But how large can be A, B so that (6.13) has
no solution at all? It is trivial that there are A, B with ∣A∣∣B∣ ≫ N such that (6.13)
has no solution. On the other hand, we have not been able to answer the following
question.

Problem 6.4 Are there setsA, B ∈ {1, 2, . . . ,N} such that ∣A∣∣B∣N →∞ and (6.13)
has no solution?
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