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The modular group V is the group of integral bilinear transformations of the extended
complex plane which preserve the upper half-plane. It has the presentation (x, y:x2 =
y3 = 1), and the generators can be chosen so that u = xy maps z to z + 1.

By the Kurosh subgroup theorem, a subgroup H of Y is the free product of groups
isomorphic to C2, to C3 and to Z. Let the number of factors be r, s, t respectively. Since
we are interested in the case where H has infinite index, we allow r, s and t to be °°.

Regarding H as a transformation group, the elements" of Q fall into equivalence
classes modulo H. In each class, the stabilizers are H-conjugate, and each is T-conjugate
to a subgroup of (M). Let h denote the number of classes, h0 the number with non-trivial
stabilizer, and hoo = h- h0. If the stabilizer of a point is T-conjugate to (uc) with c > 0, the
class has cusp-width c. Let c ( l ) , . . . , c(h0) be the widths of relevant classes.

When H has finite index n, then h^ = 0, and r, s and h are finite, with h 3= 1. There is
an integer g =* 0 such that

(1)

Also,

n = c(l) + . . . + c(/i). (2)

The group H has standard presentation

, En F j , . . . , Fs, Pu . . . , PhjAj.Bj , . . . , Ag,Bg :

ilt[ ) (3)
We can drop the last relation and one of the parabolic elements—the Pk—to obtain H as a
free product. Note that t= h + 2g— 1, and that the number of hyperbolic generators—the
Am and Bm—is even. These results are proved in Lehner [2].

In [4], Millington showed that when h - 1 and n, r, s and g are non-negative integers
satisfying (1) with n 5= 1, a corresponding subgroup exists. In [5], she extended this result
to fc2*l. In [7], some results for integers satisfying (2) are obtained.

In [8], Tretkoff showed that when h = hm = l and r + s +1 is infinite, with t even if it is
finite, a corresponding subgroup exists. We show that the parity restriction is necessary.

The method in [4], [5], and [8] is the exploitation of a correspondence between
subgroups and permutations. The required permutations are built from basic patterns.
Millington's patterns increase r by 1, s by 1, g by 1 or h by 1. Tretkoff's patterns for r and
s are identical. The pattern she uses to increase t by 2 could be replaced by Millington's
pattern for g. The work in [4], [8] is simplified by the observation that all the cosets are of
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34 W. W. STOTHERS

the form Huk, so that u induces the permutation k^fc + 1 (mod n). The permutation
induced by x is sufficient to identify the subgroup. In each case, the subgroup is recovered
by the Reidemeister-Schreier process.

We use the method of coset diagrams and graph theoretic technique to extend
Tretkoffs results.

1. Definitions. Coset diagrams were used in [6], but to allow investigation of group
structure we describe them in a different way.

A diagram is a finite or countable set of points, with one point marked O, together
with red, blue and green loops and edges such that

(a) each point has a loop, or is the end of one red line,
(b) each point has a directed blue loop, or is a vertex of one directed blue triangle,
(c) each point has a directed green loop, or is the beginning of one directed green

line, and the end of another,
(d) the underlying graph is transitive,
(e) starting at any point, proceeding in positive direction when relevant, the walk

'red, blue' leads to the same point as the walk 'green'.
Given a diagram D, Dx (resp. D2) is the figure obtained by deleting the green (resp.

blue) loops and edges from D.
Words of F correspond to walks in D starting from O. When words (in x and y, or x

and u) are read from left to right, the walk is obtained by replacing x by red, y by blue
and u by green. Conditions (a), (b), (c) and (e) ensure that there is no ambiguity.

An excursion is a walk which consists of a sequence of lines, followed by the same
sequence in reverse order.

A route is a closed walk starting from O which does not involve any excursions.
Any closed walk starting from O defines a unique route. Further, given routes JRt and

R2, the walk Rx then R2 is closed and so defines a route &i£2- With this operation, the
routes of a graph form a group £%.

The group resembles the cycle group in some respects, and can be obtained from a
spanning tree in the usual way (see [1]). We state some straight-forward results; the proofs
are easy.

PROPOSITION 1.1. Given a set of edges without cycles in a connected graph, there is a
spanning tree containing the given set.

PROPOSITION 1.2. Given a connected pseudo-graph, with a spanning tree T, the chords
of T together with loops yield a basis for the route group.

With a suitable convention regarding directed loops, this extends to our diagrams.

THEOREM 1.3. There is a 1-1 correspondence between diagrams and subgroups of T. If
diagram D corresponds to the subgroup H, then

(i) r is the number of red loops in D,
(ii) s is the number of blue loops in D,
(iii) h is the number of green components in D, h0 is the number of finite components.

The cusp-widths are the sizes of the finite green polygons.
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THE MODULAR GROUP 35

Some of the routes of a diagram derive from relations in F, viz. y3 = 1 corresponds to
a route W, blue, blue, blue, W~l, where W is a walk starting at O, and similarly for
u = xy. 0t(V) is the normal closure of these routes in i%.

THEOREM 1.4. H =

This is the graph theoretic analogue of the Reidemeister-Schreier process.

2. Presentation of subgroups. For a subgroup H, the corresponding £>x leads to a
presentation for H. Take the set of edges comprising two sides from each blue triangle,
and extend it to a spanning tree Tj. The blue chords give elements of 5?(F), and can be
ignored. The red chords and the loops of both colours give independent generators of S?.
Those which come from blue loops have order 3 in £%/52(F). We have a presentation of H
as a free product, without recourse to Kurosh.

A presentation resembling (3) for finite index subgroups is also possible in our case.
Since we have a diagram with more than two points, a blue loop is joined by a red

edge to a vertex of a blue triangle. We obtain a new diagram by replacing each blue loop
(with its attached red edge) by a red loop at the vertex of the associated triangle. The
green lines of the new diagram are those required to satisfy (e). The values of h0 and hx

are unchanged. Given a presentation for the new group, one is easily obtained for the
original. Thus we may assume that we have s = 0.

We begin with D2, and consider the set of green edges. From each finite component,
we omit one edge. The remaining set can be augmented with red edges to form a spanning
tree T2. Observe that any k green components of T2 are joined by at most k -1 red
edges.

91 is generated by loops of D2 and chords of T2. The green loops and chords give rise
to parabolic elements of H. J%(F) consists (essentially) of the routes derived from the blue
triangles of D.

With D, we associate a further graph G. In D1 we remove the (red) loops, and all red
edges which belong to T2. Further, we replace each blue triangle by a vertex incident with
all edges remaining on the triangle.

LEMMA 2.1. G has no finite components.

Proof. Let C be a finite component of G, and let C be the corresponding portion of
D, including all vertices of the corresponding blue triangles.

As D is connected, C is attached to the rest of D by k (>0) red edges. Since C is a
component of G, all of these edges belong to T2.

At each such edge, one green component of D enters C, and one, not necessarily
distinct, leaves. As C is finite, a green component which enters C must leave, also at a red
T2 edge. Thus, the k T2 edges link at most k green components. This contradicts the
observation made after the definition of T2.
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36 W. W. STOTHERS

LEMMA 2.2. Some of the edges of G can be directed so that
(i) each vertex has one edge directed towards it,

(ii) each component of the directed subgraph is a tree,
(Hi) the branch directed away from any point is finite.

Proof. The components of G are infinite by 2.1. Each is dealt with in the same way.
Let S be a spanning tree of one component, and let P be a vertex of S. We proceed

by stages; at the fcth stage we consider vertices at distance k from P, including k = 0.
Suppose that we have reached the point Q. The edges between P and Q have been

considered, and we deal with the others as follows:
Case 1, the edge belongs to a finite branch from Q, then direct the edge away

from Q;
Case 2, the edge belongs to an infinite branch, then, if it is the first such edge

encountered, direct it towards O, otherwise delete it.
Since S is infinite, each point receives an edge directed towards it. Since the directed

subgraph is a subset of a forest, each of its components is a tree. By the process of
construction, the edges directed away from a point belong either to a finite branch of the
corresponding tree, or to the part of the tree between the point and the starting point of
the relevant part of G. Hence, the third clause of the lemma holds.

THEOREM 2.3. If H is a subgroup of infinite index in Y, then it has the presentation

H = {El,...,EnFu...,Fs,Px,...,Pho,Al,...,Am:E2
t=F] = l),

with Pt parabolic, A, hyperbolic, and t = ho+m.

Proof. As before, we assume that there are no blue loops in D. In the tree T2 the
green loops and chords give parabolic elements Pu..., P^, the red loops give elliptic
elements, and the red chords give hyperbolic elements Bu B2,

From a blue triangle in D we obtain a relation (in H)

J=l, ( 4 )
where a , . . . , £ are ±1, and a B or P is omitted if the corresponding line is in T2. Observe
that if we have a triangle involving the same red edge twice, then the edge joins two
vertices of the triangle and so there is a green loop at one vertex. As T2 spans D2, the red
edge must belong to T2. Thus any B can appear only once in (4).

A blue triangle corresponds to a vertex in G, and the edge directed towards it in G
must correspond to a B term in (4). As the exponent is ±1, (4) can be rewritten to express
this B in terms of the other elements. Observe that any other directed G-edges involved
are directed away from the vertex.

Let {B,.} be the subset of {B;} corresponding to directed edges of G. Each blue
triangle is associated with an element of the subset, and using the relations like (4), we can
express the element in terms of the Ph B, not in the subset, and Bk belonging to the
branch directed away from the triangle. By 2.2 (iii), there is a finite expression obtained
by eliminating the last type of elements.
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THE MODULAR GROUP 37

Since all the relations stem from blue triangles, this process leads to the conclusion
that we can remove the Br, to get a set of generators of H as a free product which
contains a maximal set of parabolics, i.e. one for each finite green component.

This method can be used for subgroups of finite index, though in this case 2.1 and 2.2
require some alteration.

This leads to a presentation with a single relation. Some further manipulation is
needed to obtain the standard presentation (3). As a corollary, we find that the parabolic
generators are all F-conjugate to positive, or all to negative, powers of u. A geometrical
proof of this is to be found in Mason [3].

A standard set for a subgroup of F is a set of generators of the subgroup as a free
product with the number of parabolic generators equal to h0 if n = °°, to hn — 1 if n < °°.

Let fj be the number of hyperbolic elements in a standard set. Thus, in the usual
notation,

t=r - ifn=00> (5)-

LEMMA 2.4. For a diagram D, t is equal to the number of red edges in Dx-Tx.

This is an obvious consequence of remarks in the first paragraph of this section.

LEMMA 2.5. For a diagram D, tt is equal to the number of red edges which do not
belong to T2 and do not correspond to directed edges of G.

3. Joining, cutting and composition. If we have two vertices each with a red loop,
either in one or two diagrams, then we can obtain a new diagram by removing the loops
and joining the vertices by a red edge. This is described as joining the vertices (or joining
the diagrams). This is described in [6]. The basic patterns of Millington and of Tretkoff
correspond to diagrams having two red loops. Their results are obtained by joining basic
diagrams to form a chain.

We shall also use the idea of composition, see [6]. This is possible when we have two
triangles each with at least two red loops attached, and can be viewed as two joins.

The operation of joining can be reversed, i.e. we can replace a red edge by two red
loops. This process is described as cutting the edge. It should be noted that cutting may
disconnect the diagram, and must do if the edge was involved in no cycle of the original
Dr.

All of these operations involve changes in green loops or edges, and it is best to
regard them as operations on Dx diagrams with the green structure recovered using (e).
Only two green lines are affected in any case, and it is easy to draw parts of diagrams to
explain the changes. In 3.1, 3.2 we assume D'^D".

LEMMA 3.1. Let D' (resp. D") be a diagram with a red loop at A (resp. B) and let D be
the diagram obtained by joining A and B. Then, in an obvious notation, n = n' + n",
s = s' + s", r = r' + r"-2, t = t'
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38 W. W. STOTHERS

Proof. The first two equalities are obvious, since vertices and blue loops are unal-
tered.

Two red loops are used in joining, so the third holds.
If T\ (resp. 77) is the usual tree in D\ (resp. D'[), then T = {AB}UT;U^' is the

corresponding tree in Dx. The fourth equality follows by 2.4.

LEMMA 3.2. With the notation of 3.1, suppose that the green cycle in D' (resp. D")
which contains A (resp. B) has length a (resp. b). Then, in D, h»= h'^+h'^, and

(i) if a or b is finite, then A and B belong to a green cycle of length a + b and
ho=h'o + K-l,

(ii) if a = b = °°, then A and B belong to distinct infinite green cycles, and ho = h'0 + fiJJ.

A sketch showing the green cycles involving A and B before and after joining gives
the lengths of the cycles in D. The results for h0 follow at once.

COROLLARY 3.3. In the notation of 3.1, 3.2,
(i) if either D' or D" is finite, then ^ = t[ +1'{,

(ii) if a = b = °°, then tx = t[ +1'[.

Proof, (i) In this case, we must have the situation of 3.2 (i), so that h0- h'0 + h.Q-\.
Since D will be finite if and only if both D' and D" are, the result follows by applying (5)
and 3.1.

LEMMA 3.4. Let D' be a diagram with red loops at A and B, and let D be the result of
joining A and B. Then n = n', s = s', r = r' — 2, t = t' + l.

LEMMA 3.5. In the notation of 3.4, if A and B belong to a single green cycle of length a
in D', then they belong to distinct green cycles of lengths b, a — b, with b finite.

COROLLARY 3.6. In the notation of 3.4, 3.5, ha>=h'O0, ho=h'o+l, t^ = t[.

LEMMA 3.7. In the notation of 3.4, if A and B belong to distinct green cycles, of lengths
a and b respectively, in D', then, in D, hco= h'm, and

(i) if a or b is finite, then A and B belong to a green cycle of length a + b,
(ii) if a = fe = oo, then A and B belong to distinct, infinite, green cycles.

COROLLARY 3.8. In the notation of 3.4, 3.7,
(i) if a orb is finite, then ho = h'o-\, tx - t [ + 2,

(ii) // a = b = oo, then h0 = h'o, ^ = t\ +1.

In all cases, the proofs are similar to those of 3.1, 3.2, 3.3.

Since cutting reverses joining, all of these results can be adapted to give results about
cutting, see the proof of 4.4.

These results could also be used to obtain results about composition, but if we recall
(from [6]) that composition does not affect the length of green cycles, or their number, a
more direct approach is possible.
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LEMMA 3.9. If D' and D" are F(l) diagrams, then their composition D has n = n' + n",
s = s' + s", r = r' + r"-4 , ho=h'o + h'^ hoo=h'ca+hZ, t=t' + t" + l. (See [6] for the definition
of F(l).)

Proof. The first five equalities are trivial. For the last, we observe that two red edges
are added, but that only one is required to make trees for D' and D" into a tree for D,
and apply 2.4.

As usual, (5) gives a corollary.

COROLLARY 3.10. In the notation of 3.9,
(i) // D' or D" is finite, then tl = t[ +t'[,

(ii) ifD' and D" are infinite, then t1 = t'l + t"+l.

LEMMA 3.11. Let I be a finite or countable set. All sequences are indexed by 1. Suppose
that D' is a diagram with red loops at the vertices {A{i)}, and that {D{i)} is a collection of
diagrams, D(i) having a red loop at B{i), ho=a(i), f, = 6(i), k» = c(0. Let D be the
diagram obtained by joining A(i) and B(i), for each ie I.

(i) // each D(i) is finite, and no two A(i) belong to the same finite green cycle of D',
then K=hL, ho=h'o+l(a(i)-l), t, = t\+lb(i).

(ii) / / the A(i) and B(i) all belong to infinite green cycles in D' and D(i), then

Proof. The statements about the number of green cycles are clear.
Let O be the origin for D'. There is a standard set of generators of the form

U({c(0~1xc(/)}U{P(i)}UE), where c(i) corresponds to a walk from A(i) to O, and P(i)

corresponds to the green cycle including A(i) when this cycle is finite. The set E includes
the t\ hyperbolic generators.

(i) Take B(i) as the origin for D(i). A standard set of generators (excluding the
parabolic element corresponding to the green cycle through B(i)) has the form (x}U£(i).
The set E(i) includes the b(i) hyperbolic generators.

From the diagram D, it is obvious that, with O as origin, a standard set is
U({Q(i)}yJEDc(i)~lxE(i)xc(i)), where Q(i) corresponds to the green cycle in D which

includes A(i) and B(i), and so is present when the cycle in D' which includes A(i') is
finite, i.e. precisely when P(i) is present. The tv result follows since the conjugate of a
hyperbolic element is hyperbolic.

(ii) In this case, each D(i) must be infinite, so that there is no need to exclude an
element corresponding to one cycle. Also, the set for D' contains no P(i). Otherwise, the
proof is as for (i).

The proof of 3.11 indicates that it is quite possible to obtain standard sets of
generators for a diagram obtained by joining separate diagrams. In the proof of 4.3 below,
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no attempt is made to produce such a set, but it should be clear that it could be obtained
quite easily.

4. Existence results. For constructive proofs of various results, we use some small
diagrams. In each case we give a description of the Dj of the diagram, a standard set of
generators and any useful facts.

S: one vertex with red and blue loops, (x, y).
R: three vertices with one blue triangle and three red loops, (x, yxy2, y2xy).
T: nine vertices with three blue triangles, one red loop and four red edges,

{x, u~8xu5, u~2xu6). (In this case, several diagrams are possible, but only one has
ho= 1. We choose this as T, it has f, = 2.)

P: three vertices with one blue triangle, one red loop and one red edge, (x, y2xy2).
This has ho = 2, c(l) = 2, c(2) = l.

Observe that joining a copy of S to a diagram raises n by 1, r by — 1, s by 1, leaving
others unchanged, by 3.1, 3.2 (i), 3.3 (i). Joining a copy of T increases tx by 2, and so, in a
finite context, raises the genus g by 1, since g = it1. Joining a copy of P increases ho by 1.
The diagram R has a different purpose.

THEOREM 4.1. (Millington). Given a set of integers satisfying (1), with n,h^l, and
r, s, gSsO, there is a corresponding subgroup of T.

Proof. Let m = r + s + g + h. From (1), ms=2.
If m 2s 4, we take m - 3 copies of R and join them to form a chain. This is a diagram

with s = g~0, h = \, r = m - l (consider the D, and Tj). Using the red loops of the chain,
we join to it s copies of S, h - 1 of P and g of T. A finite number of applications of 3.1,
3.2 (i) and 3.3 (i) show that the result is of the required type.

If m = 3, one or two copies of S, P and T cover all cases.
If m = 2, only r = s = 0, h = g = l give n 3= 1. There are three six vertex diagrams with

r = s = 0, and one of these is of the required type.

For subgroups of infinite index, some further diagrams are useful.
C: a chain of copies of R, joined and extending indefinitely to the right. The Dx and

T, are obvious, and show that r = oo, s = t = 0, so that ^ = ^ = 0. Also, /t00=l.
Since the left-most triangle has two red loops, C is F(l).

R*: the degenerate diagram with no vertices. If £ is a proper diagram, with a red
loop at A, we "join" R* to E by leaving E alone but marking the red loop at A
to signify that it is not to be used for further joining.

i?!: a chain-of three copies of R joined. This has h0 = 1, tx = s = 0 and r = 5. Further,
i?! is F(2), (see [6]), with a spare red loop.

Q : a chain of copies of i?! extending indefinitely to the right, formed by composi-
tion. Since each vertex is in a green 9-cycle, Cx has /i» = 0 and hQ = <*. Since Rx

has no blue loops and a red loop on the central triangle, Q has s = 0, r = °°. The
red edges in the T2 of C, consist of one from each pair introduced by
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composition. Thus, each red edge belongs to T2 or corresponds to a directed
edge of G. By 2.5, C\ has ^ = 0.

C\: a copy of R composed with a copy of Cv This has hm = 0, /io = °°, s = 0, r = <»,
^ = 0.

C2: the composition of two copies of Cv By 3.10 (ii), this has tx = 1, and, by 3.9,
s = ha = 0, fc0 = r = oo. Note that tl ^ 0, although this might be suggested by a
simple-minded application of 3.10 (i) to infinitely many copies of Rv

C3: the composition of a copy of C with a copy of C\. By 3.9 and 3.10 (ii), this has
s = 0, K=\, h0 = r = co, rt = l.

C4: the composition of two copies of C. By 3.9 and 3.10 (ii), this has ho = s = 0,
h, = 2, r = oo, t l = l.

X: we form a sequence {X;}, taking Xj = R with one distinguished red loop. Xj+1 is
formed from X, by joining a copy of R to each non-distinguished red loop. The
diagram X is the "limit" of the sequence in the obvious sense. Using the 7\ and
Dx of X, it is clear that it has r= 1, s = ho= tx = 0 and /ito =

 00, see 4.2 below.
We note that, taking the red loop at the origin of X, the corresponding subgroup is (x).

LEMMA 4.2. For a subgroup of infinite index in T,

Proof. Suppose that we have a subgroup of infinite index in T with r + s + t finite. The
corresponding Dv has finitely many finite cycles apart from blue triangles. These involve a
finite set of blue triangles, so that there is a finite connected portion containing these and
all loops. The rest of the diagram has no loops or non-trivial cycles, so, here, each triangle
has vertices in three distinct infinite green components. Moreover, no two triangles have
more than one green component in common. As there are infinitely many triangles,

At several points in the next theorem, we shall have to consider the situation in 3.11.
As all diagrams are countable at worst, we shall assume that the red loops of the initial
diagram (£>' in 3.11), and the collection of other diagrams (£>(/) in 3.11) come with a
numbering, and the other diagrams with a designated red loop.

THEOREM 4.3. Suppose that r, s, h0, hm tx^0, with r + s + ho + hea+t1=
:«>. Then there is

a corresponding subgroup of F if any of the following conditions is satisfied:
(i) fc» = 0,

(ii) h«,= 1, and tx even if fi + h0 is finite,
(iii) h^l.

Proof, (i) Suppose firstly that tx is even or finite. We take a copy of Ct, and a
collection of r copies of R*, s of S, h0 of P and \tx of T, with the obvious interpretation if
(, is infinite. By 4.2, this collection must be infinite since h* = 0. We join these diagrams as
in 3.11 (i). The values of r and s are clearly as required, as are those of h0, h«, and fj by
the lemma.
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Suppose now that tt is odd. We take a copy of C2, r copies of R*, s of S, h0 of P and
Kfj — 1) of T. We then proceed as above.

(ii) If fi is even or infinite, we can proceed as in first part of (i), using C as initial
diagram instead of Cf\

If t1 is odd and ho
 = oo> then we proceed as in the second part of (i), using C3 as initial

diagram instead of C2.
(iii) Suppose firstly that tx is even or infinite and r + s + ho+tl infinite. We take a copy

of C and a collection of (h*,— 1) further copies of C. We join these to produce Cs, which,
by 3.11 (ii), has correct value of hm and s = h0 = tx = 0, r = o°. We proceed as in the first
part of (i), using C5 as initial diagram.

Suppose now that t1 is odd and r + s + ho+t! infinite. We proceed as in the previous
paragraph, replacing the first copy of C in the formation of the initial diagram by C4.

Suppose finally that r + s + ho+ tl is finite. Then, by 4.2, h*, must be infinite. Using the
techniques of the other parts of (iii), we can construct C6, a diagram with required values
of s, h0, tu but with h» = 2, r = <*>. We join a copy of X to all but r of the red loops of C6.
By 3.11 (ii), this final diagram is as required.

Tretkoff's Theorem 2 is the special case of 4.3 (ii) with h0 = 0, r s= 1. Our last theorem
shows that the parity condition of her theorem, and of 4.3, is necessary.

THEOREM 4.4. There is no subgroup of F with hm= 1, ho + tl finite and t1 odd.

Proof. Suppose that the diagram D with ftoo=l, ho + tl finite. A corresponding
standard set of generators has a finite number (viz. h o

+ ' i ) of non-elliptic elements. We
can choose a finite, connected subgraph Do of D1 which includes the routes corresponding
to these generators, and complete blue triangles.

If a vertex of Do is linked to a vertex of D1 - Do by c, a red edge of D, then both of
these vertices belong to the infinite green cycle. Since c does not belong to any cycle of
Du its removal must disconnect the diagram. Hence, if we cut c, the diagram splits into
two. The component which does not contain DQ has no non-trivial cycles, and so has tx = 0
and fe0+h00=l. The cut must be the reverse of the situation described in 3.2 (i) and
3.3 (i). Thus, the part containing Do has the same value of tl as the original diagram.

We can repeat this process until all the red edges leaving Do have been cut. We are
left with Do, with some extra red loops. Since Do is finite, this final diagram is finite, so
that its tj is even (see the remarks following (3)). Since this is the same as the value for the
original diagram, the result follows.

I should like to thank the referee for some helpful suggestions regarding some of the
proofs, particularly those of 2.1 and 4.2.
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