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Abstract

Convergent iterative sequences are constructed for the polynomials f,, = z + z™, m > 2, with initial
point the lemniscate { z: {f,,(z)| < 1}. In the particular case m = 2 convergent iterative sequences are
constructed also for f,!(z) with an arbitrary initial point. The method is based on a certain
variational principle which allows reducing the problem to the well known situation of an analytic
function mapping a simply connected domain into a proper subset of itself and possessing a fixed
point in the domain.

1980 Mathematics subject classification (Amer. Math. Soc.): 30 C 10; secondary 39 B 10.

1. Introduction

The following easy consequence of Schwarz’s lemma and the Riemann mapping
theorem was applied in [3] for the construction of convergent iterative radicals.

LEMMA 1. Let f be an analytic mapping of a simply connected region G of the
complex plane into one of its proper subsets. If f has a fixed point p € G, then for
every z, € G the sequence z, ., = f(z,), n = 0,1,..., convergestopasn — co.

The restriction of p € G is essential for the proof of Lemma 1. However, in

many applications it appears that p is on the boundary of G. We then apply
Lemma 1 to a perturbed function f, which depends on a positive parameter ¢ and
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show that the perturbed sequences {w,(£)}2_,, w,(€) = f.(w,_,(€)), converge to
{z,)%_, as € — 0 eventually uniformly in n (see Lemma 3). We apply this
procedure to the construction of a convergent iterative polynomial sequence of
arbitrary degree m(m > 2), where f = z + z™, and where G is a component of
the lemniscate {z: |f’(z)| < 1}. In the particular case m = 2 the variational
method is also applied to an analytic branch of f~! in a suitable G to construct
convergent sequences with an arbitrary z,. Certain open problems are mentioned.
For a general existence theorem of convergent cyclic sequences formed by f and
71 see[1].

2. Several lemmas

Throughout this note f(z)=z+z"™ m=>2, and R={z: |f(z)|<1}; R
consists of m — 1 simply connected components having a joint boundary point at
the origin. Each component has two tangents at the origin which make an angle
of a =a/(m —1). Two adjacent components are separated by a sector of
aperture a. Let R, be the component of R which is symmetric with respect to the
ray argz = a.

LEmMmaA 2. f(z): R,, > R,,.

PROOF. (a) We show first f(z): R — R. We have to show that for z € R

(z+z”‘)m_1+l <1

or, setting w = 1/m + z™~ !, that

has modulus less than 1/m for |w| < 1/m. Now

e [ et B Ll | 2

Denote the first sum by h,(w). h,(w) has positive coefficients, so that |h;(w)| <
h,(1/m) for |w| < 1/m. Now a direct calculation shows that

1)< tmmnm

m m™
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Therefore,

(1) |h(w)|<h1(%)+%_(m__m}n)i_l=_3?

(b) Now let z € R,,. Then
arg f(z) = argz + arg(1 + z"1).

Also,
m-—1 ; 1

i® -
+ pe'?, 0<p<x i
so that 8 = arg(l + z™!) satisfies |tg8| < 1/(m(m — 2)V? < 7 /(m — 1) for
m > 3. Now the various components of R are separated by angles of #/(m — 1),
so that f(z) € R,,. For m = 2, we have R, = R, so that part (a) of the proof is
sufficient.

1427 1=

REMARK. It is clear from the inequality |A(w)| < 1/m — h,(1/m) + |hy(w)|
that |h(w)| = 1/m can occur only when |h;(w)|= h,(1/m), or w=1/m, if
m > 2, thatis,at z =0.If S,, = f(R,,), then S, C R, and the boundaries of S,,
and R, intersect only at the origin. For m = 2 this can be verified directly.
Indeed the above equality occurs for w = +1/m, which values correspond to
z =0 and z = -1. Both of these points are mapped by f to the origin. One
concludes that a sufficiently small translation of S,, in the direction of the axis of
symmetry of R,, will still be a subset of R,,; that is, if

@) o= £+ eexp 75 ).

then f(R,)C R,, for all sufficiently small ¢ > 0. £, has a single fixed point
P, = €/mexp(wi/(m — 1)) in R,,,.

For a fixed ¢ > 0, let zy, w, € R, z,= f(z,_1), and w, = f(w,_,), n =
1,2,....

LEMMA 3. For all sufficiently small € > O, there is an integer N such that, for all
n>=N,

(3) |wn+1 - zn+1| S'W" - an(l - %e(m—l)/M) +e.

Proor. By Lemma 1, w, = p,, as n = oo0. Choose N such that
(4) Wo = P+ 1,

with |¢,| <& for n> N. Also, since z, € R,, we have z" = -1/m+r,,
|7l <1/m, and
T 37
5 - < <.
(5) wAm—1) B 5(m - 1)
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By (4), for j > 1, we have
(©) W= pi+ O(&+u=/m)
as ¢ — 0. Since arg p,, = m/(m — 1), we have
argw/ = (_mLil_)_ + O(e V™).
By (5) and (6), for1 < kK < m — 1, we have
alm+k-—1

i + 0(51_1/’")] < arg(z,’,""“lw,f‘)

3 3( _1)_k 1-1/m
<—2—[——;n(—m_—l)—+0(e /my|.

m—k—1
n

m—2
arg( Yy z,’,"_"‘lwn") = arg{,,
k=1

It follows that for sufficiently small ¢ > 0, arg(z w}) and hence also

satisfy

(7 —g+8<arg§m<§27—r—8, 8> 0.
Now by (6),

(8)

[7(w) = F(z) | =1w, = 2, | [T+ w4 w2z, + o 4207

n

<|w,

1 -
—znl{il - gmb/m 4y 4§

+ 0(£1+(mv2)/m)}

and, for sufficiently small ¢, by (4) aand (7), we have

© (1= e gl = el
< 1- e(m—l)/m‘
So by (8) and (9),

|f(w,) = f(2,) [ <Iw, = 2,[{(1 = e D/7) + O(e! *(m=2/m))
<|w, - z,1(1 - Jetm=1/m)
The result now follows by the last inequality and the relation

lwn+1 - er-ll< |f(wn) _f(zn) ' + e
We turn now our attention to the reverse sequence

(10) Go=f6), n=12..,
where ! is one of the possible values of the multiple-valued inverse function of
f. Wherever necessary the exact choice of f ! will be indicated.
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LEMMA 4. The sequence (§,}%_, is bounded for every choice of {,. In particular
(11) £, < Max(2V/0=D|¢01).

PROOF. Write (10) in the form
(12) §r+ 8 =8

By Cauchy’s theorem (2, p. 122], the zeros §, of (12) are bounded in modulus by
the only positive zero r, of the polynomial

p(x)zxm_x_rnAl=0’ rn*l=|§n—-1|'

(@ If r,_, > 2" D then x™ — x > x > r,_, for x > r,_,. Therefore 7,
r,_,.

(b) If r, , <2Y"" D then r, < 2" because p(21/"" D) > 0. Thus if
1ol < 2V/0m7D then |§,] < 20"~ D, and if [§,] > 2'/¢"~ D, then we have (11).

REMARK. Lemma 4 implies that for K > 2V/(m~D_if |{| < K, then also
[$,] < K for all n.

Consider the particular case m = 2. Let g(w)=f"Y(w)= -1+ yw+ %,
where we assume Im g(w) > 0. If

Go={w:Imw >0} n{w: |w|<K}, K > 2V/tm=D,

then g: G, — G,. The function g, = f + ie satisfies also g,: G, = G, for all
sufficiently small & > 0 and has the unique fixed point w, = ie + Vie in G,. We
shall need the following lemma.

LEMMA 5. For € > O sufficiently small, there is an integer N such that, for all
n > N, the sequences w, = 8.(2,_1), g, Wy € Gy, 2, = g(z,,_,) satisfy
|Wn+1 n+l| Ml Zn|+8’

where M = 2/(2 + Ve).

PRrOOF. Let p, = |w, — z,|. Then we have
(13) Puer =W+ § = V2, + &+ ie| < |Z"| +e,
where 4 = \w, +§ +z,+ ;. Let yz, + 4 =a,+ia, yw,+ § =b, +iB,.
First we show that a, > j for all n > n,. Indeed, if z, = x, + iy, then we have
(14) (2xn+l + l)yn+l =Vn
and
(15) xr2|+l+xn+l=xn+yn2+1‘
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Since y, > 0, x,,; > - 3. By (15), x,, > 0 implies that x,,, > 0. On the other
hand, if x, < O for all n, then by (14), y, increases to a finite positive limit, say
¥o- (14) then implies that x, — 0, so that y, — 0 by (15). Thus y, = 0, and we
have a contradiction.

Secondly, we verify that

f 1 -1 1 i1
We+3—§+ 2€+128.

Since, by Lemma 1, w, ~» w, as n — oo, it follows that, for n > n,, we have

fw, + 5 =1+ 5 +ifle + 0(e).
Thus, for n > Max(n,, n,), we have

Red >1+ yie +0(e)>1+ Ve
for all sufficiently small . By (13),
(16) Pai1 S Mp, + &,

where M = 2/(2 + Ve) and n > N(e). This completes the proof.
REMARK. Solving inequality (16), we obtain for k = 1, 2,...,
k

1-M

(17) Prvik < Moy + e < Moy + 3Ve.

3. The main theorems

THEOREM 1. For every z, € R the sequence z,.1 = f(z,) converges to zero.

PROOF. Assume z, € R,,. Let 7, =|w, — z,|. By Lemma 3, for k =1, 2,...,
for N = N(e), and for e sufficiently small, we have 7,,, < Mfry+
e(1 — MF)/(1 — M,), where M, = 1 — L&t~ D/™ This leads to

(18) Tven S Mfry + 262/,

By Lemmas 1 and 2, {w,} is a convergent sequence, so that |wy ,, — wy .| <&
for k, /=1, 2,..., and for N, sufficiently large. Assuming N, > N, we now
have, by (18),

— k / 1/m
|2k = Znyet] S Taoi + T E< Ty (ME+ M{) + 487 4k
Therefore

(19) m |z, -z,|= lim IZN1+/<_ZN1+11<481/'"+5.
m,n— o0 k= oo
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Inequality (19) implies that {z,} is a Cauchy sequence and thus converges to the
origin as n — oo. This completes the proof of Theorem 1.

THEOREM 2. For every fixed wy € C the sequence z,,, = g(z,) tends to zero.

PrOOF. It is enough to prove Theorem 2 for w, € G, since the argument
carries over for the reflection of G, with respect to the real axis. For real w, the
result then follows directly.

By Lemmas 4 and 1, and by (17), we have, for n > N,(¢) sufficiently large, and
fork,/I=1,2,...,

IZN2+k - ZN2+/| IR IV & LN
< pa (M5 + M') +6/e +e.
Hence
lim |z,-z,|= lim |zny ek = 2wy < 6Ve + e.
mon— oo Lk— o0

Therefore { z,} is a convergent sequence and thus tends to the origin.

COROLLARY. If m = 2, then for every z, € R there exists a sequence {z,}*
such that z, ., = f(z,), and z, >0, z_, > 0 as n = oco. In addition, the se-
quences {z,}.

.o and {z_,)7_, are essentially disjoint (except for a finite number
of elements).
Proor. This is a direct result of Theorems 1 and 2, and of the relations
Rez_,>0forn > n,andRez, <Oforn > 0,if z, # 0.
We conclude with two conjectures.
CONJECTURE 1. Let f(z)=z + z™, m > 2. There exists a determination of
f~X(z) such that for every z, € C the sequence z, = f }(z,_,) tends to zero as

n — oo,

If this conjecture is true, then by the previous results it would be possible to
construct cyclic sequences for a polynomial of arbitrary degree m > 2.

CONJECTURE 2. Let f(z) =1z + a,z*+ -+ +a,z™ be of degree m > 2, and

Z
assume that a, > O for all k. Then for every z, such that |f'(z,)| <1, the
sequence z,,,, = f(z,) converges.

https://doi.org/10.1017/51446788700028068 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028068

58 Zalman Rubinstein [8]

Acknowledgement

The author thanks the referee for several valuable suggestions.

References

[1] I N. Baker and Z. Rubinstein, ‘Simultaneous iteration by entire or rational functions and their
inverses’, J. Austral. Math. Soc. Ser. A 34 (1983), 364-367.

[2] M. Marden, ‘Geometry of polynomials’, (Mathematical Surveys Number 3, Amer. Math. Soc.,
Providence, R.1., 1966).

[3] Peter L. Walter, ‘Iterated complex radicals’, The Mathematical Gazette 67 (1983), 269-273.

Department of Mathematics Department of Mathematics
University of Colorado University of Haifa
Boulder, Colorado 80309 Mount Carmel, Haifa
U.S.A. Israel

https://doi.org/10.1017/51446788700028068 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028068

