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Abstract
An inequality involving the logarithmic mean is established. Specifically, we show that

In(c/x nix/a
L(c, x) W8 L(x, a) ™% < L(c, a),

-X

where0 <a <x < cand L(x,y) = ﬁ

given.

, 0 < x < y. Then several generalizations are

1. Introduction
The logarithmic mean,

Lix,y) = Y7Y | 0<x<y

nx —Iny

has many applications in statistics and economics [9]. It is well known, and easily
established [1, 3,7, 10] that

G(x,y) < L(y,x) < A(y,x),

where G(y, x) = /Xy is the geometric mean and A (x, y) = (x+y)/2 is the arithmetic
mean. In fact, writing A(x, y) = M,(y, x), where

yp +xp)l/l7

Mp()’,x)=( )
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it is known [7] that M,, (y, x) < M,,(y, x) for p, < p,. Itis also known [4-6,9, 12]
that

L(y’ x) S M1/3(y9 x)'
On the other hand, Hélder’s inequality states that
M (y1y2, x1%2) < M, (y1, x))M, (32, x2),

if1/p +1/q = 1 with p, g > 0. It is thus curious that the logarithmic mean L(y, x)
satisfies the inequality

L(c, x)ws L(x, a)ms < L(c, a), (1)

where 0 < a < x < c and it is noted that

In(c/x) ln(x/a)_
In(c/a)  In(c/a)

It is the reverse Holder type inequality (1) which is the subject of this note and will
be established below. Relation (1) arises in a parameter identification problem for a
fractal Michaelis-Mention equation [8].

In the following, use will be made of Jensen’s inequality [11] which we now state
for the reader’s convenience.
JENSEN’S INEQUALITY. If,

1) w;>0vVi=1,2,...,n

(2) Oy, Oy, 0y, ... ,aneR’

(3) @ :[0,00) = R is a strictly convex function,
then

(Zw,) ( 'n‘"’“’) Zw«b(a)

l 1

and the inequality is strict unless ag = o) =y = -+ = .
2. Main result
LEMMA 2.1. Let g(u) = '"" , where g(1) = 1. Then for all u > 0
(i) gisastrictly decreasmg Junction of u,

(i) limuor g() = 00, limy,c0 g() = 0, lim, 1 g() = 1,
(1) g(1/u) = ug(u).
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PROOF.

,()_1—(1/u)—lnu
EW =TSy

Set z(u) = 1 — (1/u) — Inu. Then z'(u) = (1/u)(1/u — 1) which is positive for
0 < u < 1 and negative for u > 1. Thus z(u) increases from —o0 at u = Q0 to O at
u = 1 and then decreases to —0¢ as u tends to co. Thus g’(u) is negative except at
u = 1. This establishes (i). The limits in (ii) can be computed in the usual fashion
using L’Hopital’s rule. For (iii) we have

In(1/u)

g(1/w =17

= ug(u).

LEMMA 2.2. Let f (x) =x —Inx. Then

(i) f is decreasing on (0, 1) and increasing on (1, 00),
(i) lim,o+ f(x) =00, f(1) =1 andlim,_, . f (x) = 00,
(iii) ifa > 0, x > O then f (ax) = f(x) for x = g(a) so that f (ag(a)) =
£ (g(@)).

PROOF. Parts (i) and (ii) can be established in the usual way. For (iii) we have
fax)=fx)=ax —In(ex) =x —~Inx = (¢ — Dx =lna = x = ga).

Let y(x) denote the left-hand side of (1), and set@ = In c—In a. Note that y(x) > 0
VYa <x < c. Then

alny =[lnc —Inx]{In(¢c — x) — In(Inc — Inx)]
+ [Inx — Ina][ln(x — a) — In(Inx — Ina)]

and so
r -1 -1
Y o _Zln(c—x)—In(nc—Inx)] + [Inc — Inx] - /X
x c—Xx Inc—1nx
1 1 1
+ Z[In(x — a) — In(Inx — Ina)] + [Inx — Ina] =
x x—a Inx—Ina

1 xX—a Inx —Ina 1
=-|{In| —— ||+ ———— | — -
X Inx -~ Ina X —a X

1 Inc-Ilnx 1 [ c—x ]

In| ——

Inc—Inx
1 [xa/x - 1] + 1In(a/x) 1ln(c/x) lln [xc/x - 1]

- ;l In(a/x) ;a/x -1 xc¢/x—-1 x In(c/x)

1 1
=7 Lf (gla/x)) — f (g(c/x)] = ;h(X)-
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Now f (g(a/x)) is an increasing function of x while f (g(c/x)) is adecreasing function
of x so that h(x) is an increasing function of x. Clearly ay'/y is zero at exactly one
point which implies that y’ is zero at exactly one point.

LEMMA 2.3, y' is zero at the point x = \/ac.

PROOF. Now f (g(c/x)) = f (g(a/x)) = f (2g(a/x)), from Lemma 2.3 (iii), so
that g(c/x) = (a/x)g(a/x) = g(x/a) by Lemma 2.2 (iii). Thus ¢/x = x/a which
gives x = J/ac.

THEOREM 2.4. Forallvaluesof 0 <a <x < ¢

c—x Inc-Inx X —a Inx—Ina - c—a Inc—ina . (2)
Inc—Inx Inx —Ina Inc—Ina

PROOE. The result holds if and only if

(Inc —Inx)In _fTx + (Inx —Ina)ln _r-a
Inc—Inx Inx —Ina

< (nc—1Ina)ln (i)

Inc—Ina
Setting xo = a, x; = x, X, = c and letting w; = Inx; — Inx;_,, @; = Ini‘f:ﬁ;;‘v_l and
®(x) = — Inx, the result follows from the Jensen’s inequality with < rather than <.

But

r_ Y
ay =< [f (ga/x)) — f (8(c/x))]
so that y’ is negative on [a, /ac] and positive on [/ac,c]. Strict inequality in
Theorem 2.4 now follows from the previous results since the derivative is strictly

negative on [a, +/ac] and positive on the interval [,/ac, c]. Thus equality holds only
ata and c.

3. Convexity

THEOREM 3.1. The function

Inc—inx Inx-Ing

cC—X Inc~Ina X —-a Inc-lna
Yoy = (lnc—lnx) <lnx—1na) 3)

is log-convex, and hence convex, on the interval [a, N/ ac].
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PROOF. Let w = alny; then w’ = ay’/y and hence from (2) xw’ = f (g(a/x)) —
f (g(c/x)) is an increasing function so that w’' + xw” > 0. Thus xw” > —w’. Now
on [a, y/ac], w' < 0 and so w” > 0 so that w is convex (and hence log-convex) on

the interval [a, /ac].

i right side of (1)
3.6+
35+
3.4-t

left side of (1)

33+
3.2+

1T 2 3 4 5 6 7 8 E)

FIGURE 1. Graph of equation (1) witha =1,c¢=9.

Figure 1 indicates that the function is also probably convex on the interval [. /ac, c].
However we have not been able to establish this even with the aid of the next result.

LEMMA 3.2. The curve
In¢—Inx Inx—Ina

( ) cC—X Inc—na X —a Inc—Ina
X) = — _—
Y Inc—Inx Inx —Ina

is invariant under the transformation x — ac/x.

PROOF.
Inc—Intac/x) In(@e/x)—Ina
(x) _ c— ac/x Tnc—tna ac/x —a Tnc—ina
¢ Inc — In(ac/x) In(ac/x) In(ac/x) — Ina

Inc-tn(ac)+Inx In{ac)—lnx—ina

_( c(x —a)/x ) ne-ina ( a(c—x)/x ) nc—na
" \lnc—Ina—Inc+1Inx In(ac) —Inx — Ina

_ (c(x —a)/x)m (a(c—x)/x)Hﬁ

" \Inx —Ina Inc—1Inx

(C/x)u..c ina (a/x)uﬁc ns y(x). (4)
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Now,

Inx —Ilna Inc—Inx _1

Inc—1Ilna Inc—Ina

Thus, from (4)

(c/x)ln Inn (Cl/x)‘“‘ Ina = (c/x)ln —|n (a/x)l—l:‘ ;::

(c/x) lnc—lna a

lnx—Ing

(a/x) te—ina X

_ (a/x) (C/a)ln(x/a)/ In{c/a)

_ax .
== =1 since b* =&,
X a

Thus z(x) = y(x) and the lemma is proved.

4. Generalizations and applications

The following theorems follow directly from Jensen’s inequality and are general-
izations of Theorem 2.1.

THEOREM 4.1. If
(1) & :[0,00) — R isafunction,
(2) f.g:10,00) > R are increasing functions,
(3) Ap=A =--- A,
then
(1) if ® is convex then

f(An) -—f(Ao)>
g(An) — g(Ao)

f(A) _f(Ai—l))
g(A)—g(AiL) )’

(g(A,) — g(Ap)® (

<D (8(A) — g(Ai))® (
i=1
(2) if ® is concave then

(540 — s(agpo (LD =1 40

g(A,) — g(Ao)
f(A) _f(Ai—l)>
g(A) —g(Ain) '

> D (g(A) — g(A))® (
i=1
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(3) if ® is log-convex then

(g(An)—g(Ao)) n
cb(f(An)—f(AO))g ¢ <
g(A,) — g(Ao) il

’

o (f (Al) _f(Ai_l))(g(A‘)—g(Ai—l))
g(Al) - g(A,'_l)

4) if ® is log-concave then

® (f (A,,) _f (A0)>(8(A,.)—8(Ao)) N n o (f (Ai) _f (A‘_—l))(g(A,»)—g(A,-_l))
g(An) — 8(40) i g(A;) —g(Ain) )

i—1

PROGE. In Jensen’s inequality set w; = g(A;) — g(A;oy) and o; = W and
the result follows.

As a first application let M, N : R — R be differentiable functions with N strictly
monotone. Given any two numbers a and b, there is a number ¢, according to the
mean value theorem, such that

M)~ M(a) _ M'(c)
N®)—N(@ ~ N'c)

for some ¢, a < ¢ < b. If ¢ is uniquely determined then it is called the (M.N)
mean-value mean of a and b [2]. In this case let H be the inverse of M’/N' and write

(M(b)—M(a))
c=H{——7-——-).
N(®b) — N(a)

If M and N are both increasing and H is either log-convex or log-concave, we can
apply one of the inequalities in Theorem 4.1 to write

M(A) = M(A)\ _ 1 o [ M(A) = M(AiL1)\ T
H(N(A")“N(Ao>) <HH(N(Ai)—N(Ai_1>) ’

i=1
or

M(As) — M(AQ)\ _ oy .. ( M(A)) — M(A,_y)\ "orwis
H (N(An) “N(Ay) ) =[1# (N(A,») - N(AH)) ’

i=1

where we have made the associationsthat® =h, f =M, g=N,A, =b,Ag=a.
Now specializing to the case of ®(x) = x (log-concave ®) in Theorem 4.1 we
obtain

fA) —f(Ao) H( FA) = (A 1))4?;;:5‘,:;;;,
8(An) ~ g(do) ~ i\ 8(A) ~ gAi-)
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and interchanging f and g we can write

l e ALIEIL)

f(A ) —f(Ao) l_I (f A)—fA. 1)) f(A —TiAg)
g(An) —g(Ao) ~ g(A) — g(Ai_D) :

From these expressions we can obtain inequalities for Stolarsky’s [2, 13] extended

mean value
s bs S+,
E,.(a,b) = (5&——)
s(a”"—b")

by setting f (x) = x°/s, g(x) =x"/r, A, = b, Ay = a and then raising both sides to
the power 1 /(s — r). Forrs > 0

B =\ [(u—a v b —a
<
br—u ur—a’ ~ b —a’

wherea < u < b.

Ifrs <0, f (x) =x*/s and g(x) = x"/r are still both increasing functions and we
have a similar inequality

(r(b“ - u‘)) (r(u —as)) i - r(b* —a*)

s(b" —u") s(ur — a”) ~ s —a")
- (r(b’ - ’)) -a (r(u‘ —as)>5%:;
T \s(& —-u") s(u" —ar)

where it is now necessary to include r/s or else reverse the inequality.
A further application is obtained by setting f (x) = x and g(x) = Inx above to

obtain
An _ AO in(A,)—In(Ag) N l_n_[( Ai _Ai—l In(A)-In(Ai_1)
In(A,) — In(Aq) it Un(A) —In(A;,)

( An — Ag )""“"°<ﬁ( A=A\
In(A,) — In(Ao) T it \In(A) —In(A;-) '

These two inequalities provide a direct generalization and converse to the main in-
equality (2) discussed in this paper.

and
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