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Abstract

An inequality involving the logarithmic mean is established. Specifically, we show that

L(c,x) Mc/°> L(x,a) Mc/"> < L(c,a),

where 0 < a < x < c and L(x, y) = ln
f
xZ*ny> 0 < x < y. Then several generalizations are

given.

1. Introduction

The logarithmic mean,

v — x
L(x,y) = - —, 0<x<y

In* — my

has many applications in statistics and economics [9]. It is well known, and easily

established [1,3,7,10] that

G(x,y) <L(y,x) <A(y,x),

where G(y,x) — *Jxy is the geometric mean and A(x, y) = (x +y)/2 is the arithmetic
mean. In fact, writing A(x, y) = M\(y, x), where

i/p
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it is known [7] that MPl(y, x) < MP2(y, x) for px < p2. It is also known [4-6,9,12]
that

L(y,x)<Ml/3(y,x).

On the other hand, Holder's inequality states that

if \/p + \/q = 1 with p, q > 0. It is thus curious that the logarithmic mean L(y, x)
satisfies the inequality

L(c,x)^L(x,a)'^ < L(c,a), (1)

where 0 < a < x < c and it is noted that

ln(c/x) ln(x/a) _̂
ln(c/a) ln(c/a)

It is the reverse Holder type inequality (1) which is the subject of this note and will
be established below. Relation (1) arises in a parameter identification problem for a
fractal Michaelis-Mention equation [8].

In the following, use will be made of Jensen's inequality [11] which we now state
for the reader's convenience.
JENSEN'S INEQUALITY. If,

(1) w,: > o v ; = 1,2,... ,n,
(2) a0,ori,a2,... , ocn 6 R,
(3) 4> : [0, oo) —> R is a strictly convex function,

then

and the inequality is strict unless oto = ot\ = a2 — • • • = an.

2. Main result

LEMMA 2 .1 . Letg(u) = ^ , where g(l) = 1. Then for all u>0
(i) g is a strictly decreasing function ofu,

(ii) limu^0+ g(u) = oo, lim^oo g(u) = 0, l im,^ g(u) - 1,
(iii) g(\/u) = ug(u).

https://doi.org/10.1017/S0334270000011322 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011322


[3] A reverse Holder type inequality 403

PROOF.

8 M =
(i - uy •

Set z(u) = 1 - (1/M) - Inn. Then z'(u) = (1/M)(1/M - 1) which is positive for
0 < u < 1 and negative for u > 1. Thus z(u) increases from —oo at u — 0 to 0 at
u = 1 and then decreases to —oo as u tends to oo. Thus g'(u) is negative except at
u = 1. This establishes (i). The limits in (ii) can be computed in the usual fashion
using L'Hopital's rule. For (iii) we have

g{\/u) = — = ug(u).
1/M — 1

LEMMA 2.2. Letf (x) = x - I n x . Then

(i) / is decreasing on (0, 1) and increasing on (I, oo),

(ii) lim,̂ 0+ / (x) = oo, / (1) = 1 andlim,.^/ (x) = oo,
(iii) if a > 0, x > 0 then f (ax) = f (x) for x = g(a) so that f (ag(a)) =

PROOF. Parts (i) and (ii) can be established in the usual way. For (iii) we have

f (ax) — f (x) =)> ax — ln(a^) = x — lnjc =>• (a — \)x = In a =» x — g(a).

Let y (x) denote the left-hand side of (1), and set a = In c - In a. Note that y (x) > 0
V a < x < c. Then

a In y — [In c — In;c][ln(c — x) — ln(ln c — In*)]

+ [lnx — lna][ln(x — a) — ln(lnx — In a)]

and so

y

1 r _i -\/x i
= —[ln(c — x) — ln(lnc — In*)] -I- [lnc — In*]

* \_c — x lnc —In* J

+ -[ln(* - a) - ln(ln* - Ina)] + [In* - Ina] | — — 1
* [* — a In* — Ina J

* L Lin* — lnaJJ * — a

1 l n c — I n *

* [_lnc —ln*J* c — x

- 11 1 ln(a/x) 1

1 -f(g(c/x))] = U(x).

= 1 ln r a/x 1 | 1 ln(a/x) 1 ln(c/x) 1 ln f cA - 1]
L l ( / ) J / 1 A ~ 1 ^ L ln(c/*) J
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Now/ (g(a/x)) is an increasing function of x while/ (g(c/x)) is adecreasing function
of x so that h(x) is an increasing function of x. Clearly ay'/y is zero at exactly one
point which implies that y' is zero at exactly one point.

LEMMA 2.3. y' is zero at the point x = sfac.

PROOF. Now/(g(c/;c)) = f(g(a/x)) = f (Zg(a/x)), from Lemma 2.3 (iii), so
that g(c/x) = (a/x)g(a/x) = g(x/a) by Lemma 2.2 (iii). Thus c/x = x/a which
gives x — -Jac.

THEOREM 2.4. For all values ofO<a<x<c

/ \ lnc—In* / \ lnjt—lna / \ lnc—lna

/ c - x \ I x — a \ / c — a \
\lnc — \nxj \lnx—\naj \lnc — lna)

PROOF. The result holds if and only if

( In c - In * ) In ( C ~ f ) + ( I n * - l n a ) In ( * ~ f )
\lnc — Inx / \mx — lna/

( c-a \
< (In c — In a) In I I .

\ lnc — l n a /
Setting x0 = a, xx = x, x2 = c and letting w, = hue, — lnjc,-_i, a, = Xi~V~\ and
<t>(x) — — Inx, the result follows from the Jensen's inequality with < rather than <.

But

«y' = -\f(8(fi/x))-f(g(c/x))]
x

so that y' is negative on [a, */ac] and positive on [y/ac, c]. Strict inequality in
Theorem 2.4 now follows from the previous results since the derivative is strictly
negative on [a, ^/ac] and positive on the interval [*Ja~c, c]. Thus equality holds only
at a and c.

3. Convexity

THEOREM 3.1. The function

(
Inc-lin tox-lna

. * ) (, r )lnc — Inxj \lnx — \naj
is log-convex, and hence convex, on the interval [a, , /ac].
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PROOF. Let w = a lay; then w' = ay'/y and hence from (2) xw' = f (g(a/x)) —
f (g(c/x)) is an increasing function so that w' + xw" > 0 . Thus xw" > —w'. Now
on [a, */ac], w' < 0 and so w" > 0 so that w is convex (and hence log-convex) on
the interval [a, *Jac].

3.6 •

3.5

3.4

3.3

3.2

right side of (1)

FIGURE 1. Graph of equation (1) with a = 1, c = 9.

Figure 1 indicates that the function is also probably convex on the interval [^/ac, c].
However we have not been able to establish this even with the aid of the next result.

LEMMA 3.2. The curve

_ / c-x \ ^ / x -a \ ^

\ lnc — \nx ) \\nx — \na)

is invariant under the transformation x —>• ac/x.

PROOF.

( c - ac/x \ '"'-""• / ac/x —a \ '"c-'"°
lnc — \n(ac/x)J \ln(ac/x) — Inaj

_ / c{x - a)/x \ '"'""• / a(c - x)/x \ '•"
\\n c — In a — In c + Inx J \ln(ac) — lnx — \naj

z(x)
ln(ac>-1n.(-ln

- Ino

(c(x - a)/x\<"'-"" I a{c — x)/x\
\ Inx— In a) \ lnc — \nx )

= (c/x)^^ (a/x)^^ y(x).

inc-lno

(4)
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Now,

lnx — In a lnc — In*
In c — In a In c — In a

Thus, from (4)

Inx-lng Inc-lnjt In x -In a i Inx-lna

(c/x)""-"" (a/x)1"'-"" = (c/jt)""-ta° (a/x) <"<-<•"•
lnx-lna

(c/x) '"<-'"" a

(a/x)^^ x

= (a/x)(c/a)lnU/a)/lHc/a)

= - - = 1 since bx = exlnb.
x a

Thus z{x) = y(x) and the lemma is proved.

4. Generalizations and applications

The following theorems follow directly from Jensen's inequality and are general-
izations of Theorem 2.1.

THEOREM 4.1. / /

(1) 4> : [0, oo) -> R is a function,
(2) / , g : [0, oo) —>• R are increasing functions,
(3) A o < A, < • • • < An>

(1) if<t>is convex then

(2) i/ $ is concave then
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(3) if<$> is log-convex then

/ / ( A . ) - / ( A o ) \ " " - ' - " • ' » A $

\«(AH)-«(Ao)/ "U

(4) J/4> is log-concave then

g(An) - g(A0)

PROOF. In Jensen's inequality set wt = g(Aj) — g(A^i) and a, = /[^ |I /M'~' )
) ar*d

the result follows.

As a first application let M, N : R -*• R be differentiable functions with iV strictly
monotone. Given any two numbers a and b, there is a number c, according to the
mean value theorem, such that

M{b) - M(a) _ M'(c)
N(b) - N(a) ~ N'(c)

for some c, a < c < b. If c is uniquely determined then it is called the (M.N)
mean-value mean of a and b [2]. In this case let H be the inverse of M'/N' and write

/A/(fr)-M(a)\

° \N(b)-N(a))'

If M and N are both increasing and H is either log-convex or log-concave, we can
apply one of the inequalities in Theorem 4.1 to write

M(An)-M(A0)\ T2Trr/Af(Ai)-Af(A/_1)

or

» (

where we have made the associations that * — h,f = M, g = N, An = b, Ao = a.
Now specializing to the case of ®(x) = x (log-concave <J>) in Theorem 4.1 we

obtain

/ ( A . ) - / ( A p )

g(An) - g(A0)
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and interchanging / and g we can write

o)

g(An)-g(A0) '

From these expressions we can obtain inequalities for Stolarsky's [2,13] extended
mean value

r,,(a, ft) =

by setting / (JC) = xs/s, g(x) = xr/r, An = b, Ao = a and then raising both sides to
the power \/(s — r). For rs > 0

/ bs — us\ *r"°r I us — os \ *'"*' bs — QS

\br -ur) \ur-ar) ~br-ar

< (b -U) (U - a )
~ \br -ur ) \ur -ar)

where a < u < b.
If rs < 0, / (x) = xs/s and g(;c) = x r / r are still both increasing functions and we

have a similar inequality

r(bs - «')

s(br - ur)

7 /r{us -a^Y^ < rCfc1 - as)
\s(ur -ar)J ~ s(br -a")

~ \s(br - ur)J \s(ur-ar)J

where it is now necessary to include r/s or else reverse the inequality.
A further application is obtained by setting f (x) = x and g(x) = \nx above to

obtain

( A A \ 'n(^")~'n(^o) n / A A \ ' n C ^ i ) — l n ( A , _ i )

—" ~ °—) > FT (—————)
ln(An) — ln(A0)/ A f \ln(A,-) — ln(A^i)J

and

An - Ao

T^riT" •
These two inequalities provide a direct generalization and converse to the main in-
equality (2) discussed in this paper.
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