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THE BANACH-SAKS THEOREM IN ((S)
NICHOLAS R. FARNUM

A Banach space X has the Banach-Saks property if every sequence (x,) in X
converging weakly to x has a subsequence (x,,) with (1/p) > ;—1x,, converging
in norm to x. Originally, Banach and Saks [2] proved that the spaces L” (p > 1)
have this property. Kakutani [4] generalized their result by proving this for
every uniformly convex Banach space, and in [9] Szlenk proved that the space
L' also has this property.

An alternate version of the Banach-Saks property occurs in the works of
other authors who replace ‘‘sequence (x,) in X converging weakly to x'’' by
“bounded sequence (x,)"”’. Using this version, Nishiura and Waterman [5]
proved that every space with the Banach-Saks property is reflexive. Baernstein
[1] later gave an example of a reflexive Banach space not having the Banach-
Saks property.

In either version one asks that the (C, 1) means of some subsequence con-
verge in norm. The similar property with the (C, 1) method replaced by an
arbitrary regular summability method has been studied in [8] and [10].

Following [7] we denote by S@ the derived set of order «, where « is any
ordinal number. Also, S will denote a compact metric space with metric d,
C(S) will be the space of all continuous complex-valued functions on S with
norm

1£1ls = sup 17(S)],
and

faf
will denote the sequence ( f,) converges weakly to f.

We will use the first version of the Banach-Saks property given above in
this paper.

It is easy to show that the spacec = C({0,1,1/2,1/3,...}) has the Banach-
Saks property. However, C[0, 1] does not [6], so it is natural to ask for which
topological spaces S does C(S) have the Banach-Saks property. Our main
result is contained in the following:

THEOREM. C(S) has the Banach-Saks property if and only if S = @.
Proof. If S@ 3 @, Proposition 2 shows that C(S) does not have the Banach-
Saks property.
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Conversely, if S® = @ we know that N1 S® = @. Since S is compact and
S D SG+D . we conclude that there is a smallest integer 7, for which
NS = . Then S0 must be a finite set and we have

SUOC St-D) C .., C S® C SO C S.

It is easy to see that C(SU?) has the Banach-Saks property and by using
Proposition 1 7, times we see that C(S) has the Banach-Saks property.

We must establish the propositions used in the proof of the Theorem.
ProrositioN 1. If C(S?) has the Banach-Saks property, then so does C(S).

Proof.. Suppose
£S5 fin C(S).
Replacing f, with f, — f we may assume
£, 5 0.
y [3, p. 265] we see that
£ 35 0 implies that |f,| = 0.
If we replace f, by | f.| and use

“ 2 |

P i=1 f""
we may assume that each f, =

If S = SO there is nothing to prove so we assume S # S, Then there is
some point s € S\S® such that d(s¢, S®) = 6 > 0. The set

Fi = {s € S|d(s,S?V) = 5/2}

is not empty. From the compactness of S we see that F; has finitely many
points. Since lim,_.f,(s) = 0 for each s € S [3, p. 265], given any ¢ > 0
there is an integer n; such that | f,,(s)| = € for all s € Fy. The uniform con-
tinuity of f,, on Syieldsa Ay > Osuch that| f,,(s) — fu (¢)| = exford(s,t) < Ay
Let 6; = min (A, §/22).

We continue this process inductively. Suppose, then, that #;_; and §;_; have
been determined and let Fy, = {s € S|d(s, S) = 8;_.1}. As before we see that
Fy is a finite set so, given any ¢, > 0, we can find an integer #; > 7;_; such
that | f,, ()| = & for s € Fy. The uniform continuity of f, on S yields a
M > 0 such that |f, (s) — fo, ()] = & for d(s, t) = M. Let 6 = min (A4
5/25+1).

Let # € S\S® and let p be any positive integer. Since limy_,.6; = 0 there
exists a smallest integer k for which d(u, S®) = §. Denote this integer by k.
Then, for k = ko, d(u, SV) Z & so u € Fy and hence | f, (#)| < . By the
compactness of {#} and S® we can find a point ¥ € S® such that d(u, v) =
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d(u, SW). Thus d(u, v) < d, for k =1, 2,..., kp — 1. We now proceed to
calculate a bound for |[(1/p) 3 %=ifn,||s.
First, suppose p = ky — 1. Then,

rMAOEE D IWAOIET S WA DR RO D I
and thus
2 1
Z Iu, )| = p 2 ®) éj; @+ .' El Il e
Next, suppose p = ko. Then,
12 rw-15 50| 1% o -ne+! L ol
+23 15,0 éj—, SatiYatidnesiTarlTie
Hence
L3S | S5 3 at2i Y @] s ettt 3
p = Zp i P = 2= A PN

We have

1 & 1 & 1 &
pk;fnk(u) =p];ek+2”m;fnk

for all u € S\S® and, obviously, for all # € S® so we conclude that

an §1i6k+2\’lzp:fn
pk— Ells plc=l k=1

If the restriction of f,, to S® is denoted by g, then

g, 30 in C(S®).

s

1)

kg’

By hypothesis there exists a subsequence (gy,,) such that

1 4
; ; g”k(i)

— 0.
s

4

Arguing as above, we find
1L 1 “1 2

- (g = - i 2= (i
P,;fk(z)s P;ek_*_ Pglfk(l)

It suffices to choose ¢ so that lim;_,.e; = 0 and to notice that

11(1/£) S0t fuy |l 50 = 0

(2)

D7

in order to conclude [|(1/p) X %=ifu,s|ls — 0. This establishes the proposition.
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The next proposition is essentially a generalization of the result of Schreier
[6] and repeatedly uses some simple topological facts which we provide in the
following lemmas.

LEmMA 1. Let (s,), (n = 1,2,...), be a sequence of distinct points of S which
converge to s, € S. Let O be any open set containing each s, and s.,. Let ¢ be «
sequence of positive numbers such that e, — 0. Then, there is a subsequence
(Sn)s (B =1,2,...), of (s,) and a sequence of open discs O, (cenlered at sy,,)
satisfying the following conditions:

(1) e # ny= 0y N Oy, = 0;

(2) On, © O for all k;

(3) the radius r,, of Oy, satisfies v, < €;

(4) 5o & O, for all k.

The proof is elementary.

Lemma 2. Let (E,), (n = 1, 2, ...), be a sequence of closed subsets of S such
that:

(1) each E, € O,, where O, is an open disc of radius r, > 0;

2) r, — 0,

(3) the discs O, are mutually disjoint;

(4) the centers x, of the discs O, converge to a point x.
Then F = Us-iE, \J {x} 1s a closed set in S.

Proof. Let y € S\F. Then there is a disc D;(y) and a disc Dy(x) such that
D;(y) M D\(x) = @. Take ny such that », = \/4 for n = n, and take n, such
that d(x, x,) = N4 forn = n,. Letting n, = max (n, #1) we have O, C D) (x)
for all # = n,. Then U2:'E, is a closed set not containing y so by normality
we can find mutually disjoint open sets U, V containing UZ‘QIE,L and v,
respectively. Let W = D;(y) M V. Then W is an open set containing y which
does not meet F. Since y was an arbitrary point of S\F, we conclude that
S\ F is open and hence F is closed.

PROPOSITION 2. I fS@ £ @, then C(S) does not have the Banach-Saks property.

Proof. Here, w represents the first countable ordinal number so the condition
S@ = @ is equivalent to M5%1S? # 0. This forces each S to be infinite, so
we can find a sequence of distinct points (s;), (z = 1, 2, ...), with s; in S
for each 1.

By compactness of S, the sequence (s;) has a limit point s.. Passing to a
subsequence, if necessary, we may assume s; — s,. INotice that passing to a
subsequence does not alter the fact that s; is in S, because S¢® D SG+D
for all 2.

Let (ex) be any sequence of positive numbers converging to 0. Using Lemma
1 with O = S we obtain a subsequence of (s,) which we denote by s(3, ),
s(4,00,0), s(5,0,00,00)...anddiscs D(3, ), D(4, 0, ) ... centered
at these points, which satisfy the four conditions of Lemma 1.
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The point s (3, 00 ) is in S so there is some sequence of points of S converging
to s(3, ). We may assume this sequence lies within D (3, o ). Using Lemma 1
with O = D(3, ) we obtain a subsequence, which we denote by s(3, 4),
s(3, 5), s(3, 6) ... and discs D(3, 4), D(3, 5) ... centered at these points
satisfying the four conditions of Lemma 1.

Similarly, s(4, 00, 00 ) is in S@® so there is some sequence of points of S
which lie within D (4, o0, 0 ) and converge to s(4, 0, o ). Applying Lemma 1
with O = D (4, ©, ) we obtain the pointss(4,5,00),s(4,6,00),s(4,7,00) ...
and discs D (4, 5, ), D(4, 6, ) ... satisfying the conditions of Lemma 1.
Now, each s(4, k, ) is in S® for £ = 5,6, 7, ... so in each D(4, k, 00 ) we
may repeat the argument of the preceeding paragraph, thus obtaining discs
D4, k, B+ 1), D4, k, k-4 2)...centered at points s(4, k, k& + 1),
s(4, k, k 4+ 2) ... satisfying the four conditions of Lemma 1.

In general, s(n, ©0, ©, ..., ) is in S®2 so, using Lemma 1 with O =
D(n, ©, 0, ...,00) we can find discs D(n,n + j, 00,00, ...,0), (j =1,
2,...), centered at points s(n, n + j,©,...,0), (F = 1,2,...),such that
each s(n, n + j, 0, ..., ©) belongs to S®?, s(n,n + j, 0, ..., 00 ) con-
verges to s(n, 00, ..., ©) as j — 00, and such that these discs and points
satisfy the conditions of Lemma 1. Note that each parenthesis (z, n 4+ j, c©,
©,... 0,) hasn — 1 entries. We can apply Lemma 1 to each disc D (n, n + 7,
©, ..., ) to obtain subdiscs D(n, n +j,n +j+ k, 0, ©, ..., ©),
(k =1, 2, ...), centered at points s(n, n +j, n+j+ k, 0, ..., ©0) in
S@™=9 guch that these points converge to s(n, n + j, ©, ..., ). In other
words, given a disc whose center lies in some S we use Lemma 1 to construct
a sequence of subdiscs whose centers are in SV, Since we initially have a
point in S®?  we can only repeat this process # — 2 times. The method of
indexing the discs indicates the inclusion relations between the discs in the

sense that in the disc D(n, 00 ,00,00,...,00)
(1) D(n, m1, ms, ..., my 00,00, ...,00) contains all thus constructed discs
whose associated parentheses begin with n, mi, m,, ..., my and only these

discs. We summarize the other properties of these discs as follows:
(2) each parenthesis has length n — 1;
(3) the entries in each parenthesis form a strictly increasing sequence;

4) if n, my, mo, ..., my are fixed, then the discs
D(n,my,...,mgmy 4+ j3,0,...,0), (G =1,2,...), with centers s(n, m,,
e, My, my, + 7,0, ..., ) satisfy the four conditions of Lemma 1.

Let D(n, my, ms, . .., m,_s) represent the general subdisc constructed as
above and then let K (n, mi, ms, ..., m,_2) be the set of centers of all thus
constructed subdiscs, including D(n, m1, ms, ..., m,_2), contained in D (z,
my, ..., Mm,_2). We now prove that each K (n, my, ms, . . . , m,_) is closed in S.
To this end, suppose all the entries in (n, m1, ms, ..., m,_2) are finite. Then
K(n,m, ..., m,_2) is just the single point s(n, m1, . . . , m,_2) and is obviously
closed. Now suppose some of the entries (n, mi, ms, ..., m,_») are 0 and let
my denote the last finite entry. To show K(n, m1, ..., my, 00, ..., ©) is
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closed, it suffices by (4) and Lemma 2, to show each K (n, m, . . ., my, my + 7,
0, ..., ) is closed. By (4) and Lemma 2 we will have each K (n, m,, .. .,
my, My + j, 0, ..., ) closed if we know that each K (n, m., . . ., my, m; + j,
my + j+ 1,00,...,0) is closed. After a finite number of such reductions we
find that it is sufficient to prove that each K (n, m;, . . . , m,_s) is closed if each
entry in (n,my, ..., m, ) is finite. But this has already been established.

Now, let Z,; be the set of centers of all discs constructed as above in whose
associated parentheses the integer ¢ occurs. Notice that

.

Z; C D(k,0,...,0).
k=3
For 3 £ k < i let L,* denote the finite union of all possible K (k, my, m., . . .,
My_2, 1, 00, 00, ..., 00) where ¢ occurs in the pth position. Let O, be the
corresponding union of all D(k, my, ms, ..., my_s, 1, 0, ..., ). The pre-
ceeding paragraph allows us to conclude that L,* is closed for 3 = k < 1, so,
since Z,\D(k,0,...,0) = UL for3 <k <iand Z,\ND(, o, ...,
) =K(@ ©, ..., 0) we see that Z,N\ D(k, «©, ..., o) is closed for
kE=23,4,...,7and hence Z; = U_s{Z; N\ D(k, 0, ...,00)} is closed in .S
for every 1 = 3.
Let

i—1 k-1
Ui=D(i,oo,...,oo)U{U U O,,"}.

Then U, is an open set containing Z; for ©+ = 3. Therefore, U° is closed and
UM Z; = 0. By Urysohn’s lemma, we can find f; in C(S) such that f;(Z;) =
1,f:(U) =0,and 0 £ f; £ 1 for every z = 3. We now proceed to show that

.2 0in C(S).

to 0 for every s in S. If a point s lies within no D (7, 0, 00, ..., o) then, in
particular, s is in U, for 7+ = 3 and thus f;(s) = 0 for < = 3. So we assume s is
a point lying in some disc D (7y, 00, 00, ..., ). Let D (1, my1, Mo, . . ., M;_3)
be the smallest subdisc of D(zy, ©, ..., ) in which s lies and let m, be the
last finite entry in (zo, M1, Mo, . . ., M4—s). Then for every i > m; we see, by
property (1), that amongst all subdiscs of D(zy, 0, ..., 00 ) whose associated
parentheses contain ¢, none contain D (¢y, m1, M, . . . , M4 _s). Also, by the way
in which D (1o, m1, ms, . . ., my_») was chosen, s does not lie in any subdisc of
it whose associated parenthesis contains an 7. Thus, for 7 > m,, s is in U,° and
hence f;(s) — 0.

The sequence (f;), (@ = 3,4, ...), has been shown to converge weakly to 0.
We now show that there is no subsequence (f,,) with [[(1/p)31 f,,|| con-
verging to 0.

Since || fi]] = 1for¢ = 3, we need only show [3, p. 265] that f;(s) converges
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Take n1, ns, 13, . .. to be any strictly increasing sequence of natural num-
bers and let £ be any natural number. Since #,.; = k 4+ 1 all & numbers
Ni+1, Mrt2, - - -, Bop OCcur simultaneously in at least one parenthesis (m,, ma,
.., My,—1) constructed above. Let sg = s(my, my, ..., m,,—1). Then s¢ is in
Zy; for B 4+ 1 = j = 2k and hence f,;(so) = 1 for k + 1 < j < 2k. Thus

> | — ) — - =
E fﬂJ = |2k ; fnJ(SO) ok ; n;(sO) 9
SO
lim ||~ Z full 21
D0 P d 2

This concludes the proof.

I't has been brought to the author’s attention by a personal communication
that, using less direct methods than those employed here, the main result oi
this paper remains true when S is a non-metrizable compact Hausdorff space.
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