A 3-MANIFOLD WITH A NON-SUBGROUP-SEPARABLE FUNDAMENTAL GROUP

Saburo Matsumoto

Abstract

We examine a 3 -manifold Γ whose fundamental group is known to be non-subgroup-separable (non-LERF). We show that this manifold Γ is a graph manifold and that the subgroup known to be non-separable is not geometric. On the other hand, there are incompressible surfaces immersed in the manifold which do not lift to embeddings in any finite-degree covering space. We then prove that these bad incompressible surfaces must have non-empty boundary.

1. Preliminaries

A group G is said to be residually finite ($R F$) if, for any $\gamma \in G \backslash\{1\}$, there exists a finite-index subgroup G_{1} not containing γ. If S is a subgroup of G, then G is said to be S-residually finite ($S-R F$) if, for any $\gamma \in G \backslash S$, there exists a finite-index subgroup G_{1} of G containing S but not γ. We say that G_{1} separates S from γ and that S is a separable subgroup of $G . G$ is called locally extended residually finite (LERF) if G is S-RF for every finitely generated subgroup S of G. LERF groups are sometimes referred to as subgroup separable groups. In this paper, the terms "LERF" and "subgroup separable" are used interchangeably.

If G is LERF, then so are any subgroups of G (this is obvious) and any finite extensions of G (Scott [13]). See Allenby and Gregorac [1], Magnus [11], and Scott [13] for various nice properties of these groups.

The following lemma, a direct corollary to a result in [13], provides an essential link between group theory and geometric topology.

Lemma 1.1. Let M be a topological 3 -manifold with $\pi_{1}(M)=G$. If G is LERF, then any incompressible surface F immersed in M by $f: F \rightarrow M$ can be lifted to an embedding $f_{1}: F \rightarrow \widehat{M}$, where \widehat{M} is a finite-degree covering space for M.

Remark. By incompressible surface, we mean that the map f induces a π_{1}-injective $\operatorname{map} f_{*}: F \rightarrow M$.

We say that a compact irreducible 3 -manifold M is a graph manifold if each component of $M \backslash \mathcal{T}$ is a Seifert fibre space, where \mathcal{T} is the family of tori in the canonical torus

[^0]decomposition. Each Seifert fibre piece is often called a vertex manifold. In this class we include those manifolds that are obtained by gluing a pair (or pairs) of boundary torus components of one single Seifert fibre space.

In 1978, Scott showed that all surface groups, all Fuchsian groups, and the fundamental groups of Seifert fibre spaces are LERF [13] (also, see Hempel [7], Hall [5], Burns [2], and Karrass and Burns [8]). This, of course, implies that any circle bundle over a surface has a LERF fundamental group. However, Scott wrote, "I am unable to decide whether the same holds for bundles over S^{1} with fibre a surface. It seems quite possible that this is false" (p.565).

As Scott speculated, almost ten years later, Burns, Karrass, and Solitar [3] found a non-LERF group which is the fundamental group of a surface bundle over S^{1}. This resulted in the discovery of more 3 -manifolds with non-LERF fundamental groups (see Long and Niblo [9], for example). In this paper we shall study the example given in [3].

2. Non-LERF group K

We begin by presenting the group K proved non-LERF in [3]. Their paper specifies a finitely generated subgroup H of K and an element $\gamma \in K \backslash H$ which cannot be separated from H by a finite-index subgroup of K containing H. In their presentation,

$$
\begin{aligned}
K & =\left\langle y, \alpha, \beta \mid y^{-1} \alpha y=\alpha \beta,: y^{-1} \beta y=\beta\right\rangle \\
H & =\left\langle\alpha^{-1}, y \alpha^{-1} y^{-2} \alpha\right\rangle=\left\langle\alpha, y \alpha^{-1} y^{-2}\right\rangle \\
\gamma & =\left[y, \alpha^{-2} y \alpha^{2}\right] .
\end{aligned}
$$

and
Here, $\left[x_{1}, x_{2}\right]$ denotes the commutator $x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}$. For details of their proof, see [3]. Note that, since $\beta=\alpha^{-1} y^{-1} \alpha y$, the group K can be presented by 2 elements and 1 relation instead.

This particular presentation of K suggests a non-closed 3-manifold Γ with $\pi_{1}(\Gamma)=$ K, obtained as follows:

Let F be the punctured torus, and let $\pi_{1}(F)=\langle\alpha, \beta\rangle$, where α represents the longitude and β represents the meridian of F. Consider $F \times I$. Identify $F \times\{0\}$ and $F \times\{1\}$ with the homeomorphism of F prescribed by the two relations

$$
y^{-1} \alpha y=\alpha \beta \quad \text { and } \quad y^{-1} \beta y=\beta
$$

The construction is shown in Figure 1. The gluing homeomorphism determined by these relations is a Dehn twist along the meridian curve β :

$$
\alpha \longmapsto \alpha \beta, \quad \beta \longmapsto \beta .
$$

Figure 1. Non-LERF 3-manifold Γ
The resulting Γ is simply a surface bundle over S^{1}. Note that $\partial \Gamma$ is the torus, and if this is "capped off" in the obvious manner, we get a closed manifold Γ " having the Nil geometry [14].

The following lemma is useful in analysing Γ.
Lemma 2.1. Γ is a graph manifold consisting of one Seifert fibre space with three boundary components, two of which are identified.

Figure 2. Γ as a graph manifold
Proof: Let F denote the punctured torus. The description above for Γ shows that Γ is obtained from $F \times I$ by the Dehn twist along the meridian, defined by the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

Now, one can cut F along the meridian curve μ and get the "pair of pants" $S^{2}-3 D^{2}$, which we denote by P. Consider $P \times S^{1}$, the solid torus with the interior of two disjoint
solid tori T_{1} and T_{2} removed (Figure 2). For $i=1,2$, let

$$
\pi_{1}\left(T_{i}\right)=\left\langle x_{i}\right\rangle \oplus\left\langle t_{i}\right\rangle \cong \mathbb{Z} \oplus \mathbb{Z}
$$

where x_{i} is the meridian (horizontal in $P \times S^{1}$) and the t_{i} is the longitude (vertical in $P \times S^{1}$). We shall identify T_{1} and T_{2} in such a way that the resulting manifold is homeomorphic to Γ. As one can see in Figure 2, the Dehn twist performed to make Γ corresponds to "turning" x_{1} one complete rotation and gluing the two tori together. In other words, by identifying T_{1} and T_{2} by the homeomorphism $h: T_{1} \rightarrow T_{2}$ inducing

$$
\begin{aligned}
h_{*}: \pi_{1}\left(T_{1}\right) & \rightarrow \pi_{1}\left(T_{2}\right) \quad \text { defined by } \\
x_{1} & \longmapsto x_{2} \\
t_{1} & \longmapsto x_{2}+t_{2}
\end{aligned}
$$

one gets a manifold homeomorphic to Γ. The space $P \times S^{1}$ is clearly a Seifert fibre space, so Γ is a graph manifold.

We now give yet another presentation of K.
Lemma 2.2. The presentation

$$
K=\left\langle y, \alpha, \beta \mid y^{-1} \alpha y=\alpha \beta, y^{-1} \beta y=\beta\right\rangle
$$

is Tietze equivalent to (and thus isomorphic to) the presentation

$$
\left\langle y, y_{1}, \alpha \mid \alpha^{-1} y \alpha=y_{1},\left[y, y_{1}\right]=1\right\rangle
$$

Proof: Simply substitute $\beta=y y_{1}^{-1}$, and verify that

$$
\begin{aligned}
K & =\left\langle y, \alpha, \beta \mid y^{-1} \alpha y=\alpha \beta,[\beta, y]=1\right\rangle \\
& =\left\langle y, \alpha, y y_{1}^{-1} \mid y^{-1} \alpha y=\alpha y y_{1}^{-1},\left[y y_{1}^{-1}, y\right]=1\right\rangle \\
& =\left\langle y, \alpha, y_{1} \mid y^{-1} \alpha y=\alpha y y_{1}^{-1},\left[y, y_{1}\right]=1\right\rangle \\
& =\left\langle y, y_{1}, \alpha \mid y^{-1} \alpha y=\alpha y_{1}^{-1} y,\left[y, y_{1}\right]=1\right\rangle \\
& =\left\langle y, y_{1}, \alpha \mid \alpha^{-1} y^{-1} \alpha=y_{1}^{-1},\left[y, y_{1}\right]=1\right\rangle \\
& =\left\langle y, y_{1}, \alpha \mid \alpha^{-1} y \alpha=y_{1},\left[y, y_{1}\right]=1\right\rangle
\end{aligned}
$$

is indeed a sequence of Tietze transformations (and obvious substitutions and manipulations).

With this new presentation of K, we can now realise Γ in yet another way. Since y and y_{1} commute in G, let T be the torus whose meridian curve is represented by y and longitude curve by y_{1}. Start with $T \times I$, and take the regular (2-dimensional)

Figure 3. The two annuli to be identified
neighbourhood N_{0} of the meridian curve on $T \times\{0\}$ (see Figure 3). ∂N_{0} is two circles S_{1} and S_{2}. Similarly, take the neighbourhood N_{1} of the longitude curve of $T \times\{1\}$. Refer to the two boundary circles of ∂N_{1} as C_{1} and C_{2}.

Now take an annulus A with $\partial A=\partial_{1} \cup \partial_{2}$, and construct $A \times I$. Identify $A \times\{0\}$ with N_{0} and $A \times\{1\}$ with N_{1} such that for $i=1,2$,

$$
A_{i}=\partial_{i} \times I \text { joins } S_{i} \text { with } C_{i}
$$

Since the ∂_{i} are circles, the A_{i} are also annuli. We shall refer to these as connecting annuli (See Figure 4).

Figure 4. The connecting annuli A_{1}, A_{2}
The resulting manifold M is a 3-manifold with boundary, and $\pi_{1}(M)=G$, where $y, y_{1} \in \pi_{1}(T)$, and α is a primitive loop going through the attached annuli, carrying y to y_{1}. Note that we may have actually constructed two distinct manifolds here, depending on how we labelled the S_{i} and the C_{i}. Indeed, Theorem 2.3 below shows that two distinct manifolds can be constructed this way and that one of them is homeomorphic to Γ. Here, we are assuming that the circles S_{i} are oriented in the same way, and so are the C_{i}. Observe that, in either way,

$$
\partial M=\left((T \times\{0\}) \backslash N_{0}\right) \cup A_{1} \cup\left((T \times\{1\}) \backslash N_{1}\right) \cup A_{2}
$$

where A_{i} is the annulus connecting S_{i} to C_{i}. This is a union of four annuli making up a single torus boundary component.

Theorem 2.3. The above construction gives two distinct 3-manifolds, M_{1} and M_{2}, and one of them is homeomorphic to Γ.

Proof: After fixing the C_{i} and the S_{i}, one gluing (taking C_{1} to S_{1}) gives an orientable manifold while the other gluing gives a non-orientable one, so it is clear that we get two distinct manifolds. Let M_{1} be the manifold constructed with the labeling given in Figure 5, and the annuli join S_{1} with C_{1} and S_{2} with C_{2}. Pick a base point of M_{1} as shown in Figure 5, and orient each generator curve as indicated by the arrows. We see that

$$
\pi_{1}\left(M_{1}\right)=\left\langle\alpha, y, y_{1} \mid\left[y, y_{1}\right]=1, \alpha^{-1} y \alpha=y_{1}\right\rangle \cong K
$$

as required. Consider now $\partial \Gamma \cong T^{2} . \pi_{1}(\partial \Gamma)$ is generated by y and $\alpha \beta \alpha^{-1} \beta^{-1}$. On the other hand, as stated before, ∂M_{1} is also homeomorphic to the torus, diagrammatically shown in Figure 6. $\pi_{1}\left(\partial M_{1}\right)$ is thus generated by y and $\alpha y \alpha^{-1} y_{1}$.

Figure 5. Γ and $\pi_{1}(\Gamma)$ as an HNN extension

Using the identity $\beta=\alpha^{-1} y^{-1} \alpha y$ in K, we get

$$
\begin{aligned}
\pi_{1}(\partial \Gamma) & =\langle y\rangle \oplus\left\langle\alpha \beta \alpha^{-1} \beta^{-1}\right\rangle \\
& =\langle y\rangle \oplus\left\langle\alpha \alpha^{-1} y^{-1} \alpha y \alpha^{-1} y^{-1} \alpha^{-1} y \alpha\right\rangle \\
& =\langle y\rangle \oplus\left\langle\alpha y \alpha^{-1} y^{-1} \alpha^{-1} y \alpha\right\rangle \\
& =\langle y\rangle \oplus\left\langle\alpha y \alpha^{-1} y^{-1} y_{1}\right\rangle \\
& =\langle y\rangle \oplus\left\langle\alpha y \alpha^{-1} y_{1} y^{-1}\right\rangle \quad \text { since } y \text { and } y_{1} \text { commute } \\
& =\langle y\rangle \oplus\left\langle\alpha y \alpha^{-1} y_{1}\right\rangle \\
& =\pi_{1}\left(\partial M_{1}\right) .
\end{aligned}
$$

Figure 6. The boundary $\partial \Gamma$

Hence, we have a group isomorphism $\pi_{1}(\Gamma) \rightarrow \pi_{1}\left(M_{1}\right)$ such that it maps $\pi_{1}(\partial \Gamma)$ isomorphically onto $\pi_{1}\left(\partial M_{1}\right)$. By Waldhausen's Theorem, we conclude that $\Gamma \cong M_{1}$.

3. The non-separable subgroup of K

As mentioned in Section 1, one of the implications of $\pi_{1}(M)$ being non-LERF is that there may be an incompressible surface S (immersed in M) not lifting to an embedding in any finite cover of M. If so, $\pi_{1}(S) \subset \pi_{1}(M)$ is non-separable. Thus, if Γ does contain such a surface S, then H is a candidate for $\pi_{1}(S)$. We shall see later that this is not the case (see Theorem 3.4), but before proving it, we must examine H further. The key machinery used here is the following, due to Britton [10].

Lemma 3.1. Suppose G is a group with subgroups A and $B, \eta: A \rightarrow B$ is an isomorphism, and \widehat{G} is an HNN extension of G defined as

$$
\widehat{G}=\left\langle G, t \mid t^{-1} a t=\eta(a), a \in A\right\rangle
$$

Let $g_{i} \in G$ and $\varepsilon_{i}= \pm 1$, and suppose the word

$$
w=g_{0} t^{\varepsilon_{1}} g_{1} \ldots t^{\varepsilon_{n}} g_{n}
$$

(where $n \geqslant 1$) does not contain any subword $t^{-1} g_{i} t, g_{i} \in A$, or $\operatorname{tg}_{j} t^{-1}, g_{j} \in B$. Then \boldsymbol{w} is not the identity in \widehat{G}.

An immediate corollary is the following:
Corollary 3.2. Let G and \widehat{G} be defined as above, and let $g \in G$ be an element such that $g^{k} \notin(A \cup B)$ for all $k \neq 0$. Then, the subgroup $\langle g, t\rangle$ of \widehat{G} is free of rank 2.

Proof: We need to show that the homomorphism

$$
\Phi:\langle g, t\rangle \text { (as a free group) } \rightarrow\langle g, t\rangle \text { (as a subgroup of } \widehat{G})
$$

is injective. So let w be a word in the free group $\langle g, t\rangle$, reduced in the "free-group sense," and suppose $\Phi(w)=1$ in \widehat{G}. Clearly $w \neq g^{k}(k \neq 0)$, since $g^{k} \notin A \cup B$. Hence, $w=1$ already, or w contains at least one t, so we can apply Britton's Lemma 3.1 (as $n \geqslant 1$) and conclude that w contains a subword $t^{-1} g_{i} t$ or $g_{j}^{-1} t^{-1}\left(g_{i} \in A\right.$ or $\left.g_{j} \in B\right)$. Now g_{i}, g_{j} must be g^{k} for some $k \neq 0$, since w is a reduced word in g and t. But $g^{k} \in A$ or B is contrary to our hypothesis. Hence, $w=1$, and Φ is injective.

Corollary 3.3. H is isomorphic to the free group of rank 2.
Proof: Using the identity $y_{1}=\alpha^{-1} y \alpha$, we see that the subgroup H is generated by α and $y \alpha^{-1} y^{-2} \alpha=y\left(\alpha^{-1} y \alpha\right)^{-2}=y y_{1}^{-2}$.
K is an HNN extension of the torus group generated by y and y_{1}. Let $G=$ $\langle y\rangle \oplus\left\langle y_{1}\right\rangle$, and let $A=\langle y\rangle, B=\left\langle y_{1}\right\rangle$; define $\eta(y)=\alpha^{-1} y \alpha=y_{1}$. Then, $K=\widehat{G}$ in the notation of Lemma 3.1, and we can apply Corollary 3.2 since there is no $k \neq 0$ such that $\left(y y_{1}^{-2}\right)^{k} \in A$ or B in G. Hence, $H=\left\langle y y_{1}^{-2}, \alpha\right\rangle$ is free of rank 2.

Now, the classification result for compact connected surfaces gives all the surfaces S such that $\pi_{1}(S) \cong F_{2}$, the free group of rank 2. $\partial S \neq \varnothing$, so we get

$$
H_{0}(S)=\mathbb{Z}, \quad H_{1}(S)=\mathbb{Z} \oplus \mathbb{Z}, \quad \text { and } H_{2}(S)=0
$$

and thus $\chi(S)=-1$. Hence, S is homeomorphic to the pair of pants, the punctured torus, the punctured Moebius band, or the punctured Klein bottle.

Now, we are ready to prove the main result of this section.
Theorem 3.4. Let Γ be the manifold described in Section 2, and present $\pi_{1}(\Gamma)=K$ as above. Suppose $f: S \rightarrow \Gamma$ is a proper two-sided immersion of a compact connected surface such that $f_{*}: \pi_{1}(S) \rightarrow \pi_{1}(\Gamma)$ is an injection. Then, $f_{*}\left(\pi_{1}(S)\right)$ cannot be H.

Remark. By proper immersion, we mean that f is a local embedding such that $f^{-1}(\partial \Gamma)=\partial S$.

Proof: Of the four surfaces S whose fundamental group is free of rank 2, the two non-orientable ones cannot be immersed in a two-sided way. Hence, we need to consider only the following two cases.

Case 1. First, suppose S is the pair of pants. Since f is a proper map, ∂S, which is three disjoint circles, must be mapped into the boundary torus of Γ. Let

$$
f_{*}(a)=\bar{a}, \quad f_{*}(b)=\bar{b}
$$

where a, b are shown in Figure 7, and \bar{a}, \bar{b} are their images in $\pi_{1}(\Gamma)$. The base point of $\pi_{1}(S)$ is on the boundary component associated with a, so $\bar{a} \in \pi_{1}(\partial \Gamma)$. As for \bar{b}, since a conjugate of b represents a boundary component of S, \bar{b} is conjugate to $\bar{c} \in \pi_{1}(\partial \Gamma)$ by some $g \in \pi_{1}(\Gamma)$. Hence, $\bar{b}=g^{-1} \bar{c} g$. Note that g may not be in $\pi_{1}(\partial \Gamma)$. However, we know that $[\bar{a}, \bar{c}]=1$ since $\bar{a}, \bar{c} \in \pi_{1}(\partial \Gamma)$, an Abelian group. Therefore, we have $f_{*}\left(\pi_{1}(S)\right)=\left\langle\bar{a}, g^{-1} \bar{c} g\right\rangle$, a subgroup of K.

Figure 7. S, the "pair of pants"
Now, let $A: K \rightarrow K / K^{\prime}$ be the Abelianisation map. Then, $K / K^{\prime} \cong \mathbb{Z}^{2}$ is generated by the images of y and α, and $A(\beta)=1$. Note that

$$
A\left(\pi_{1}(\partial \Gamma)\right)=A\left(\left\langle\alpha \beta \alpha^{-1} \beta^{-1}\right\rangle \oplus\langle y\rangle\right)=\langle y\rangle \cong \mathbb{Z}
$$

Now, consider the image of the subgroup $f_{*}\left(\pi_{1}(S)\right)$ under A in K / K^{\prime}.

$$
A\left(f_{*}\left(\pi_{1}(S)\right)\right)=A\left(\left\langle\bar{a}, g^{-1} \bar{c} g\right\rangle\right)=A(\langle\bar{a}, \bar{c}\rangle) \subset A\left(\pi_{1}(\partial \Gamma)\right)=\langle y\rangle
$$

On the other hand,

$$
A(H)=A\left(\left\langle\alpha, y \alpha^{-1} y^{-2}\right\rangle\right)=A(\langle\alpha, y\rangle)=\langle\alpha\rangle \oplus\langle y\rangle
$$

Hence, $f_{*}\left(\pi_{1}(S)\right) \neq H$ as their images under A are not even isomorphic.

Case 2. Next, suppose S is the punctured torus. Let $\pi_{1}(S)=\langle a, b\rangle$, and so $\pi_{1}(\partial S)=\left\langle a b a^{-1} b^{-1}\right\rangle$. Since $\pi_{1}(\partial S)$ lies in the commutator subgroup of $\pi_{1}(S)$, its image $f_{*}\left(\pi_{1}(\partial S)\right) \subset \pi_{1}(\partial \Gamma) \cap K^{\prime}=\left\langle\alpha \beta \alpha^{-1} \beta^{-1}\right\rangle$.

Now, consider a new (closed) 3-manifold N obtained by "capping off" the boundary torus of Γ in such a way that $[\alpha, \beta]$ gets "killed" in $\pi_{1}(N)$. In other words, we attach a solid torus on $\partial \Gamma$ so that

$$
\pi_{1}(N)=\pi_{1}(\Gamma) /\langle[\alpha, \beta]=1\rangle
$$

N is a torus bundle over S^{1}, obtained by filling in the "puncture" of the fibre of Γ. Now,

$$
\pi_{1}(N)=\left\langle y, \alpha, \beta \mid y^{-1} \alpha y=\alpha \beta, y^{-1} \beta y=\beta,[\alpha, \beta]=1\right\rangle
$$

so β commutes with everything. As S is mapped properly to Γ, this "capping off" process will close up $f(S)$, and $\pi_{1}(S)$ will become $\pi_{1}\left(S \cup D^{2}\right)=\pi_{1}\left(T^{2}\right)$. As the result, we have the following commutative diagram:

where j_{*} is induced by f_{*}, and c_{1}, c_{2} are induced by the capping operation. Note that c_{1}, c_{2} are surjective. Now, $\pi_{1}\left(T^{2}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$, so $j_{*} \cdot c_{1}\left(\pi_{1}(S)\right)$ is an Abelian subgroup of $\pi_{1}(N)$. Thus, $c_{2} \cdot f_{*}\left(\pi_{1}(S)\right)$ is also Abelian.

Now, suppose $H=\left\langle\alpha, y \alpha^{-1} y^{-2}\right\rangle=f_{*}\left(\pi_{1}(S)\right)$ in $\pi_{1}(\Gamma)$. Then, clearly $c_{2}(H)$ must be Abelian as well, that is, $\left[\alpha, y \alpha^{-1} y^{-2}\right]=1$ in $\pi_{1}(N)$ with the additional relation.

Observe that the question is now reduced to the algebraic problem of H : whether or not H becomes Abelian when the relation $[\alpha, \beta]=1$ is added. Denote $\pi_{1}(N)$ by \bar{K}. If $H=f_{*}\left(\pi_{1}(S)\right)$, then $c_{2}(H)$ is Abelian, and we have

$$
\left[\alpha, y \alpha^{-1} y^{-2}\right]=\alpha^{-1} y^{2} \alpha y^{-1} \alpha y \alpha^{-1} y^{-2}=1
$$

in \bar{K}. Recall that in \bar{K}, β commutes with both α and y. So we get

$$
\begin{aligned}
\beta=\beta \cdot 1 & =(\beta) \alpha^{-1} y^{2} \alpha y^{-1} \alpha y \alpha^{-1} y^{-2} \\
& =\alpha^{-1} y^{2} \alpha(\beta) y^{-1} \alpha y \alpha^{-1} y^{-2} \\
& =\alpha^{-1} y^{2} \alpha\left(\alpha^{-1} y^{-1} \alpha y\right) y^{-1} \alpha y \alpha^{-1} y^{-2} \\
& =\alpha^{-1} y \alpha^{2} y \alpha^{-1} y^{-2} .
\end{aligned}
$$

Now, since $\beta^{-1}=y^{-1} \alpha^{-1} y \alpha$, commuting with α and y, we have

$$
\begin{aligned}
1=\beta \beta^{-1} & =\alpha^{-1} y \alpha^{2} y\left(\beta^{-1}\right) \alpha^{-1} y^{-2} \\
& =\alpha^{-1} y \alpha^{2} y\left(y^{-1} \alpha^{-1} y \alpha\right) \alpha^{-1} y^{-2} \\
& =\alpha^{-1} y \alpha y^{-1}
\end{aligned}
$$

By taking the inverse, we get $1=y \alpha^{-1} y^{-1} \alpha$, and thus $y^{-1} \alpha y=\alpha$. But $y^{-1} \alpha y=\alpha \beta$, so these two equations imply that $\beta=1$, which is impossible since β is the meridian of the fibre $T^{2}-D^{2}$ in Γ, which is not capped off by the process. Hence, H cannot be the subgroup $f_{*}\left(\pi_{1}(S)\right)$ in $\pi_{1}(\Gamma)$ when S is the punctured torus. This completes the proof of Theorem 3.4.

Actually the argument of Case 1 can be modified for the punctured Moebius band case, also. However, we are not very much concerned with this case since the punctured Moebius band would be one-sided.

4. Separability of closed surfaces in Γ

A natural question to ask next is the following: does every incompressible immersion of a surface in Γ lift to an embedding in some finite cover of Γ ? We begin with the following definition.

Definition 4.1: Let $f: S \rightarrow M$ be a proper, π_{1}-injective immersion of a connected surface S into a 3 -manifold $M . S$ is called separable if there is a finite cover \widehat{M} of M such that f lifts to $\widehat{f}: S \rightarrow \widehat{M}$ as an embedding.

We shall assume that all such immersions are least-area maps in their homotopy classes. Let us first consider closed surfaces. We begin with the following, somewhat surprising lemma.

Lemma 4.2. Suppose $f: S \rightarrow \Gamma$ is a π_{1}-injective proper immersion of a connected closed orientable surface into Γ, and S is not S^{2}. Then, S must be the torus.

Proof: We use the graph-manifold description of Γ (Lemma 2.1 and Figure 2). Cut open Γ along the glued torus T to get $\Gamma^{\prime}=P \times S^{1}$, where P is the pair of pants. Define $f^{\prime}: S^{\prime} \rightarrow \Gamma^{\prime}$, where $S^{\prime}=S-f^{-1}(T)$, possibly disconnected. Each component of $f^{\prime}\left(S^{\prime}\right)$ is π_{1}-injective (by least area) in Γ^{\prime}, so assume it is either horizontal or vertical in Γ^{\prime}. But if a component is horizontal, it must be transverse to every fibre of Γ^{\prime}, meeting every component of $\partial \Gamma^{\prime}$. This contradicts the hypothesis that S is a proper immersion of a closed surface. Hence, each component is vertical. This implies that $f(S)$ is disjoint from T since the gluing does not preserve the vertical fibres. Hence, $S=S^{\prime}$ and is immersed in Γ^{\prime}, and it is a union of Seifert fibres; therefore, it must be the torus.

This lemma means that $f(S)$ is a product of some closed (but not necessarily simple) curve c on the fibre P with an n-degree covering of S^{1}. (c represents the meridian of S). We now state one of the main theorems about surfaces in Γ.

Theorem 4.3. Suppose $f: S \rightarrow \Gamma$ is a π_{1}-injective proper immersion of an orientable closed connected surface S into Γ. Then, S is separable.

Proof: The result is trivial if $S=S^{2}$, so by Lemma 4.2, we may suppose that S is the torus. This time, use the HNN-extension model of Γ (Theorem 2.3 and Figure 5). Denote $T \times\{0\}$ by T_{0} and $T \times\{1\}$ by T_{1}. With this description (Figure 3 and Figure 4), we use the term "connecting annulus" A to refer to the thickened annulus $A \times I$ connecting the 2-dimensional neighbourhoods N_{0} of μ in T_{0} and N_{1} of λ in T_{1}. Let us refer to $T \times I$ as Γ^{\prime}. This is obtained after Γ is cut along the middle of the connecting annulus A. We have the following two cases.

Case 1. $S \cap A=\varnothing$. Here, $S \subset \Gamma^{\prime}$. In this case, S can be homotoped to cover the torus $T \times\{1 / 2\}$ in Γ^{\prime}. Let $\rho: S \rightarrow T \times\{1 / 2\}$ be this covering. $\rho_{*}\left(\pi_{1}(S)\right)$ is some $\mathbb{Z} \oplus \mathbb{Z}$ subgroup in $\pi_{1}(T)=\mathbb{Z} \oplus \mathbb{Z}$. Then, since $\mathbb{Z} \oplus \mathbb{Z}$ is LERF, there exists a finite cover $\widehat{\Gamma^{\prime}}$ of $\Gamma^{\prime}=T \times I$ in which ρ lifts to $\widehat{\rho}: S \rightarrow \widehat{\Gamma^{\prime}}$ as an embedding. Let $\partial \widehat{\Gamma^{\prime}}=T_{0}^{\prime} \sqcup T_{1}^{\prime}$. There are some m_{0} and l_{0}, positive integers, such that on T_{0}^{\prime} we see m_{0} copies of the meridian curves $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{m_{0}}^{\prime}$, each covering the original meridian $\mu \subset T_{0}$ with some degree l_{0}. On T_{1}, then, there are l_{1} copies of the longitude curves $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{l_{1}}^{\prime}$, each covering the original $\lambda \subset T_{1}$ with degree m_{1} (and we have $m_{1} l_{1}=m_{0} l_{0}$). Next, we create the "dual space" $\widehat{\Gamma^{*}}$, a covering space of Γ^{\prime} just like $\widehat{\Gamma^{\prime}}$ except the meridian and the longitude are reversed. Let $\partial \widehat{\Gamma^{*}}=T_{0}^{*} \cup T_{1}^{*}$. As before, T_{0}^{*} has l_{1} copies of the meridian curves $\mu_{1}^{*}, \ldots, \mu_{1_{1}}^{*}$, each covering μ with degree m_{1}, and T_{1}^{*} has m_{0} copies of the longitude curves $\lambda_{1}^{*}, \ldots, \lambda_{m_{0}}^{*}$, each covering λ with degree l_{0}. These degrees on $\partial \widehat{\Gamma^{\prime}}$ and $\partial \widehat{\Gamma^{*}}$ match up, so we can join the μ_{i}^{\prime} with the λ_{i}^{*} (m_{0} of these), and the λ_{i}^{\prime} with the μ_{i}^{*} (l_{1} of these). The result, $\widehat{\Gamma}$, is a finite covering space for Γ in which S is embedded.

This procedure will be used in Case 2 as well. In fact, it is highly useful to describe this process using graphs with edges and half-edges. $\widehat{\Gamma}^{\prime}$ can be represented by a finite graph with one vertex v (for $\widehat{\Gamma}^{\prime}$), m_{0} incoming half-edges labelled l_{0} (for $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{m_{0}}^{\prime}$), and l_{1} outgoing half-edges labelled m_{1} (for $\lambda_{1}^{\prime}, \ldots \lambda_{l_{1}}^{\prime}$). Note that the incoming half-edges represent the curves on $\partial \widehat{\Gamma}^{\prime}$ covering the meridian of $\partial \Gamma^{\prime}$ with the labelled degrees, and the outgoing half-edges represent the curves on $\partial \widehat{\Gamma^{\prime}}$ covering the longitude of $\partial \Gamma^{\prime}$ with the labelled degrees. In this way, each covering space $\widehat{\Gamma^{\prime}}$ of Γ^{\prime} can be represented by a vertex with an appropriate number of labelled, directed half-edges (see Figure 8 for $\widehat{\Gamma^{\prime}}$ when $m_{0}=m_{1}=3, l_{0}=l_{1}=2$).

Note that the dual space $\widehat{\Gamma^{*}}$ has the graph representation where all the edges are

Figure 8. $\widehat{\Gamma}^{\prime}$ when $m_{0}=m_{1}=3, l_{0}=l_{1}=2$
reversed; therefore, we can connect the half-edges to "close up" the space (see Figure 9) and obtain a covering space $\widehat{\Gamma}$ of Γ. Note that the surface S is embedded entirely in $\widehat{\Gamma^{\prime}}$, and the sole purpose for constructing $\widehat{\Gamma^{*}}$ is to close up the space $\widehat{\Gamma^{\prime}}$ so that $\widehat{\Gamma}$ becomes a covering space of Γ. The covering projection $\widehat{\Gamma} \rightarrow \Gamma$ is an extension of the covering $\widehat{\Gamma^{\prime}} \rightarrow \Gamma^{\prime}$; the covering $\widehat{\Gamma^{*}} \rightarrow \Gamma^{\prime}$ is defined naturally as the dual of $\widehat{\Gamma^{\prime}}$, and the degree- m_{i} (and $-l_{i}$) maps of the annuli joining $\widehat{\Gamma^{\prime}}$ and $\widehat{\Gamma^{*}}$ cover the connecting annuli A_{i} (see Figure 4), making the map $\widehat{\Gamma} \rightarrow \Gamma$ a covering projection.

Figure 9. Covering Space $\widehat{\Gamma}$ of Γ

Case 2. $S \cap A \neq \varnothing$. Assume that f is transverse to A. Let $S^{\prime}=S-f^{-1}(A)$, and cut Γ open along A to get $f^{\prime}: S^{\prime} \rightarrow \Gamma^{\prime}$. Observe that we can now identify A as $N_{0} \subset T_{0}$ and $N_{1} \subset T_{1}$ as in Section 2. Now, $f^{-1}(A)$ is a 1 -manifold on S, so by making both A and f least area in their homotopy classes (so none of the circles are trivial), we may assume $f^{-1}(A)$ is a disjoint union of essential circles of the torus S. Each component C of S^{\prime} is immersed properly and π_{1}-injectively in Γ^{\prime}, and $\partial C \subset A$. All these circles are parallel in the torus S, implying that each C is an annulus. Denote the two boundary components of the annulus C by $\partial_{0} C$ and $\partial_{1} C . f\left(\partial_{0} C\right)$ and $f\left(\partial_{1} C\right)$ are in the same component of $\partial \Gamma^{\prime}$ since otherwise C would be an annulus in Γ^{\prime} joining λ to μ in $\pi_{1}\left(\Gamma^{\prime}\right)$, which is impossible. Suppose for now that $f\left(\partial_{i} C\right)$ are both homotopic to $\mu^{d} \in \pi_{1}\left(T_{0}\right)$ for some d. Again, by least area, C cannot be homotopic rel ∂C into $A=N_{0}$. So C must go around T_{0} at least once in the longitude direction. Hence, C is an annulus "beginning" at $\partial_{0} C$ on $N_{0} \subset T_{0}$, going "around" T (in $T \times I=\Gamma^{\prime}$) a
number of times, and "ending" at $\partial_{1} C$, also on $N_{0} \subset T_{0}$. Clearly, a similar condition holds if the boundary curves of C are in $N_{1} \subset T_{1}$. In fact, as S is a torus, these must match together to close up. So $S^{\prime}=S \backslash f^{-1}(A)$ consists of an even number of annuli, where the annuli have their boundary circles in T_{0} and T_{1} alternatingly. Let us refer to those annuli with boundary in N_{0} ("the left-hand side" of A) as the "meridian annuli," and the other ones on N_{1} as the "longitude annuli." We can then write $S^{\prime}=\bigcup C_{i}$, where an odd index indicates a meridian annulus and an even index indicates a longitude annulus.

We can describe each component C_{i} of S^{\prime} by a pair (m_{i}, l_{i}) as follows. Suppose C_{i} is a meridian annulus. Then, m_{i} is the integer such that each component of $f\left(\partial C_{i}\right)$ covers the meridian of the fibre torus T of Γ^{\prime} by the degree- m_{i} cover, and l_{i} indicates how many times the I-factor of $C_{i} \cong S^{1} \times I$ goes around the longitude of T. If C_{i} is a longitude annulus, one can similarly describe it by (m_{i}, l_{i}); each component of $f\left(\partial C_{i}\right)$ covers the longitude of T by the degree- l_{i} cover, and the I-factor of C_{i} goes around the meridian m_{i} times.

We now return to the construction of a finite-degree cover $\widehat{\Gamma}$ of Γ. The procedure is similar to that of Case 1. Say there are $2 k$ components of $S \backslash f^{-1}(A)$. Since C_{1}, C_{3}, \ldots are the meridian annuli while C_{2}, C_{4}, \ldots are the longitude ones, we must have $m_{1}=$ $l_{2}=m_{3}=l_{4}=\cdots=l_{2 k}$. Let this number be $d \in \mathbb{Z}^{+}$(for "degree").

Now, define the (x, y)-cover of T to mean the covering torus T^{\prime} defined by the $\operatorname{map} \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z}_{x} \oplus \mathbb{Z}_{y}$, sending each generator to the corresponding generator. For C_{i}, described by (m_{i}, l_{i}), where i is odd, take Γ_{i}^{\prime} to be $T_{i}^{\prime} \times I$, where T_{i}^{\prime} is the ($d, l_{i}+1$)cover of T. We use $l_{i}+1$ so that we can be sure that C_{i} is embedded in Γ_{i}^{\prime}. C_{i} enters Γ_{i}^{\prime} at one component of the pre-image of μ and leaves Γ_{i}^{\prime} at another, which will later enable us to join the embedded C_{i} together. For C_{i}, i even, let $\Gamma_{i}^{\prime}=T_{i}^{\prime} \times I$, where T_{i}^{\prime} is the ($m_{i}+1, d$)-cover of T. Again, C_{i} embeds in Γ_{i}^{\prime}. We obtain $2 k$ distinct covering spaces of Γ^{\prime}, possibly of different degrees. But the embedded C_{i} can be connected by appropriate covers A_{i} of A because $d=m_{1}=l_{2}=\cdots=l_{2 k}$. So, the $2 k$ covering spaces Γ_{i}^{\prime} of Γ^{\prime}, joined together by the A_{i}, contain an embedded copy of S.

We now need to make this object into a covering space for Γ by "closing up" those pre-images of N_{0} and N_{1}. Again, we reverse the longitude and the meridian of Γ_{i}^{\prime} to create the covering spaces Γ_{i}^{*} of Γ^{\prime}, dual to Γ_{i}^{\prime}. Now, $\bigcup_{i=1}^{2 k} \Gamma_{i}^{\prime}$ can be represented by the graph seen in Figure 10, where the vertex v_{i} represents Γ_{i}^{\prime}, the cover of Γ^{\prime} having the right number of incoming and outgoing edges of appropriate degrees and two of the edges are connected to the adjacent vertices v_{i-1} and v_{i+1} just as the A_{i} connect the C_{i}. The fact that the A_{i} join the C_{i} to complete the embedded torus S is reflected by the fact that there is a complete circle connecting the v_{i} by edges labelled d. We

Figure 10. Space containing S as an embedded surface
may have many half-edges now. But once again, the dual spaces Γ_{i}^{*} are represented by the same graph except that the orientations of the edges are reversed. Join the $\Gamma_{i}^{*}(1 \leqslant i \leqslant 2 k)$ exactly as the Γ_{i}^{\prime} so that the Γ_{i}^{*} also makes a circle. We can now pair up the "open" half-edges of Γ_{i}^{\prime} with those of Γ_{i}^{*} to create $\widehat{\Gamma}$, a covering space of Γ, since the degrees, orientations, and the number of the half-edges match up by construction. S is embedded in $\bigcup \Gamma_{i}^{\prime} \subset \widehat{\Gamma}$, so $\widehat{\Gamma}$ is a desired finite cover of Γ. Incidentally, the degree of $\widehat{\Gamma}$ over Γ is $2 d\left(2 k+\sum_{i \text { odd }}^{2 k} l_{i}+\sum_{i \text { even }}^{2 k} m_{i}\right)$.

5. Separability of non-Closed surfaces in Γ

The next question is for properly immersed incompressible surfaces with boundary. If $f: S \rightarrow M$ is a proper immersion of a compact orientable surface into a graph manifold $M=\bigcup M_{i}$, we say S is horizontal if $f(S) \cap M_{i}$ is horizontal or empty for all i. Of course, many immersed surfaces are neither horizontal nor vertical, but we can assume that each non-empty intersection $f(S) \cap M_{i}$ is either horizontal or vertical (up to homotopy) by the theory of least-area maps (see Hass and Scott [6] and Freedman, Hass, and Scott [4]). We now need one more definition to state the crucial criterion proved by Rubinstein and Wang [12].

Definition 5.1: Suppose $f: S \rightarrow M$ is a π_{1}-injective horizontal proper immersion into a graph manifold M, where $M=\bigcup M_{i}$, glued along a family \mathcal{T} of tori. Assume transversality so that $f^{-1}(\mathcal{T})$ is a family \mathcal{C} of disjoint simple closed curves c on S. Let $\boldsymbol{\gamma}$ be an oriented simple closed curve on S, parameterised by $t \in[0,1]$. As t increases, γ can meet $f^{-1}(\mathcal{T})$ at $c \in \mathcal{C}$. Say at $c, f(\gamma)$ goes from M_{i} to M_{j}, where $f_{i}(c)=f(c)$ on ∂M_{i} and $f_{j}(c)=f(c)$ on ∂M_{j}. Then, define

$$
\rho_{c}=\frac{\left|t_{i} \cap f_{i}(c)\right|}{\left|t_{j} \cap f_{j}(c)\right|}
$$

where t_{i} (and t_{j}) is a regular fibre of M_{i} (and of M_{j}). If γ intersects \mathcal{C} at $c_{1}, c_{2}, \ldots, c_{k}$ in that order, then define

$$
s_{\gamma}=\prod_{i=1}^{k} \rho_{c_{i}}
$$

Hence, for any $c \in \mathcal{C}$ intersecting γ, ρ_{c} is a ratio: the numerator measures how many times $f_{i}(c)$ intersects a regular fibre of ∂M_{i} and the denominator similarly measures how many times $f_{j}(c)$ intersects a regular fibre of ∂M_{j}, the "other side." For γ not intersecting \mathcal{C}, define $s_{\gamma}=1$. For every oriented simple closed curve $\gamma \subset S$, then, $\boldsymbol{s}_{\boldsymbol{\gamma}}$ is well-defined.

As γ goes from M_{i} to M_{j} at $c \in \mathcal{C}, f_{i}(c)$ is often represented (up to homotopy) by a pair of coordinates (α, β) on ∂M_{i}. The corresponding coordinates ($\alpha^{\prime}, \beta^{\prime}$) for $f_{j}(c)$ on ∂M_{j} can be obtained by

$$
\binom{\alpha^{\prime}}{\beta^{\prime}}=\left(\begin{array}{ll}
h_{11} & h_{12} \tag{1}\\
h_{21} & h_{22}
\end{array}\right)\binom{\alpha}{\beta}
$$

where the 2×2 matrix represents the gluing. If we use the convention that the first coordinate is the meridian (horizontal), then $\left|t_{i} \cap f_{i}(c)\right|=\alpha$, and $\left|t_{j} \cap f_{j}(c)\right|=\alpha^{\prime}$, making $\rho_{c}=\alpha / \alpha^{\prime}$. Then, we can write

$$
s_{\gamma}=\prod_{i=1}^{k} \frac{\alpha_{i}}{\alpha_{i}^{\prime}}
$$

and the β_{i} and β_{i}^{\prime} are irrelevant.
Now, we are ready to state Rubinstein and Wang's criterion [12]:
Theorem 5.2. Suppose $f: S \rightarrow M$ is a π_{1}-injective proper horizontal immersion of a compact connected surface S into a graph manifold M. Then, S is separable if and only if $s_{\gamma}=1$ for each oriented simple closed curve $\gamma \subset S$.

We shall soon use this criterion to construct a surfaces not separable in Γ; however, the construction requires some more definitions.

DEFINITION 5.3: Let $f: S \rightarrow M$ be a proper map of a connected surface (not D^{2}) into some 3 -manifold. S is called arc-incompressible if the following holds: suppose there is a disk D in M with the boundary consisting of a proper arc δ in $f(S)$ and an arc γ in ∂M sharing the same endpoints such that $D \cap f(S)=\delta$. Then, there is a path δ^{\prime} in $f(\partial S) \subset \partial M$ such that $\delta \cup \delta^{\prime}$ bounds a disc in S.

If S is not arc-incompressible, S is said to be arc-compressible, and the disc D such that $\partial D=\delta \cup \gamma$ is called a compressing disc.

We shall use this to prove the following.

Lemma 5.4. Suppose $M=\bigcup_{T} M_{i}$ is a graph manifold. Let $f: S \rightarrow M$ be a proper immersion of a connected compact surface. If each component of $S-f^{-1}(\mathcal{T})$ is a π_{1}-injective horizontal surface in the corresponding M_{i}, then S is also a π_{1}-injective horizontal surface in M.

Proof: By definition, S is horizontal. Suppose S fails to be π_{1}-injective in M. Then, there is a compressing disc D in M. But D cannot be disjoint from all the tori in \mathcal{T} since that would make a component of $S \backslash f^{-1}(\mathcal{T})$ compressible in M_{i}, contrary to the hypothesis. So the compressing disc D intersects some torus $T \in \mathcal{T}$. In $D, D \cap(\cup \mathcal{T})$ is a disjoint collection of proper arcs and circles. But by least area of the map and the tori in \mathcal{T}, there are no circles and that any outermost arc represents a compressing disc D_{i}. Now, a horizontal surface C_{i} lifts to an embedding $e_{i}: C_{i} \rightarrow C_{i} \times S^{1}=\widehat{M}_{i}$ in a finite cover $\widehat{M_{i}}$ of M_{i}, and D_{i} also lifts to a disc $\widehat{D_{i}}$ in $C_{i} \times S^{1}$. But this implies that C_{i} is arc-compressible in $C_{i} \times S^{1}$, which is absurd.

To give an explicit description of a surface which is not separable in Γ, we shall need the following construction. Let $M=F \times S^{1}$, where F is some compact surface. Suppose $f: S \rightarrow M$ is a proper immersion such that $f(S) \subset F \times\{0\}$ ("really horizontal"), and let $\gamma \subset f(S)$ be a simple closed curve or a simple proper arc in $f(S)$. Then, by the Dehn twist along γ of degree $d(d \in \mathbb{Z})$, we mean the following modification of f to obtain $f^{\prime}: S \rightarrow M$.

Take a regular neighbourhood $\gamma \times I$ of γ, with two boundary components γ_{0} and γ_{1}. Fix a point x of γ, and let δ_{x} be the path $x \times I$ from $(x, 0)$ to $(x, 1)$ in $F \times\{0\}$. Now, replace δ_{x} with δ_{x}^{\prime}, the path from ($x, 0$), traveling in the S^{1}-direction d times and terminating at $(x, 1)$. This is also referred to as a " d-floor staircase construction" for an obvious reason. Now, replace $\gamma \times I \subset F \times\{0\}$ with $\bigcup_{x \in \gamma} \delta_{x}^{\prime}$ (homeomorphic to $\gamma \times I$), and take this new image to be $f^{\prime}(S)$. This resulting map f^{\prime} is still horizontal because the image of the immersed surface is still transverse to the fibres. Being horizontal, f^{\prime} is still π_{1}-injective.

THEOREM 5.5. There is a proper immersion $f: S \rightarrow \Gamma$, π_{1}-injective, where S is a connected orientable surface and is not separable.

Proof: $S=S_{1} \cup S_{2}$ is constructed as follows. Let P denote the pair of pants described as a disk with two holes labelled T_{x} and T_{y}, corresponding to the generators x and y of $\pi_{1}(P)$. Let S_{1} be the double cover of P defined by the homomorphism $\Theta: \pi_{1}(P)=\langle x, y\rangle \rightarrow \mathbb{Z}_{2}$ sending $x \longmapsto 0$ and $y \longmapsto 1$. This defines $p_{1}: S_{1} \rightarrow P$ such that $p_{1}^{-1}(x)$ is two disjoint circles each covering x by degree 1 , and $p_{1}^{-1}(y)$ is one circle covering y by degree 2. This map p_{1} describes a really horizontal surface in $\Gamma^{\prime}=P \times S^{1}$ (as described in Figure 2) so these pre-image circles have coordinates (1,0), (1,0) for $p_{1}^{-1}(x)$ and $(2,0)$ for $p_{1}^{-1}(y)$. Now, do the Dehn twist of degree 1 as shown (Figure
11) along two paths of S_{1}. Now the coordinates are $(1,0),(1,1)$, and $(2,1)$, where the first one is the circle left untouched in Figure 11. For S_{2}, reverse x and y. Define $p_{2}: S_{2} \rightarrow P$ by $\Theta^{\prime}: \pi_{1}(P) \rightarrow \mathbb{Z}_{2}$ sending $x \longmapsto 1$, and $y \longmapsto 0$. Do the Dehn twist as shown (Figure 12) of degree -1 to get the coordinates $(2,-1)$ for $p_{2}^{-1}(x)$ and $(1,0)$ and $(1,-1)$ for $p_{2}^{-1}(y)$. Now, in $P \times S^{1}$, we see two surfaces $S_{i}, i=1,2$ with coordinates shown (Figure 13).

Figure 11. S_{1} in the construction

Figure 12. S_{2} in the construction
Immerse $S=S_{1} \cup S_{2}$ such that the circle (1,1) is glued (correctly) to (2,1) by $h=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),(1,0)$ is glued to $(1,0)$, and $(2,-1)$ is glued to $(1,-1)$. Note that this surface is the connected sum of two punctured tori properly immersed in Γ. This immersion is π_{1}-injective by Lemma 5.2 above.

Consider γ shown in Figure 13. $s_{\gamma}=1 / 2$ (or 2, depending on the orientation of γ). By Rubinstein and Wang's criterion (Theorem 5.2), S is not separable.

It is clear that the criterion gives many other horizontal surfaces that are not separable in Γ. All one needs to do is to construct surfaces similar to the one in Theorem 5.5 with a loop γ such that $s_{\boldsymbol{\gamma}} \neq 1$. This suggests that graph manifolds have many immersed surfaces that are not separable in them.

References

[1] R.B.J.T. Allenby and R.J. Gregorac, 'On locally extended residually finite groups', in

Figure 13. Non-separable surface in Γ

Conference on group theory, Lecture Notes in Mathematics 319 (Springer-Verlag, Berlin, Heidelberg, New York, 1973), pp. 9-17.
[2] R.G. Burns, 'A note on free groups', Proc. Amer. Math. Soc. 23 (1969), 14-17.
[3] R.G. Burns, A. Karrass and D. Solitar, 'A note on groups with separable finitely generated subgroups', Bull. Austral. Math. Soc. 36 (1987), 153-160.
[4] M. Freedman, J. Hass and P. Scott, 'Least area incompressible surfaces in 3-Manifolds', Invent. Math. 71 (1983), 609-642.
[5] M. Hall, 'Coset representations in free groups', Trans. Amer. Math. Soc. 67 (1949), 421-432.
[6] J. Hass and P. Scott, 'The existence of least area surfaces in 3-Manifolds', Trans. Amer. Math. Soc. 310 (1988), 87-114.
[7] J. Hempel, 'Residual finiteness of surface groups', Proc. Amer. Math. Soc. 32 (1972), 323.
[8] A. Karrass and D. Solitar, 'On finitely generated subgroups of a free group', Proc. Amer. Math. Soc. 22 (1969), 209-213.
[9] D. Long and G.A. Niblo, 'Subgroup separability and 3-manifold groups', Math. Z. 207 (1991), 209-215.
[10] R. Lyndon and P. Schupp, Combinatorial group theory (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
[11] W. Magnus, 'Residually finite groups', Bull. Amer. Math. Soc. 75 (1969), 305-315.
[12] J.H. Rubinstein and S. Wang, 'On π_{1}-injective surfaces in graph manifolds', (preprint).
[13] P. Scott, 'Subgroups of surface groups arè almost geometric', J. London Math. Soc. (2) 17 (1978), 555-565.
[14] P. Scott, 'The geometries of 3-manifolds', Bull. London Math. Soc. 15 (1983), 401-487.

[^1]
[^0]: Received 9th April, 1996
 Research partially supported by Australian Research Council.

[^1]: Department of Mathematics
 University of Melbourne
 Parkville Vic 3052
 Australia
 e-mail: saburo@maths.mu.oz.au

