S. Segawa Nagoya Math. J. Vol. 70 (1978), 41-45

FUNCTIONS MEROMORPHIC ON SOME RIEMANN SURFACES

SHIGEO SEGAWA

Consider an open Riemann surface R and a single-valued meromorphic function w = f(p) defined on R. A value w_0 in the extended complex plane is said to be a *cluster value* for w = f(p) if there exists a sequence $\{p_n\}$ in R accumulating at the ideal boundary of R such that

$$\lim_{n\to\infty}f(p_n)=w_0.$$

The totality of cluster values is referred as the global cluster set for w = f(p) and denoted by $C_R(f)$.

In terms of global cluster sets, we define the next two classes of open Riemann surfaces as follows;

DEFINITION. We say that $R \in C_{AB}$ (resp. C_{HB}) if the global cluster set for each meromorphic function on R is either total or AB-removable (resp. HB-removable).

We have shown in our preceding paper [1] that the following strict inclusion relations hold;

in general, and

$$O_G = C_{HB} < O_{AB}^\circ \subset C_{AB} = O_{AB}$$

for surfaces of finite genus. Moreover we have shown that if there exists a non-constant meromorphic function on R whose global cluster set is *HB*-removable then $R \in O_G$. Since $O_G \subset C_{HB}$, we deduce the following

Received June 13, 1975.

The author is very grateful to Professor M. Nakai for his helpful suggestions.

SHIGEO SEGAWA

PROPOSITION. In order that $R \in C_{HB}$, it is necessary and sufficient that one of the following alternatives holds:

(i) the global cluster set for any non-constant meromorphic function on R is total;

(ii) there exists a non-constant meromorphic function on R whose global cluster set is HB-removable.

We shall show that the counter-part to the above is valid for AB.

THEOREM 1. Let R be an open Riemann surface. Suppose that there exists a non-constant meromorphic function w = f(p) on R whose global cluster set is AB-removable. Then $R \in C_{AB}$.

We start by proving the following

LEMMA. Let R be an n-sheeted complete covering surface over the z-sphere and E be an AB-removable set in the z-plane. Let e be the set of points on R which lie over E. Then e is AB-removable.

Proof. Suppose that e is not AB-removable. Since R is closed, there exists a non-constant bounded analytic function $\varphi(p)$ on R - e. Without loss of generality we may assume that $\varphi(p_0) = 0$ for some $p_0 \in R - e$, where p_0 lies over $z_0 \in \mathscr{C}E$ (throughout this paper, \mathscr{C} denotes the complement). For every $z \in \mathscr{C}E$, let $\{p_1^z, p_2^z, \dots, p_n^z\}$ be the set of points of R which lie over z. Consider the function

$$F(z) = \varphi(p_1^z)\varphi(p_2^z) \cdots \varphi(p_n^z)$$
.

Then F(z) is a single-valued bounded analytic function on $\mathscr{C}E$ such that $F(z_0) = 0$. On the other hand, since $\varphi(p)$ does not vanish identically, $F(z) \neq 0$ for some $z \in \mathscr{C}E$. Hence F(z) is a non-constant single-valued bounded analytic function on $\mathscr{C}E$. This contradicts the fact that E is *AB*-removable.

Proof of Theorem 1. Since w = f(p) has Iversen's property, w = f(p) covers every point of the *w*-sphere except $C_R(f)$ the same finite number of times. We use the same notation R for the covering surface. Let g(p) be an arbitrary non-constant meromorphic function on R. We have only to show that $C_R(g)$ is AB-removable if it is not total. Suppose that $C_R(g)$ is not total. Then, without loss of generality, we may assume that g(p) is bounded on a set of points of R which lie over a

42

neighbourhood of $C_R(f)$.

Choose a point w_0 in $\mathscr{C}_R(f)$ over which no branch points lie. In a sufficiently small neighbourhood of w_0 , setting

$$g_i(w) = g(p_i^w)$$
 $(i = 1, 2, \dots, n)$,

we obtain *n* function elements $g_1(w), g_2(w), \dots, g_n(w)$ with the center at w_0 , where $\{p_1^w, p_2^w, \dots, p_n^w\} = f^{-1}(w)$. Set $\mathscr{G} = \{g_1(w), g_2(w), \dots, g_n(w)\}$. Here, we notice that every element of \mathscr{G} can be continued everywhere on $\mathscr{C}C_R(f)$ by allowing algebraic elements and that some elements of \mathscr{G} may coincide with each other. Hereafter, we partition the proof into two cases.

(i) Suppose that any two elements of \mathscr{G} do not coincide with each other. Consider the symmetric functions of $g_1(w), g_2(w), \dots, g_n(w)$:

$$\sigma_1(w) = \sum_i g_i(w) ,$$

$$\sigma_2(w) = \sum_{i < j} g_i(w)g_j(w) ,$$

$$\vdots$$

$$\sigma_n(w) = g_1(w)g_2(w) \cdots g_n(w) .$$

Since any two elements of \mathscr{G} are continued from each other on $\mathscr{C}_R(f)$, each $\sigma_k(w)$ $(k = 1, 2, \dots, n)$ can be continued everywhere on $\mathscr{C}_R(f)$ and is single-valued meromorphic on $\mathscr{C}_R(f)$. Moreover, by the assumption, each $\sigma_k(w)$ is bounded on a neighbourhood of $C_R(f)$. Since $C_R(f)$ is ABremovable, each $\sigma_k(w)$ is analytic throughout $C_R(f)$ and therefore rational. Hence, all elements of \mathscr{G} are defined by the algebraic function

$$W^n - \sigma_1(w)W^{n-1} + \sigma_2(w)W^{n-2} + \cdots + (-1)^n \sigma_n(w) = 0$$
.

Obviously, by the assumption, the above equation is irreducible. Consequently we obtain the *n*-valued algebraic function G(w) defined by the above equation. Denote by C(G) the cluster set for G(w) at $C_R(f)$. By the preceding lemma and the fact that $O_{AB} = C_{AB}$ for surfaces of finite genus, we see that C(G) is AB-removable. For every cluster value ζ of g(p), we can find a sequence $\{p_n\}$ in R accumulating at the ideal boundary such that $\lim_{n\to\infty} g(p_n) = \zeta$ and $w_n = f(p_n) \in \mathscr{C}C_R(f)$, for any n. Since $\{w_n\}$ accumulates to $C_R(f), \zeta \in C(G)$, i.e. $C_R(g) \subset C(G)$. Therefore the conclusion follows.

(ii) Let $\mathscr{G} = \{g_{11}(w), g_{12}(w), \dots, g_{1m}(w)\}$ be the totality of elements of

SHIGEO SEGAWA

 \mathscr{G} which coincide with $g_1(w) = g_{11}(w)$ containing $g_1(w)$ itself $(m \le n)$. If there exists no element which does not coincide with $g_1(w), g_1(w) = \cdots$ $= g_n(w)$ is single-valued on $\mathscr{C}_R(f)$. Hence, we have nothing to prove since $O_{AB} = C_{AB}$ for plane regions. Suppose that there exists at least one element $g_{21}(w)$ of \mathscr{G} which does not coincide with $g_1(w)$. Choose a path L in $\mathscr{C}_{\mathbb{R}}(f)$ which starts from w_0 and terminates at w_0 and along which $g_{21}(w)$ is continued from $g_{11}(w)$. Without loss of generality, we \ldots, λ_m be the totality of paths on R which lie over L and such that each λ_i starts from $p_{1i}^{w_0}$, where $p_{1i}^{w_0}$ is the point of R corresponding to the element $g_{1i}(w)$. Let $p_{2i}^{w_0}$ be the terminal point of λ_i . Then any terminal point does not coincide with the initial point, and does not coincide with any other terminal point. Hence, there exist m function elements $g_{21}(w)$, $g_{22}(w), \dots, g_{2m}(w)$ such that each $g_{2i}(w)$ is continued from $g_{1i}(w)$ along λ_i and $g_{21}(w) = g_{22}(w) = \cdots = g_{2m}(w)$. Consequently, we see that if there exist l distinct elements $g_{11}(w), g_{21}(w), \dots, g_{l1}(w)$ in \mathcal{G} , then n = ml, we can classify \mathcal{G} into the following *m* classes

$$\begin{aligned} \mathscr{G}_{1} &= \{g_{11}(w), g_{21}(w), \cdots, g_{l1}(w)\}, \\ \mathscr{G}_{2} &= \{g_{12}(w), g_{22}(w), \cdots, g_{l2}(w)\}, \\ &\vdots \\ \mathscr{G}_{m} &= \{g_{1m}(w), g_{2m}(w), \cdots, g_{lm}(w)\}, \end{aligned}$$

where $g_{11}(w) = g_{12}(w) = \cdots = g_{1m}(w)$, $g_{21}(w) = g_{22}(w) = \cdots = g_{2m}(w)$, \cdots , $g_{l1}(w) = g_{l2}(w) = \cdots = g_{lm}(w)$. Hence, using the same argument as in the first case, we see that every \mathscr{G}_i defines the same *l*-valued algebraic function G(w) and that the global cluster set for G(w) at $C_R(f)$ is *AB*-removable. Therefore $C_R(g)$ is *AB*-removable. This completes the proof.

COROLLARY 1. In order that $R \in C_{AB}$, it is necessary and sufficient that one of the following alternatives holds:

(i) the global cluster set for any non-constant meromorphic function on R is total;

(ii) there exists a non-constant meromorphic function on R whose global cluster set is AB-removable.

COROLLARY 2. Let R be an n-sheeted complete covering surface over the sphere less an AB-removable set. Then $R \in O_{AB}$.

RIEMANN SURFACES

Proof. By Theorem 1, $R \in C_{AB}$. Hence, $R \in O_{AB}$ since $C_{AB} \subset O_{AB}$. Related to the preceding theorem, we append the following result

THEOREM 2*. Let R be an n-sheeted complete covering surface over the z-sphere less an AB-removable set E. Then there exists a meromorphic function on R which is bounded on the set of points of R lying over a neighbourhood of E (or whose global cluster set is not total) and which does not assume identically equal values on any two distinct sheets if and only if R is a subsurface of a closed surface.

Proof. If R is a subsurface of a closed surface, as is well-known, there exists a meromorphic function on R which has a pole only at a non-branch point of R and is regular elsewhere. It is immediate that such a function does not assume identically equal values on any two distinct sheets.

Next, suppose that there exsits a meromorphic function w = f(p)on R satisfying the condition stated above. On $\mathscr{C}E$, we consider the function

$$F(z) = \left[\prod\limits_{i < j} \left\{ f(p_i^z) - f(p_j^z)
ight\}
ight]^2$$
 ,

where $\{p_1^z, p_2^z, \dots, p_n^z\}$ is the set of points of R which lie over z. Then we can see that F(z) is single-valued on $\mathscr{C}E$. By the assumption, F(z)is bounded on a neighbourhood of E and does not vanish identically on $\mathscr{C}E$. Since E is AB-removable, F(z) is analytic throughout E and hence rational. On the other hand, F(z) vanishes on the points over which branch points lie. Therefore, R has at most finitely many branch points.

REFERENCES

- S. Segawa: On global cluster sets for functions meromorphic on some Riemann surfaces, Nagoya Math. J., 70 (1978), 1-6.
- [2] S. Stoïlow: Lecon sur les principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars (1956).
- [3] ——: Sur la théorie topologique des recouvrements Riemanniens, Ann. Acad. Sci. Fenn. A.I. 250/35 (1958).

Department of Mathematics Daido Inst. of Technology Daido, Minami, Nagoya 457 Japan

^{*} The author would like to mention his indebtness to the referee who pointed out an important spot in this theorem.