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Abstract. Using the bubbling argument of Sacks and Uhlenbeck, we prove the existence of
harmonic maps from the-sphere to Riemannian manifolds. An application is made to a problem
concerning manifolds with strongiyth moment stable stochastic dynamical systems.
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1. Introduction

Let M, N be Riemannian manifolds. We assume tN&ast isometrically embedded
in Euclidean spaci’, and denote byl the second fundamental form. Foe= 2,
ap-harmonic map:: M — N is a map inL?(M,R’) such thatu(z) € N a.e.
and satisfies the equation

~ [ Nidulr2du- do+ [ dulr2AGw)(du, du) =0
M M

foranyy € C3°(M, RY). This is characterized as a critical point of thenergy
functional E,(u) = [y, || dul|?, in LY?(M,N) = {u € LYP(M,R?)|u(z) €
N ae.}, if the value of this functional is finite. For 2-harmonic maps or harmonic
maps, there are a lot of studies with applications to problems in geometry and
physics (see Eells and Lemaire [3], [4]). Likewiseharmonic maps, where
denotes the dimension @ff, seem to be objects with wide application, since the
n-energy functional enjoys invariance property under conformal transformations
onM.

The following existence theorem farharmonic maps is known.

THEOREM 0.Let M, N be compact Riemannian manifolds. ketlenotes the
dimension ofM/, and suppose that,(N) = {0}. Then each homotopy class of
Cl(M, N) contains am-harmonic map which minimizes theenergy functional
in the homotopy class.
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34 SHIGEO KAWAI ET AL.

Theorem 0 follows from the result of White [19] and the regularity theory. This
was first proved in the unpublished paper by J. Jost [8]. He constructed, using
a generalized Courant-Lebesgue lemma, a converging minimizing sequence in
CO(M, N) nLY" (M, N).

When, (N) # {0}, we cannot expect that each homotopy class contains an
n-harmonic map. In this case we need to consider the bubbling phenomena. The aim
of this paper is to prove the following existence resultfdrarmonic spheres using
the bubbling argument of Sacks and Uhlenbeck [13]. Note thai(iV) = {1},
we can identifyr,, (V) with the totality of free homotopy classes ot(S?, N).

We denote byju] for u € C}(S*, N) the free homotopy class representedudy
From now on, the word ‘sphere’ means the sphere with the standard metric, and
we assume that the target manifdltis connected.

THEOREM 1.Let N be a compact simply connected Riemannian manifold. Then
for anyu € C(S*, N) (n > 2), there exist a finite number atharmonic maps
u®, ... u®) e CYS", N) which satisfy the following conditions:

(1) [u] = W]+ - [u®],
(2) infep En(w) = En(u®) + -+ + En(ul®).
(3) u'9) is a minimizer oE,, in [u)] ( =1,...,k).

Remark.If NV is not simply connected, the same result holds up to the action of
m1(N) onm,(N).

By an analogous method, as in Meeks and Yau [10], we get the following
theorem.

THEOREM 2.Let N be a compact simply connected Riemannian manifold. Then
for everyn > 2, there exist finite number of-harmonic mapsf®, f@, ... ¢
C(S?, N) such that

@) Y], [f@], ... £0,
) [fD], [f@], ... generater,(N),
3) E.(fW) =inf {En(f) | [f] # 0}, A
E.(f9) =inf {E.(f) | [f] ¢ ([/DL,....[fU= Y]} (G >2)

where the notation(a, b, c,...) denotes the subgroup generated by the subset
{a,b,c,...}.

The organization of this paper is as follows: After preparing some lemmas in
Section 2, we prove Theorems 1 and 2 in Section 3. In the final section, we con-
sider a problem concerning manifolds with strongtii moment stable stochastic
dynamical systems, and give an alternative proof for a result in Elworthy and
Rosenberg [5].
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2. Preliminaries

In this section, we collect several propertiespaifiarmonic maps and-energy
which will be used later in the proofs of theorems.

PROPOSITION 1Let M and N be compact Riemannian manifolds, andjet
n = dim M. Then each connected componer@f)/, N) contains ap-harmonic
map which minimizes theenergy functionak, in this component.

Proof. Thisis awell-known fact and we only sketch the outline. By the assump-
tion p > n, the Sobolev embedding from-(M, RY) to C>9 (M, RY) is a compact
map for some smadl > 0. Hence the-energy E satisfies the Palais—Smale condi-
tion (C), and it attains its minimum in every connected componentéfls, N).
From regularity results this minimizer belongs t&@/, N). Since the two spaces
LLP(M, N) and C(M, N) have the same homotopy type, we get the desired
conclusion. O

PROPOSITION 2Let M and N be compact Riemannian manifolds. Assume that
M has nonnegative Ricci curvature a@dk p < n wheren = dim M. Then there
exists a positive constant which depend only on, p and the Sobolev constant
of M, such that if gp-harmonic mapu: M — N satisfies/,, || du||” < €1, thenu

is a constant map.

Proof. Thisis Theorem 1 in Nakauchi and Takakuwa [11]. The manifidlds
assumed to be complete and noncompact with infinite volume in [11]. However,
the proof can be easily modified whé#is compact. (See the proof of Proposition
lin[11].) O

PROPOSITION 3Let M and N be compact Riemannian manifolds, and a se-
quence{p; } satisfyp; > n, lim;_.., p; = n, wheren = dim M. If a sequence of
pj-harmonic maps:;: M — N of classC! satisfies[,, || du;||" < C, for some
constaniC, then there exists gpossibly empifinite subses of M and a positive
constant, such that

(1) asubsequence ¢f,; } converges to an-harmonic map..: M — N of class
C! uniformly on any compact subset/f \ S,

(2) each point: € Sis characterized by the inequaliiyn inf ;_, pr(m) || duj||™ >
eo foranyp > 0.

Proof. If p; is a constant not greater thanthis is Theorem 2 in Nakauchi and
Takakuwa [11]. We have only to note that the proof, which uses Moser’s iteration
method, also works well in our case. In addition, a weakdgarmonic map:.
which is stated to be of clags! on M \ S in [11] is in factC* on M by the
removable singularity theorem of Duzaar and Fuchs [1]. O

In the rest of this paper, we s&t = min{e1,e2}.
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LEMMA 1. LetN be a compact manifold andbe a positive integer. Suppose that
for {p;} withp; > n andp; — n, a sequence;: S* — N of p;-harmonic maps
with uniformly bounded:-energy is contained in a homotopy classif S # 0,
then there exist a nontriviat-harmonic map:(Y and a sequence; of C1-maps
such that for an arbitrary small constan,

a=[uY + ],  E.(W)+En(ty) < En(uy) +e3,

for large ;.

Proof. From Proposition 3, after passing to a subsequence, we conclude that
{u;} converges in £(S* \ S, N) to ann-harmonic map. Sincé is not empty,
we setS = {xl,xz,... ,CCZ} (l >1

Let us take a small balB, (z1) of radiusr; centered at; € S, wherer; is
so small thatey, ..., z; € Boy,(z1). We setp; = supf(|| du;||(z) |z € By, (z1)},
and taker?) € B, (x1) with || du;||(z9)) = p;. If p; is bounded, thet du;|| is
uniformly bounded in a neighborhood of, which contradicts the fact; € S
and the characterization of the subSeh Proposition 3. Hence we get, passing to
a subsequence, lim ., p; = oco. Furthermore, we may assum€) converges to
some pointinB,, (x1). Sinceu; converges irC'* topology on every compact setin
B, (1) \ {21}, we haverV) — z;.

For this sequence of numbers we take Euclidean ballg,, (O) in R™ of radius
p; centered at the origi®, and define a sequence of magse C>(B,,(0), N)

by
Uj(x) = uj (expx(j) <%x>> )
j

where exp; denotes the exponential mapadt). Then it follows thati; is a
critical point of the functional

Ej: {g € L*?i(B,,(0),N) ‘g\aBpj(O) = jl0,,(0)} — R

defined by the equatiafi; (g) = Is, ) HdgH?de}. In this definition| ||, (resp.
J
dV;;) denotes the norm (resp. the volume form) in the métyie- pjz-( exp,u) - J)*h
whereJ: B, (O) — B,,(0) is the mapJ(x) = (r1/p;)z, andh is the standard
metric of §'. In addition we have
sup{||di; | (x) \x € B, (0)} <1, [/di;(0) = 1.

Because; — oo, the sequence of metri¢s; } converges to the flat metric on
every fixed diskBr(O) asj — co. Hence this uniform estimate @/« || ; implies
that a subsequence §ii;} converges to an-harmonic map with respect to the
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flat metric on every fixed disBr(O). Then we conclude by a diagonal argument
that a subsequence 6f;;} converges to a £n-harmonic mapy in C-topology
on every compact subset®f. This mapug is nontrivial becausgdi;||;(O) = 1.

Since the Euclidean spa@e’ is conformally diffeomorphic to 'Sminus the
north polePy, we are able to regard the mapas am-harmonic map from'S\ Py
to N. Since g, ||dvg|™ < oo, from the removable singularity theorem of Duzaar
and Fuchs [1], this mapy extends to a nontriviat-harmonic mapV: S* — N
of classC. From Proposition 2, we have,Eu(Y)) > £*.

To construct & mapsii;, let us fix an arbitrarily small numbesg, and proceed
as follows. For a numbes with 0 < a < 1, we define a subset,f S* =
{(z1,...,2pq1) |22+ + 22, =1} by S, = {(z1,...,Zns1) € S| @p41 <
a}. Then there exists a numbesufficiently close to 1 such that

Eaus) ~Ew®) [ <ca/2 [ [T, dVi < cafd(a)

where d/,, d(a) denotes the volume form a¥5, and the spherical distance from
0S, to the North PolePy respectively. For this fixed number, the sequence
{a,}, considered as mappings frort $ Py to N, converges ta:(Y) on 9S, in
C*-topology.

From the definition, the maf; on 9S, is nearly equal ta:; on the boundary
of some small geodesic digk; centered at,. We now identify two spheres, one
the domain of.(Y) and the other the domain of,, by conformal transformations
¥,; which map $ to S*\ B;. Thenu; o ¥; converges ta/? in C* on 9S,, and
corresponding points of images (9S,) and (u; o ¥;)(dS,) are connected by
unique shortest geodesiess) of N for largej. In addition, we can assume that
these geodesics are defined on the intgffyal;] and satisfy|¢(s)|| < 1. Note also
that |ImJHOO Tj = 0.

Let us choose; (> a) so that the spherical distance of two boundarie8%f
andos,, is equal tor;. We consider a Emapt;: Su; \ Su — N which satisfies

1
tilos,, =u®los,,  tilos, = uj o ¥jlos,
and maps the ‘meridian curves’ connecting two boundaries to geodesic e(yes

Then we havefyg IVEj198,II" Vs < 2€4/d(a) for everyb with a < b < a; and
for largej. Hence we obtain

/ lé(s)|™ < vol (S,, \ S,) < vol (5"~1) 7;
Su;\Su

and

L IVatl" < @ea/dta))r;

S
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where vol( - ) andV 5 denote the volume and the derivative in the directio0®f
respectively. Thus the-energy oft; becomes small ag— oo.
Now we definei;: S* — N by the following equation:

Uj O \I/J on S,
uj =4t on §,;\S,,
uPod; onS\S,,.

Here the ma@; is a conformal transformation fronf'S§ S, to S \ S,, such that
the points 0D(S" \ S,;) are mapped along the ‘meridian curves’. We remark that

the mapu™ on9S, coincide with the mag; ond(S" \ S,,). Then it follows that
[u®] + [@;] = [u;]. In addition for largej, E,(u?) is nearly equal to F{(u,]|z,),
and E, (1) is nearly equal to F{(u;|s»\ ;). Hence we have the estimate

En(ul?) + En(t)) < En(uy) +e3
for largej which completes the proof. O

LEMMA 2. Let¢; and¢, beCt maps fronS” to a Riemannian manifold, and
e be an arbitrary positive number. Then there exist§’amap$: S* — N such
thatE, (¢) < E.(¢1) + En(d2) + &, [¢] = [¢1] + [¢2] hold.

Proof. In the beginning, we consider the connected sums of two spheres by
long thin tubes, and show that they are conformally equivalent'td-& a point
P of S* and consider the polar geodesic coordinate)) € R, x S 1in a
neighborhood of” whereR_, and $~! denote the set of positive real numbers and
(n — 1)-dimensional unit sphere respectively. With respect to this coordinate, the
standard metrigg on the unit sphere is written ag = dr? + (sinr)? df?. For
every smallp > 0, the metricg; in a neighborhood of the origin (origin deleted)
defined by

: 2 H 2
g1 = <Slnro> go = (Slnro) dr? + (Sinro)2 dy?

sinr sinr

is conformally flat and isometric to the product®fnd the sphere of radius sin
Indeed an isometry is given by

(r,0) — sinrg ( dr 9> .

sinr’
Let us take the following continuous functigihon S* \ P:

- { 1 on S\ B,,(P),

f =14 sinrg
<inn onB,,(P)\ P
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and approximate it i’® sense by a smooth functigiso thatf = f onB,,(P)\ P.
Then the metrigf2 go on S \ P is conformally flat, and we can cut and paste the
infinite tubes of these two objects to obtain a new manifcldwBich is also
conformally flat. Note that we can make the tube as thin and long as possible.
Since 3 is simply connected and conformally flat, there exists a development
¥, i.e., a conformal immersion from*$o S*. Compactness of*Smplies that this
maps) is a conformal equivalence.
Now join the two images ob; and¢, by a curve inN. Let us consider a map
¢o:. S* — N which is equal tap; and¢, on the two punctured spheres, and maps
the tube along this curve. If the tube is sufficiently thin and long, we have

En(do) < En(¢1) +En(¢2) +¢, [$o] = [p1] + [¢2].

This is because the norm of the derivativeggfin the axial direction of the tube
becomes arbitrarily small at each point, and the volume of the tube does notincrease
as we make the tube thin and long. By the conformal invariance-@fergy, we
obtain the desired map= ¢ o 1. O

3. Proofs of Theorems

Proof of Theorenil. For any givenu € C}(S*, N), we take a nonnegative
integerm with

* *

3 . 9
5 M < inf En(v) < E(m+1),

wherees* is the constant defined in the preceding section,@amglthe homotopy
class ofu.

By Proposition 1, we can find a sequer{@@};?';l of minimizing p;-harmonic
maps f; > n, p; — n) in the classy. This one is an E-minimizing sequence
in « for the following reason: Let us takg € « with E, (vo) < inf, E, + ¢, and
denote byw the volume of 8. Then we have for largg

En(uj) < (Epj(uj))n/pjwlf("/pj)
(Ep, (v0))"/Prcs= (/22
(En(vo) + £)"/Pit=(0/p)
(ir(lf E, + 2¢)"/Pi 1= (n/ps),

NN

N

Consequently F(u;) converges to infe, E,(v) asj — oo.
If m = 0, we obtainS = () and a subsequence converges tadrarmonic map
in C1(S?, N). Indeed ifS # () we get from Lemma 1, maps®) anda; with

o=V + (),  E.(u)+Ey(n;) <&
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Since this map® is a nontrivialn-harmonic map, we have Eu(Y) > * which

is a contradiction. On the other hand tidrarmonic map to which a subsequence
converges is a constant map from Proposition 2. Hensenulhomotopic and we
complete the proof of Theorem 1 takikg= 1, u)) = constant.

Whenm > 0, we assume that the conclusion is true for any homotopy ¢lass
with inf,c, E,(v) < (¢*/2)m and show that it also holds fer. For this purpose
we apply Lemma 1 and obtain maps) anda;. In the following, it is shown that
the mapu; satisfies the inequality,Ku;) < (¢*/2)m. Since the sequende; } is
contained in a fixed homotopy class, we denote this class. llrom Lemma 1,
we have

En(u(l)) + En(ﬂj) < En(uj) +e€3

for largej. Since{u;} is a minimizing sequence for,Hn «, the inequality

E(u®) + inf En(v) < Inf Eq(v)
holds.
If we assume that the strict inequality
E,(uM) + ;21;5 E.(v) < ql)ren; E.(v)
holds, then taking some € 3 and applying Lemma 2 faz() andv;, we obtain

a mapuy € a which satisfies E(v2) < inf,c E,(v). This is a contradiction and
we have the equality

En(u®) + |21;} E.(v) = inf E,(v).

vEQ

The same argument shows that the mélp is a minimizer of § in [u®)].
On the other hand, for sufficiently largeand smalk3z, we get

E.(;) < inf En(v) — En(u®) + 3

vea

*

8E(m+l)—s*+»53

8*

N

Consequently, by the inductive assumptiorharmonic maps®?, ..., u(*) of
classC? exist such that

B=[u®]+ -+ [u¥),
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inf E,(v) = E,(u®) + -+ + E,(u®)

ves

andu'” (2 < i < k) is a minimizer of E in [u()]. Hence we conclude that
a=[u®]+ 8 =[u®] + @]+ + [u®)],

and

En(u(l)) + En(u(z)) 4t En(u(k))
=&w%+@am)

= inf E,(v).

vea

Thus the proof of Theorem 1 is completed. O

Proof of Theoren2. To show the existence ¢, let {f;} be a sequence
in C1(S*, N) so that[f;] # 0, E.(f;) — Inf{E,.(f)|[f] # 0}. We may take a
sequencgp; } with p; > n andp; — n, and assume that eaghis ap;-harmonic
map which minimizes E in [f;]. If a subsequence off;} converges inC'1-
topology to an-harmonic map, we can take this mapfa8. If it is not the case
we obtain from Lemma 1, a sequence of méps} in C1(S?, N) and a nonconstant
n-harmonic mag®: S* — N such thafg™V] + [h;] = [f;], E.(¢'P) > ¢* and
for every smalk,, the inequality & (¢'V) + E,(h;) < E,(f;) + €4 holds for large
j. Moreover the mag? gives the minimum of E in its free homotopy class.
Clearly[¢V] # 0 and we defing® = ¢,

Nextwe choose a sequencd[if] | [f] ¢ ([f])} and repeatthe same argument
to definef(?. In the same manner, we can defifi€), etc. SinceN is simply
connectedr, (N) is finitely generated. Hence this process has to stop in finite
steps, and the proof of Theorem 2 is completed. O

4. Application

With regard to this section we refer to Elworthy and Rosenberg [5] for details.

Let{F} }+>0 be the solution flow of a stochastic dynamical system on a compact
Riemannian manifold andT'F;} the derivative flow. This system is said to be
‘strongly pth moment stable’ if the inequality

. 1
limsup=log SupE| T, F;|[P <0
t—oo t reM

holds. In [5] the topological implications of the existence of such systems are
considered.
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THEOREM 3 (Corollary 2B1 in [5]).If a compact manifoldv admit a strongly-

th moment stable stochastic dynamical system,theN) = Ofork =1,2,...,p.

In particular for p > dim N/2, a pth moment stable stochastic dynamical system
can only exist on homotopy spheres.

To prove this they first consider the integral homology group. By the result of H.
Federer and W. Fleming, each homology class is represented by a mass minimizing
integral current. From the assumption of the theorem every integral current can
be deformed to one with arbitrary small mass. Hence we tiaueV) = 0 for
k=12,...,p. Then homotopy groups vanish from algebraic topology.

This can be also shown considering homotopy groups directly. Indeed the fol-
lowing is already proved in [5] (Theorem 1B).

If a compact Riemannian manifold admits a stronglyth moment stable stochast-
ic dynamical system, then evey map from a Riemannian manifold 16 of finite
p-energy is homotopic to a map with arbitrary smadenergy.

Using this and Theorem 1, we easily get an alternative proof of Theorem 3.
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