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Abstract

Let Bi, B2 be a pair of Banach spaces and T be a vector valued martingale transform (with respect to
general filtration) which maps Bi-valued martingales into B2-valued martingales. Then, the following
statements are equivalent: T is bounded from Lp

Ki into L^ for some p (or equivalently for every p) in
the range 1 < p < 00; T is bounded from Ljjfj into BMOKl; T is bounded from BMOBl into BMOn2; T
is bounded from H^ into H^. Applications to UMD and martingale cotype properties are given. We
also prove that the Hardy space H^ defined in the case of a general filtration has nice dense sets and nice
atomic decompositions if and only if B has the Radon-Nikodym property.
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1. Introduction and preliminaries

It is undeniable that in the last 40 years martingale theory and harmonic analysis have
been inspired and influenced by each other, and that, in particular, this has lead to
a parallel development of both fields. Of course, many examples of this parallelism
could be pointed out. But, as the closest to our aims, we would like to mention
the shared concepts of Hardy spaces / / ' and the space of bounded mean oscillation
BMO (see [11] for the probabilistic part). Mainly from the works of Burkholder
and Bourgain (see [7] and [4]), martingale transforms in probability and the Hilbert
transform in harmonic analysis clearly play similar roles. Also in connection with
the vector-valued Calderon-Zygmund operator theory in harmonic analysis, in [14]
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this similarity was further developed for vector-valued martingale transforms. It was
shown that this theory has the added interest of providing some applications to the
geometry of Banach spaces, as well as to classical operators in probability. But the
theory developed in [14] deals only with V -bounded martingale transforms. The
purpose of this paper is, on one hand, to complete that work with the study of their
boundedness properties in the extreme cases Hl and BMO, and on the other hand, the
analysis of the structure of H% itself for a given Banach space B, and its relationship
with the geometric properties of the space B.

At this point, we should fix some notation. Let (£2, &, P) be a probability space
carrying a stochastic basis {&n)n>\ (that is, a nondecreasing sequence of sub-cr-fields
o f^ ) . Given a Banach space B, a sequence/ = [fn}n>\ of B-valued random variables
is a ^-valued martingale relative to {&„}, if each function /„ is ^-measurable (that
is, it is an adapted sequence), integrable and En(fn+i) = E(fn+l \&n) = /„ , for every
n > 1. We assume f0 = 0 and denote by En the operator defined as the conditional
expectation to the sub-cr-field &n. In particular, /„ = YH=i dkf > where d\J are the
'increments' of the martingale/, that is, dij = /* —fk-i- The martingale/ is called
L^-bounded if ||/ || Lj = supn ||/n || tg is finite. For a detailed background on B-valued
martingales the reader is referred to [9].

The scalar-valued classical theory of Hardy spaces of martingales is nowadays well
known, see [11, 17]. Several generalizations of these spaces have been studied, for
example Hardy spaces associated to certain martingale operators, as in [18] and the
references therein, where also their duals are characterized. Given a Banach space B,
//g is defined as the space of martingales such that ||/*||z.i < oo where/* stands for
Doob's maximal operator, f*(a>) = supn>1 ||/n(<y)llB- Note that, since the sequence
{ll/n IIB) is a positive submartingale, the so-called Doob's inequalities (see [10]) extend
to the vector-valued setting, and we have

kP(f;>\)< C\\fn || t . and | | / ; ||LP < Cp \\fn ||Li, for every p > 1.

As far as we know, in the vector-valued context, the theory of Hardy spaces has been
developed only in particular cases, either for martingales of the form /„ = En(f)
for some function / , see [12], or for regular stochastic basis, see [5]. Our goal is to
study the structure of H^ spaces without assuming any condition on the underlying
stochastic basis. The main results in this part of our work relate the properties of this
space to the geometric properties of the space B: we find that B enjoys the Radon-
Nikodym property if and only if H^ has nice atomic decompositions and if and only
if the set of martingales with a finite number of non-zero differences (Definition 2.4)
is dense in H^ (Theorem 2.5). Related analytic results can be found in [2] and [3].
We recall that a Banach space B has Radon-Nikodym property if for any cr-additive,
absolutely continuous set function G : & —• B of bounded total variation with respect
to dP, there exists a function g e Ll

B such that G(E) = JE gdP for all E e & (see
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[9] for more details).
In [7], Burkholder studied the class of Banach spaces B for which there exists p,

1 < p < oo, such that

| | M i / + • • • + endnf || tJ < Cp \\dj +--- + dj H^

for all B-valued martingale difference sequences d\f, drf,..., all numbers e,, e2 , . . .
in {—1, 1}, and all n > 1 with a constant Cp only depending on p. He called HMD
the class of Banach spaces which satisfy this property. The martingale g = [gn] given
by gn = Yl"k=\ £kdkf, is called the martingale transform of the martingale / ={/„}.

We shall deal with vector-valued martingale transform operators, defined by se-
quences of operator-valued random variables {vn}, instead of Burkholder's scalar-
valued sequences {sn} (for short (Tf)n = YH=\vkdkf, see Definition 3.2). We
proved in [14] that for a martingale transform operator T as above the knowledge
of the boundedness of the martingale transform operator in some fixed level, say,
strong p with p > 1, is equivalent to the boundedness of the rest of the levels, and
in particular to the boundedeness \\(Tf)*\\LP < Cp\\f*\\u> for every p in the range
1 < p < oo. Our aim in this part of our work is to show that the philosophy behind
this result (the knowledge of the boundedness at a certain level is equivalent to know
the boundedness at the rest of the levels) can be extended to BMO and / / ' spaces. In
Theorem 3.4 it is proved that the martingale transform operators T which are bounded
at some level Lp, 1 < p < oo, are exactly those bounded between BMO spaces,
equivalently from L°° into BMO or, also equivalently, those whose maximal function
takes functions from L°° into functions of BMO. Also in this part of the work, no
extra conditions are imposed on the stochastic basis. We handle two different notions
of BMO type spaces: BMOpB and BMOP# are respectively the spaces of functions in
Lg such that

ll/ll««rB =sup|(£n||/ -/n_,i
n>l

and

are finite.
It is interesting to point out that as an intermediate step in the proof of that theorem,

the boundedness of Doob's maximal function between BMO spaces is proved in
Lemma 3.5. This can be considered as the probabilistic version of the result for
Hardy-Littlewood maximal operator established in [1]. We give an example of a
function/ whose maximal is in BMO but/ is not in BMO (see Example 3.6), that, in
particular, shows that the BMO norms of/ and/* are not equivalent.

Finally we present some applications. A Banach space B is said to be of martingale
cotype q if 5 , / = ( £ ~ , \\dj ||«)1/9 satisfies | | 5 , / ||t, < C\\f ||tj with C a constant
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only depending on q. This property was introduced by Pisier, see [15] and [16]. In
[19] it is proved that this property can be characterized in terms of some inequalities
involving the Lusin area function. By identifying Sq with the maximal of a ^'-valued
martingale transform operator, see Subsection 4.1, we can apply the results in Section 3
and evaluate the behaviour of Sq in the extremes p = 1 and p = oo. The ideas in that
section yield a new characterization of the martingale cotype q. In fact, we prove that
for a Banach space B, having martingale cotype q is equivalent either to the fact that
5, maps Ljj° into BMO, Sq maps BMO into BMO, or Sq maps H1 into L1 boundedly.
See also [13] for related results.

With a similar reasoning to the one developed for Sq, in Theorem 4.2 we prove a
characterization of UMD spaces as the ones in which signs martingale transforms are
either L°°-BMO or BMO-BMO bounded. See Section 4.2 for the details.

The organization of the paper is as follows: in Section 2 the general theory of Hardy
spaces is developed. The results concerning boundedness of martingale transform
operators are collected in Section 3, and the applications are given in Section 4.

2. Hardy spaces. Radon-Nikodym property

Analogously to the scalar case, see [11] and [17], we define the following spaces
of B-valued martingales. Given p, 1 < p < oo, and a Banach space B, The Hardy
space H^ is the space of martingales / such that \\f \\HP = \\f*\\is < oo.

A B-valued martingale/ is called Lp -predictable, if there is an adapted nondecreas-
ing sequence of functions {K)n>o such that | | / , , | |B < ^n-\, n > 1, with \\k*\\LP < oo.
Such a sequence is called an admissible control f o r / . &£ w^ denote the space of
V -predictable martingales, endowed with the norm | | / \\^ = infx 11^*1 ,̂ where A.
runs over all admissible controls for / . In particular, if we take \xn = infx A.B, then
11/ II^j = IIM*IILO

 an<i fJ- is called the optimal control f o r / .

s/£ is the space of martingales such that | | / 1 | ^ = \\Y17=i W^nf \\B\\LP is finite. For
every Banach space B and 1 < p < oo, it is clear that ^ g and &/£ are subspaces of
H£\ and | | / ||H, < | | / | | < f | | / ||H, < | | / | | , j . On the other hand, //B

p = ^ + <
as a consequence of the following well known result due to Davis (see [17]) in the
scalar-valued case. The proof in the vector-valued setting is straightforward.

LEMMA 2.1 (Davis' decomposition). For any p, 1 < p < oo and f e H& there
exist martingales g and h , such that g 6 ^ g , h 6 $4%, f n = g n + h n , n > l and

Let us recall that a stopping time related to a stochastic basis {&n} is a function v :
Q. -> N U {oo} with [v = n] e &n for all n > 1. Given a martingale/, the martingale
stopped at v will be denoted by / " , and is defined by (f ")„ = Ylk=\ &[v>k)dkf •
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DEFINITION 2.2. A B-valued martingale a = [an], is said to be a p-atom, 1 <
p < oo, if there exists a stopping time v such that SF[v>n)an = 0 for any n > 1, and

The following lemma is a slight generalization of the scalar-valued case, see [17].

LEMMA 2.3. Given a martingale f = (fn) € &£> 1 5 P < °°, ^ c « exwtt a
sequence of p-atoms [ak}k

xL_00 and a sequence of positive numbers {MtJ^L.oo e #"

= E *̂a» as' E ^ - C
k=—oo k=—oo

In the case p = 1, i / / n = J^tl-oo /^*an almost surely with {nk} e lx and ak l-atoms,
thenf e 9\ andf = J^Z-oo ^ak in the P^-norm and \\f | |^. ~ inf J^-oo \^\,
where the infimum is taken over all possible decompositions off.

PROOF. Let / be a martingale in ^ with optimal control {kn}. Define the non
decreasing sequence of stopping times vk = inf{n : kn > 2k] where inf 0 = oo. Then,

00

/« = 5Z {(fVM)n ~ (fVk)n) = Km ((/•*•)„ - (f»-)H) a.s.

since, by using that {vm >j} = (A.* < 2m} and X* e U, we have limm^0O(/ v-)n = / „
and | | ( / " 1 ' - ) B | |B < 2n2~m almost surely. Define, for each k such that P({v t^oo})^0,
^ = 2k3P({vk jL oo})1^ and ak = ^ ' ( ( / ^ O n - (/"On); in other cases define
Mi = 0. a\ = 0- The proof follows now the lines of the scalar case, see [17].

In order to get the reciprocal for p = 1, let / „ = J2T=-<x> A4*0* w i m (A1*) e '̂>
{a*} l-atoms, and {kk

n} being the optimal control for ak. Then, { J2T=-oo \lJ-k\^k
n}n is

an admissible control f o r / . Since | | a | | ^ < 1, we have that | | / | | ^ < J2T=-o
and that the convergence is also in the space ^ g , because

m - l

k=-m

<

B

-oo

These computations were valid for any decomposition o f / , therefore
inf X^tl-oo l/^tl- On t n e o t n e r hand, by the first part of this lemma, / = YlT=-o
wi* XZ-oo l/xt| < C\\f | | ^ i . Then | | / | |^. is equivalent to inf JZJl-oo I/**I a n d t h e

proof is finished. •

Atoms are usually defined as functions and so they are in the scalar-valued case.
However, it does depend on the geometry of the underlying Banach space in the
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vector-valued case, as the next result states. To this aim, define &\t B to be the
space of B-valued martingales / such that / „ = Y^=-oo ^ak almost surely, where
{fxic} € lx and ak are special 1-atoms such that a* = En(a

k) for a measurable function
ak. The norm in &l,B is given by ||/ \\g>iB = inf YHtL-oo I A4* I- Also, let u s consider
the following martingales.

DEFINITION 2.4. / = {/„} is a finite martingale if/„ = En(f), and there exists n0

such that / is &no-measurable.

THEOREM 2.5. Given a Banach space B, the following sentences are equiva-
lent:

(i) B has the Radon-Nikodym property.
(ii) Every l-atom [an] verifies an = En{a) for certain function a e LB.

(hi) ^ i = ^ / B .
(iv) HB=<?l,B + tfB\
(v) Finite martingales are dense in HB.

PROOF, (ii) => (iii) is due to Lemma 2.3 and (iii) => (iv) is a consequence of
Lemma 2.1. In order to prove (i) =>• (ii), observe that if B has the Radon-Nikodym
property, all atoms a are of the form an = En(a) (a e LB), since a* e L°°, see [8].
Now, assume (iv). In order to show that B has the Radon-Nikodym property, we shall
see that any martingale with / * e L°° converges almost surely (see [8]). If / * e L°°,
by using Lemma 2.1 and the hypothesis we can write / = h + g with h e &ZB and
g e £?B = &\t B. Therefore it is enough to show that h and g converge in LB, see [9],
namely that hn and gn are Cauchy sequences in LB. The fact that h 6 £/B

l implies
that 5 X , \\dkh\\Ll < oo and, since \\hn - /im||L. < Et=»+i ll«W»||ti,

 w e h a v e t h a t

{hn} is a Cauchy sequence in LB. For the predictable part g e £PB = &\t B, we have
8n = YlT=-oo ^kEn(a

k) with {En(a
k)} being 1-atoms and {/z*} e tx. By Lemma 2.3,

the converge of that series is almost surely and in ^B-sense. Given £ > 0, we
choose M such that

M

-E
k=-M

<e/3.

As ak 6 LB we have gM = YI^-M l1^ e ^B- T^US m e martingale [En{gM)}^L
converges in LB, see [9]. Let N be such that for m, n > N we have

\\En{gM) - Em{gM)\\Li <e/3.

Hence, by adding and subtracting En(gM) and Em(gM), we get

lift. - gmh'. < 2\\g - gM\\<?<B + \\En(gM) - Em{gM)\\Li < e.
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If B has the Radon-Nikodym property, any f e H£ converges in LB since it is
uniformly integrable. Convergence in LB implies almost sure convergence (see [8,9]).
Then, / „ is an almost surely Cauchy sequence, that is, for almost every co, given e > 0
there exists No = Afo(&>) such that for all n,m > No,

\\fn(u)-fm(co)h<e.

In particular, supn>m ||/n(o>) —/m(<w)||B < £ for n ,m > A^. This implies that
{supn>m ||/n - / J I B U converges to 0 almost surely when m -*• oo. Moreover,
suPn>m ll/» - / B I I I B < 2 / * € LB. Given / e # B and TV > 1, consider the mar-
tingale stopped at N, fN = (f\,... , / # , / # . . •) . Then, by Lebesgue's dominated
convergence theorem:

\\f -fN\\H' = snp\\fn-fn
N\

n>N
0.

This shows (i) =>• (v). Conversely, if finite martingales are dense in //B, in order to
prove that B has the Radon-Nikodym property, we will see that any martingale / with
/ * G L°° c Ll, converges almost surely by showing it is a Cauchy sequence in LB

(see [8,9]). Given e > 0 let g be a finite martingale such that | | / — g\\H± < e / 2 . Since
g is finite, there exists N such that g = (gi, ..., gN, gN,...). Then, with n, m > N,
we have gN = gn = gm and

DWfn - < 11/, - A lit' + 11/™ - gm\\oB < 2 | | / - g\\Hi <e.

The former result shows that the density of finite martingales is related with the
geometry of the underlying Banach space, and that in spaces enjoying the Radon-
Nikodym property, finite martingales are a dense subclass of Hardy spaces. The
following example shows that in general finite martingales are not dense in HB.

EXAMPLE 2.6. Consider Q — [0, 1] with Lebesgue's measure and for n > 0, let
rn = sign(sin((2n7rf)) be the n-th Rademacher function. Let &n = cr(r\,..., rn) and
/ be the co-valued martingale, defined by / „ = (ru r2,..., rn, 0, 0 , . . . ) . For this
martingale, each/,, is a sequence/„ = (/„*) e c0, wi th /^ = rk for k < n and/n* = 0
otherwise. Moreover, supn ||/n||Co = 1 e Ll.

Suppose that finite martingales are dense in H^. Then, for any s > 0 there exists
g a finite martingale such that \\f — g\\H\ < e. This means, in particular, that
Wfn ~ 8H\\L' < £ for any n and k. Since g is a finite martingale, there exists N such
that gn = gN for all n > N, and therefore gk

n = gk
N for all k when n > N. With

n = N,k = N + l,v/e have | | / ^ + 1 - g%+i ||L. = ||g#+1 ||ti < £ and with n = N + 1,
, we have \\f™ - g»+\\\L, = \\rN+l -

Hence 1 =
= \\rN+l - g%+l\\L> < e.

< \\rN+l - gN
N

+l\\L, + \\gN
N

+l\\L> < 2 £ f o r a l l £ > 0.
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3. Martingale transform operators

Given p, 1 < p < oo, and B a Banach space, analogously to the scalar case (see
[11]) we define the B-valued BMO function spaces, BMO~B and BMOpB, I < p < oo
as the spaces of functions/ e LB, such that, respectively

11/ \\BMO;B = sup
n>l

and

are finite, see [5]. Also, define B£>OO,B as the space of martingales such that

W/WBD^ = s u p | | 4 / | | L ~

is finite.

REMARK 3.1. In the scalar-valued case, the following facts are well known, see [11]
and [17]. Their proofs go straightforward over the Banach-valued case.

(i) A n y / e L°° belongs toBMOP, BMO~, 1 < p < oo andBDX, and \\f \\BMOp,
11/ IIBMO-, 11/ IIBDX are smaller or equal than 2 | | / ||L=c.

( i i ) BMO- = BMOP n BDX, w i t h \\f \\BM0- ~ \\f \\BMOP + \\f \ \ B D X , f o r e v e r y

1 < p < oo.
(iii) We have \\f \\BMOp = supu P(v ^ oo)-x/l>\\f -fv\\», where the supremum

is taken over all ^ -s topping times v. Also, a function/ e Lp, 1 < p < oo is in
BM0~ if and only if there exists an adapted process {9n}n>0 such that 60 = 0 and
Q = sup, I £ ( | | / - en^\\P^n)Up | L is finite. Then, | | / ||BJ0- ~ inf9 Q.

(iv) The norm in all the spaces BM0~ is equivalent for any 1 < p < oo, although
BM0p spaces are not equivalent in general, even in the regular case.

DEFINITION 3.2. Let Bi and B2 be two Banach spaces, {J?n}n>\ a stochastic basis
in a probability space (Q, &', P), and / = {/„} a Brvalued martingale relative to
{^n}. Let {vn} be a sequence of -£?(B1( B2)-valued random variables, each vn being
&n-\-measurable, n > 2, and Di being ^-measurable, with supn>1 ||fB||oo < 1- Such
a sequence v = {vn} will be called a multiplying sequence. The martingale given
by ( 7 / ) n = Yl"k=\ vk drf is called the martingale transform of/ by the multiplying
sequence v. T will denote the martingale transform operator.

A martingale transform operator is Lp-bounded if for some constant C and every
martingale / , \\Tf H^ < C\\f ||Lj . A simple example of Lp-bounded martingale
transform operator, 1 < p < oo, for any Banach space B is defined by (Tf)n =
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[9] Martingale transforms on extreme points 215

(fv)n = Yll=i &{*>k)dkf with v a stopping time. Observe that {,£]„>*)} is a nice
multiplying sequence and it verifies

n - l

II </") rL, = J2 f \\Ek(fn)\\p
BdP + f

B ^J[v=k) J{v>n)

LEMMA 3.3. Let p, 1 < p < oo, T be an Lp-bounded martingale transform
operator and a function f € LB>. Then the martingale Tf is of the form (Tf)n =
En(Tf) for some function Tf e Lp

Bi.

PROOF. Given/ e L j | : l < p < o o , / n = En(f), t hen / = limn^oo/n in LBi (see
[9]). Given such a martingale and a pair of indexes n > m, we consider the martingale
g = {#,},>! defined as g, = / , — fm for i > m +1 and g, = 0 otherwise. Its martingale
differences are ( 0 , . . . , 0, dm+if, dm+2f,...) and then (Tg)i = (Tf), - (Tf)m if
i > m + 1 and it is 0 otherwise. Since T is Lp-bounded, 1 < p < oo,

11(77), - (Tf)m\\L, = \\(Tg)n\\L, < C\\g\\L> = Csup | | / n -fm\\Li,

that is, {(7/)n) is a Cauchy sequence in L ^ and converges to a function in L\^ Tf,
verifying (Tf )n = En(Tf). ' •

Consider, for each it > 0, the sequence of a-algebras J^f = «^t+n, n > 1, and
the martingale transform operator % with respect to them, defined by the multiplying
sequence (i5*}£l,, vk

n = i>t+n. In particular, % = T. These operators verify the next
result.

THEOREM 3.4. Given Bi, B2 two Banach spaces and T a martingale transform
operator as in Definition 3.2 and % as above, the following statements are equivalent
when they hold for any k > 0 with constants independent ofk:

(i) For every p, 1 < p < oo, fk : BMOpBl -> BMOpJir

(ii) 77iere exwte />, 1 < p < oo, ft : BMO~Bi ->• BMO~B2.

(iii) 77iere emt t p , 1 < p < oo, fk : Lj£ -> BM0~B2, where LBi is the space of

all almost surely uniformly bounded Unvalued functions.

(iv) \\(fj)*\\BMO-P < Cp | | / ||BW0-B| /or some p, 1 < p < oo.

(v) l l (7 i / )*b M 0 ; < Cp\\f\\L~forsomep, 1 < p < oo.

(vi) 7i are U -bounded for any p, 1 < p < oo.
(vii) r w Lp-bounded for any p, 1 < p < oo.

(viii) T 15 bounded from HBi into HB^.

PROOF. In [14] we proved that statements (vii) and (viii) are equivalent. The rest
of the proof will be developed as follows: first we will prove (vii) =» (vi) => (i) => (ii).
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From (ii) we get (iii) and (iv) and from any of them we obtain (v). Last step will be
proving (v) =>• (viii).

Suppose T is V -bounded. Given an ^-mart ingale f = (f \, fz ,•••), by defining
/ = (Ei(fi),..., Ek(fi),fi,f2, • • •) we obtain a &n-martingale associated to /
with | | / H ^ < | | / | | t S i . Then

= \\vk+lEk(f0 + (Tf)n - (Tf)k\\Lk < CII/H^.

This shows (vii) => (vi) and in particular that every fk is Lp -bounded with respect
to the corresponding stochastic basis, with the same constant than T, independent
of it. By using this, it is enough to prove all the implications (except (v) =>• (viii))
just for a martingale transform operator T and check that the constants in statements
(i)-(v) depend only on p and the V -boundedness constant of T. Next step consists
in proving that a V -bounded martingale transform operator T maps BMOPtBi m t o

BMOP, B2 boundedly. Consider/ e BMOP,B, for some/?, 1 < p < oo. By Lemma 3.3
the martingale {(Tf)n) is of the form ( 7 / ) n = En{Tf) where Tf is a function in L^.
In order to see that Tf is in BMOP,B^ we will use the characterization in Remark 3.1.
Let v be a stopping time. We have

\\Tf -(TfY\LP =supY" / \\(Tf)n-(Tf)k\\
p dP,

L"2 n>ij^J{,=k)n IIB2

and for each pair n > k,

\\(Tf)n-(Tf)k\\
p
JhdP =

J{v=k)

where the sequence with zeros in the first it coordinates ( 0 , . . . , 0, dk+lf &[v=k),
dk+zf 3£\V=K\, . . . ) is /I'S martingale differences. Since T is Lp-bounded, the con-
ditional expectation properties give

| ( 7 7 i ) X < C sup || A, | | ' , = C s u p / \\En(f)-fk\\
p
BidP

"2 n>l "' n>k J[v=k)

<C\\f\\p
BMOpf>iP({v = k}).

and therefore

II Tf — (Tf V V < C\\ f \\p P((v zL ooU

These calculations show that if a martingale transform operator is Lp -bounded relative
to some stochastic basis, then it maps BMOP#X into BM0PE2 with a constant that
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depends only on p and the constant of its Lp-boundedness. Observe that martingale
transform operators are always bounded in BO,*,, since \\vkdkf ||B2 < IIdj ||Bl almost
surely. This, together with Remark 3.1 and (i), gives us (ii). The implications
(iii) => (ii) and (iv) =>• (v) are consequences of Remark 3.1, and (iv) =>• (ii) and
(iii) => (v) are due to the following lemma, whose proof will be given later. •

LEMMA 3.5. / / / e BMO~B, 1 < p < oo, thenf* = supn \\En(f)\\B e BMO~

and\\f*\\BMo-<C\\f\\BMO-pB.

Finally, we shall see that if fk verify (v) for any k > 0 with a constant independent
of k, then T is bounded in / / ' . Observe that it is enough to prove //'-boundedness
for finite martingales, since

ii(r/)it. = sup II (r(/n)r ii L. <supcu(rriiL. = c\\f\\L>,

w h e r e / " = ( f u f 2 , . . . , f n , f „ , . . . ) . G i v e n a f i n i t e / = ( f u . . . ,fN,fN,.. . ) i n H ^ ,
by Remark 2.1 there exist martingales g e &Bi and h e £?B\ such that / = g + h.
Since \\hm - hn\\LtK < Y%=n+\ ll^t^llti -* 0, there exists a function h e LB[ such
that hn = En(h) for all n > 1. Then gn = fn - hn = En(fN - h) for all n > 1.
Moreover, \\g\\^ + \\h\\<t < C||/!!„._. Now, since clearly | | ( rAr | | , < \\h\\<r

it is enough to prove IKrg)*^ < C||g||<^ . By the proof of Lemma 2.3, the 1-
itoms of the decomposition of g are defined as ak

n = i^j\(gVM)n — (gvt)n) where
vk+i and vk were certain stopping times. Due to the Lp -boundedness of stopped
martingales (1), that gn = En (g) for certain g e LBi and Lemma 3.3, we conclude that
2* = En(a

k) for certain ak 6 LB, for each k. Since the series converge almost surely,
ind each vk is a bounded lineal operator, we have {Tg)n = JZtl-oo Hk{Tak)n and
\\(.Tg)*\\Lx < TZ-oofJ-kUTaky\\L<. It will be enough to prove then that UTa)*\\L, are
aniformly bounded when a is a 1-atom given by a function. For a a 1-atom, (Ta)* =
[Tay&^oo) for some stopping time v, and j[v=k](Ta)*dP = f{v=k)(fka)*dP. The
;ast step is using (v) (recall that the boundedness constant of fk* is uniform in k) and
:hat {v = k} e &k C &\, to get the desired inequality

*||L1 = J2 / (TaYdP = Y / E«fkay\JF})dP
t = 1 J{v=k) k=] J{v=k)
00

< ^ | | ( f 4 a r i | f l M O r P ( { v = t } ) < C.
k=\

A related version of this extreme point argument can be found in [18, Theorem 12].
Let us now proceed with the proof of the boundedness of Doob's maximal function
between BM0 spaces.
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PROOF OF LEMMA 3.5. Consider the martingale transform operator M given by the
multiplying sequence {to*}jt>i, where wk(x) = (0 , . . . , 0, x, x, x, . . . ) is an element
of t^ with zeros in the first k — 1 coordinates, for any x e B. Then for a B-valued
martingale/ = {/„}„>] Doob's inequality gives, forp > 1,

UMfUfy = \\(fu...,fn,fn,...)\\L>v = \\f;\\u < CH/Jig,

that is, M is Lp-bounded with a constant only depending on p. Observe that, by
using the fist part of the proof of Theorem 3.4, this implies that M maps functions
in BM0~ B into functions in BM0~ t^. The proof is finished by observing that, since
/ * - /„*_! < supnst \\fk - /n_i ||B, and by Remark 3.1 with 9n = /„*, we have

ll/*llffl#o-B < sup I£„ ( ( / • ' - / ; _ , ) ' ) 1^" < \\Mf \\BM0-^. D

The converse to this lemma is not true in general, as it is shown by the following.

EXAMPLE 3.6. Consider the probability space ([—1, 1], &,dP) where & is the
Borel a-field and dP — dx/2, dx the Lebesgue measure, on [—1, 1]. Take &n

to be the a-field generated by the set An = [—2~", 2~n] and the Borel cr-field in
Ac

n = [—1, l]\An. They clearly define a stochastic basis. The function

/(*) =

0 if |JC| > 1;

1 log*| if 0 <x < 1;

log |x | if - 1 <x < 0

does not belong to BMOJ, while f* = [f\ does indeed, as an easy calculation shows.

4. Applications

4.1. Banach spaces of martingale cotype q A Banach space B is said to be of
martingale cotype q, 2 < q < oo (in short, M-cotype q) if there exist a constant C
such that

Every Banach space is of M-cotype q = oo. The definition is due to Pisier [15].
Non-trivial M-cotype q < oo is a geometrical property of the space, since it happens
if and only if the space admits an equivalent uniformly convex norm (and therefore,
in particular they are reflexive spaces), see [15, 16]. If we consider
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then it is clear that a Banach B is of A/-cotype q if and only if 5 , maps L\ into Lq,

for any filtration. Pisier showed that this property is equivalent to have boundedness

af Sq either from L£ m t 0 ^ p f ° r s o m e o r f ° r e v e ry p, 1 < p < oo. We will see

what happens in the extreme points p — 1 and p = oo by applying Theorem 3.4 to a

particular martingale transform operator whose maximal is Sq.

Define the ^ - v a l u e d martingale transform Qf = {(Qf )„} with multiplying se-

quence VkX = xek, ek the k-th element of the canonical basis of t\ for any x e B, in

>uch a way that

k=\

For any B-valued martingale/ . Then (Qf)* = Sqf and this gives us the key for

:he proof of the following characterization of the M-cotype property (where BMO~

stands for any of the equivalent spaces BMO', 1 < p < oo).

THEOREM 4.1 . For a Banach space B the following statements are equivalent:

(i) B has M-cotype q, 2 < q < oo.

(ii) There exists a constant C such that \\Sqf \\BMO~ < C\\f | | i~ for any function

f e LjJ° and any stochastic basis.

(iii) There exists a constant C such that || Sqf \\BMO- < C\\f \\BMO^ for any function

f 6 BMO^ and any stochastic basis.

(iv) There exists a constant C such that \\Sqf \\Li < C\\f \\H^ for any martingale

? 6 H^ and any stochastic basis.

PROOF. A S we observed above, if B has M-cotype q, then Q satisfies (vii) in

Theorem 3.4 and therefore it satisfies (iv), (v) and (viii) in that theorem, which means

\\BUO-- < C\\f \\BUO- and \\Sqf ||L> <

vith a constant that depends only on the boundedness constant of Q, which is inde-

>endent of the stochastic basis. Conversely, suppose either

I I V \\BMO- < Q\f | | t r , | | 5 , / \\BUO- < Q\f \\BMO-K or \\Sqf | | t . < C\\f | | f f .

or any stochastic basis. Since (Qrf )* is again Sqf, then we have that statements (iv),

v) or (viii) in Theorem 3.4 hold with the same constant. Therefore, we have

vith certain universal constant C. •
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4.2. UMD Banach spaces Observe that the definition given above for UMD

spaces, is equivalent to require ZZ-boundedness of all martingale transform operators

iTef)n = YH=\ £kdkf whose multiplying sequences are defined by signs sequences

(vk = ek). In this context fk
e, k >0,is again a martingale transform operator of the

same type. We have the following theorem, whose proof follows the lines of the prooi

of Theorem 4.1.

THEOREM 4.2. For a Banach space B the following statements are equivalent:

(i) Bis UMD.

(ii) There exists a constant C such that \\ Tef ||BWOi < C\\f ||f.~ for any function

f e L£° and any sign martingale transform Te.

(iii) There exists a constant C such that || Tef | |BM0- < C\\f ||BM0- for any function

f € BMOn and any sign martingale transform Te.

(iv) There exists a constant C such that \\(Tef)*\\BMo- < C \\f ||L~ for any functior
f e Lg5 and any sign martingale transform Ts.

(v) There exists a constant C such that | | (r£ /)*| |B Mo- < Q\f \\BM0- for an)

function f 6 BMO^ and any sign martingale transform Te.

(vi) There exists a constant C such that \\ Tef ||Wi; < C\\f ||w^ for any martingah

f € //„ and any sign martingale transform Te.
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