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Abstract

Let B, B, be a pair of Banach spaces and T be a vector valued martingale transform (with respect to
general filtration) which maps B;-valued martingales into B,-valued martingales. Then, the following
statements are equivalent: T is bounded from Lf,l into L’,;2 for some p (or equivalently for every p) in
therange 1 < p < 00; T is bounded from Lg, into BMOy,; T is bounded from BMOg, into BMOy,; T
is bounded from Hy into Hy,. Applications to UMD and martingale cotype properties are given. We
also prove that the Hardy space H,} defined in the case of a general filtration has nice dense sets and nice
atomic decompositions if and only if B has the Radon-Nikodym property.
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1. Introduction and preliminaries

It is undeniable that in the last 40 years martingale theory and harmonic analysis have
been inspired and influenced by each other, and that, in particular, this has lead to
a parallel development of both fields. Of course, many examples of this parallelism
could be pointed out. But, as the closest to our aims, we would like to mention
the shared concepts of Hardy spaces H' and the space of bounded mean oscillation
BMO (see [11] for the probabilistic part). Mainly from the works of Burkholder
and Bourgain (see [7] and [4]), martingale transforms in probability and the Hilbert
transform in harmonic analysis clearly play similar roles. Also in connection with
the vector-valued Calderén-Zygmund operator theory in harmonic analysis, in [14]
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this similarity was further developed for vector-valued martingale transforms. It was
shown that this theory has the added interest of providing some applications to the
geometry of Banach spaces, as well as to classical operators in probability. But the
theory developed in [14] deals only with L”-bounded martingale transforms. The
purpose of this paper is, on one hand, to complete that work with the study of their
boundedness properties in the extreme cases H' and BMO, and on the other hand, the
analysis of the structure of Hy itself for a given Banach space B, and its relationship
with the geometric properties of the space B.

At this point, we should fix some notation. Let (2, #, P) be a probability space
carrying a stochastic basis {#,},»; (that is, a nondecreasing sequence of sub-o -fields
of &#). Given a Banach space B, asequence f = {f,},>1 of B-valued random variables
is a B-valued martingale relative to {#,}, if each function f, is #,-measurable (that
is, it is an adapted sequence), integrable and E,(f,1) = E(fp111F) = fa, for every
n > 1. We assume fo = 0 and denote by E, the operator defined as the conditional
expectation to the sub-o-field &,. In particular, f, = ) |_ dif , where dif are the
‘increments’ of the martingale f, that is, dif = fi — fi—1. The martingale f is called
Ly-bounded if | f || 1, = sup, ||fxll is finite. For a detailed background on B-valued
martingales the reader is referred to [9].

The scalar-valued classical theory of Hardy spaces of martingales is nowadays well
known, see [11, 17]. Several generalizations of these spaces have been studied, for
example Hardy spaces associated to certain martingale operators, as in [18] and the
references therein, where also their duals are characterized. Given a Banach space B,
Hy is defined as the space of martingales such that ||f *||,1 < oo where f * stands for
Doob’s maximal operator, f *(w) = sup,., || f.(w)|s. Note that, since the sequence
{Ilf»lla} is a positive submartingale, the so-called Doob’s inequalities (see [10]) extend
to the vector-valued setting, and we have

AP(fy>2) < Clifally and NIfJlle < Golifully, foreveryp > 1.

As far as we know, in the vector-valued context, the theory of Hardy spaces has been
developed only in particular cases, either for martingales of the form f, = E,(f)
for some function f, see [12], or for regular stochastic basis, see [5]. Our goal is to
study the structure of Hg spaces without assuming any condition on the underlying
stochastic basis. The main results in this part of our work relate the properties of this
space to the geometric properties of the space B: we find that B enjoys the Radon-
Nikodym property if and only if Hy has nice atomic decompositions and if and only
if the set of martingales with a finite number of non-zero differences (Definition 2.4)
is dense in Hy (Theorem 2.5). Related analytic results can be found in [2] and {3}.
We recall that a Banach space B has Radon-Nikodym property if for any o-additive,
absolutely continuous set function G : & — B of bounded total variation with respect
to d P, there exists a function g € Ly such that G(E) = [, gdP forall E € & (see
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[9] for more details).
In [7], Burkholder studied the class of Banach spaces B for which there exists p,
1 < p < 00, such that

lerdif + -+ endnf g < Golldif + -+ +duf lirs

for all B-valued martingale difference sequences d,f, d»f, . ... all numbers ¢;, &3, . ..
in {—1, 1}, and all n > 1 with a constant C, only depending on p. He called UMD
the class of Banach spaces which satisfy this property. The martingale g = {g,} given
by g, = >_,_, &xdif , is called the martingale transform of the martingale f = {f,,}.

We shall deal with vector-valued martingale transform operators, defined by se-
quences of operator-valued random variables {v,}, instead of Burkholder’s scalar-
valued sequences {g,} (for short (Tf), = Z;::] wdif , see Definition 3.2). We
proved in [14] that for a martingale transform operator T as above the knowledge
of the boundedness of the martingale transform operator in some fixed level, say,
strong p with p > 1, is equivalent to the boundedness of the rest of the levels, and
in particular to the boundedeness || (Tf )*ll.» < G, ||f *|l.» for every p in the range
1 < p < 00. Our aim in this part of our work is to show that the philosophy behind
this result (the knowledge of the boundedness at a certain level is equivalent to know
the boundedness at the rest of the levels) can be extended to BMO and H' spaces. In
Theorem 3.4 it is proved that the martingale transform operators T which are bounded
at some level L?, 1 < p < o0, are exactly those bounded between BMO spaces,
equivalently from L* into BMO or, also equivalently, those whose maximal function
takes functions from L% into functions of BMQ. Also in this part of the work, no
extra conditions are imposed on the stochastic basis. We handle two different notions
of BMO type spaces: BMO, y and BMO, p are respectively the spaces of functions in
L% such that

Nf ”BMO;IB = SUE) ” (E.f —f”_,”;’;)l/p ”oo

and
If lamo, = sup [ (Ealf = Ful)"

are finite.

It is interesting to point out that as an intermediate step in the proof of that theorem,
the boundedness of Doob’s maximal function between BMO spaces is proved in
Lemma 3.5. This can be considered as the probabilistic version of the result for
Hardy-Littlewood maximal operator established in [1]. We give an example of a
function f whose maximal is in BMO but f is not in BMO (see Example 3.6), that, in
particular, shows that the BMO norms of f and f * are not equivalent.

Finally we present some applications. A Banach space B is said to be of martingale
cotype q if S;f = (3o, lldif Il‘,’,)l/q satisfies [|S,f [« < CIIf llzg with C a constant
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only depending on g. This property was introduced by Pisier, see [15] and [16]. In
[19] it is proved that this property can be characterized in terms of some inequalities
involving the Lusin area function. By identifying S, with the maximal of a £2-valued
martingale transform operator, see Subsection 4.1, we can apply the results in Section 3
and evaluate the behaviour of S, in the extremes p = 1 and p = 0. The ideas in that
section yield a new characterization of the martingale cotype ¢. In fact, we prove that
for a Banach space B, having martingale cotype g is equivalent either to the fact that
S, maps L’ into BMO, S, maps BMO into BMO, or S, maps H' into L' boundedly.
See also [13] for related results.

With a similar reasoning to the one developed for S,, in Theorem 4.2 we prove a
characterization of UMD spaces as the ones in which signs martingale transforms are
either L°-BMO or BMO-BMO bounded. See Section 4.2 for the details.

The organization of the paper is as follows: in Section 2 the general theory of Hardy
spaces is developed. The results concerning boundedness of martingale transform
operators are collected in Section 3, and the applications are given in Section 4.

2. Hardy spaces. Radon-Nikedym property

Analogously to the scalar case, see [11] and [17], we define the following spaces
of B-valued martingales. Given p, 1 < p < 00, and a Banach space B, The Hardy
space H§ is the space of martingales f such that | f Nz = If *llr < 00.

A B-valued martingale f is called L? -predictable, if there is an adapted nondecreas-
ing sequence of functions {A,},-¢ such that ||f,llg < A,_1, n > 1, with ||A*]|» < oc.
Such a sequence is called an admissible control for f. %5 will denote the space of
L?-predictable martingales, endowed with the norm |f || z = inf, [|A*{|,, where A
runs over all admissible controls for f. In particular, if we take u, = inf, A, then
If l#z = llu*ll» and p is called the optimal control for f .

&y is the space of martingales such that ||f || L= " Zf;l lld.f “B” w18 finite. For
every Banach space B and 1 < p < 00, it is clear that 2§ and & are subspaces of
HE: and [f llsg < If lag. IIf g < I pg. On the other hand, Hf = P + o
as a consequence of the following well known result due to Davis (see [17]) in the
scalar-valued case. The proof in the vector-valued setting is straightforward.

LEMMA 2.1 (Davis’ decomposition). Forany p, 1 < p < 0o and f € H} there
exist martingales g and h, such that g € P4, h € Sy, fn = gu+ h,, n > 1 and
lgllgs < (A3 4+4p)ISf llug, Ihllag < (4+4P)IS llng-

Let us recall that a stopping time related to a stochastic basis {.%,} is a function v :
Q — NU{oo} with {v = n} € &, forall n > 1. Given a martingale f , the martingale
stopped at v will be denoted by f ¥, and is defined by (f “)» = Y ;_, Zivoi1dif -
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DEFINITION 2.2. A B-valued martingale a = {a,}, is said to be a p-atom, 1 <
p < 00, if there exists a stopping time v such that Z,>na, = 0 for any n > 1, and
lla*lie < P({v # oo})~'/.

The following lemma is a slight generalization of the scalar-valued case, see [17].

LEMMA 2.3. Given a martingale f = (f,) € Py, 1 < p < 00, there exists a
sequence of p-atoms {a*}°_ . and a sequence of positive numbers { ) € £°
such that

o} o0
_ k p p
fo=) mal as, Y uf <CIf .

=—00 =—00

Inthecasep = 1, if fr = 3 po . ixa* almost surely with {i1,} € £' and a* 1-atoms,
thenf € Pyandf =3 2 pa* inthe Py-norm and |f || o, ~ inf 300 |,
where the infimum is taken over all possible decompositions of f .

PROOF. Let f be a martingale in 4§ with optimal control {A,}. Define the non
decreasing sequence of stopping times v; = inf{n : A, > 2*} where inf @ = co. Then,

o0

fo= 3 (= (F ™)) = lim ((F)a = (F ) as.

k=—00

since, by using that {v,, > j} = {A] < 2"} and A* € L?, we have limy_, 0o (f "), = f
and ||(f *"),|ls < 2n2~™ almost surely. Define, for each k such that P({v,#00})#0,
e = 2X3P({v # oo and a* = p;'((f "), — (f *)n); in other cases define
we =0, a,’f = 0. The proof follows now the lines of the scalar case, see [17].

In order to get the reciprocal for p = 1, let f, = Y oo _. mxar with {u,} € €',
{a*} 1-atoms, and {A%} being the optimal control for a*. Then, { Y ;2 _, luslA%} is
an admissible control for f. Since |lallpy < 1, we have that ||f ||z} < Z:‘;_w { el
and that the convergence is also in the space P} because

=< Z |Hk|)~f,—x-

B k|>m

m—1
fn - Z /J'ka,l:

k=—-m

These computations were valid for any decomposition of f, therefore ||f |5, <
inf 33> ___|tkl- On the other hand, by the first part of this lemma, f = 3_,> _ ma*
with 332 el < Clif iy Then [|f || 3y is equivalent to inf 37,7 || and the
proof is finished. O

Atoms are usually defined as functions and so they are in the scalar-valued case.
However, it does depend on the geometry of the underlying Banach space in the
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vector-valued case, as the next result states. To this aim, define ), g to be the
space of B-valued martingales f such that f, = Y ;- __ p.a* almost surely, where
{me} € €' and a* are special 1-atoms such that a* = E,(a*) for a measurable function
a*. The norm in &) g is given by ||f | g1, = inf 3 ;2 |u«l. Also, let us consider
the following martingales.

DEFINITION 2.4. f = (f,} is a finite martingale if f, = E,(f ), and there exists ng
such that f is #, -measurable.

THEOREM 2.5. Given a Banach space B, the following sentences are equiva-
lent:

(1) B has the Radon-Nikodym property.
(ii) Every 1-atom {a,} verifies a, = E,(a) for certain function a € L}.
(i) Py = P
(iv) Hy=P,p+ .
(v) Finite martingales are dense in H;.

PROOF. (ii) = (ii1) is due to Lemma 2.3 and (iii) = (iv) is a consequence of
Lemma 2.1. In order to prove (i) = (ii), observe that if B has the Radon-Nikodym
property, all atoms a are of the form a, = E,(a) (a € L}), since a* € L™, see [8].
Now, assume (iv). In order to show that B has the Radon-Nikodym property, we shall
see that any martingale with f * € L™ converges almost surely (see [8]). If f* € L™,
by using Lemma 2.1 and the hypothesis we can write f = h + g with h € & and
g € Py = P, 5 Therefore it is enough to show that h and g converge in Ly, see [9],
namely that h, and g, are Cauchy sequences in L. The fact that b € & implies
that Y oo, ldihll,, < oo and, since ||k, — Bmlley < D t_mes ldihllLy, We have that
{hx} is a Cauchy sequence in Lg. For the predictable part g € Py = P, 5, we have
8 = Y reoo Mk En(a*) with {E,(a¥)} being 1-atoms and {u,} € £'. By Lemma 2.3,
the converge of that series is almost surely and in 3-sense. Given ¢ > 0, we
choose M such that

< g/3.

M
- Z pia*
k=—M

As a* € Ly we have gy = Z:i-u ua® € L. Thus the martingale {E,(gm)}2,
converges in L}, see {9]. Let N be such that for m,n > N we have

IE.(grm) — En(gam)liy < &/3.

Hence, by adding and subtracting E,(gsx) and E,(gum), we get

1
9-:1‘!!

gn — 8mlley <218 — gmlloy + 1 En(8u) — En(@m)lizy <&
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If B has the Radon-Nikodym property, any f € Hj converges in L} since it is
uniformly integrable. Convergence in L}, implies almost sure convergence (see [8, 9]).
Then, f, is an almost surely Cauchy sequence, that is, for almost every w, given ¢ > 0
there exists Ny = Ng(w) such that for all n, m > Nj,

Ifr(w) = (@) < €.

In particular, sup,,,, [Ifr(®) — fm(w)lls < & for n,m > Ny. This implies that
{sup,sn, Ifn — fmll}lm converges to O almost surely when m — o00. Moreover,
SUP,isp Ifn — fmlle < 2f* € Ly. Given f € Hg and N > 1, consider the mar-
tingale stopped at N, f¥ = (f1,...,f~,fn...). Then, by Lebesgue’s dominated
convergence theorem:

— 0.
Ly

If = ey = supllfa — £V lls

sup [lfn — fnlle

L} n>N
This shows (i) = (v). Conversely, if finite martingales are dense in Hy, in order to
prove that B has the Radon-Nikodym property, we will see that any martingale f with
f* e L® C L', converges almost surely by showing it is a Cauchy sequence in Ly
(see [8, 9]). Given ¢ > 0O let g be a finite martingale such that || f — gl < €/2. Since

g is finite, there exists N such that g = (g1, ..., gv, gvn,--.). Then, withn,m > N,
we have gy = g, = gn and
Wfn—Fmlley < Wfn— &ally + 1fm — 8mlly <20 — glluy <& O

The former result shows that the density of finite martingales is related with the
geometry of the underlying Banach space, and that in spaces enjoying the Radon-
Nikodym property, finite martingales are a dense subclass of Hardy spaces. The
following example shows that in general finite martingales are not dense in Hp.

EXAMPLE 2.6. Consider 2 = [0, 1] with Lebesgue’s measure and for n > 0, let
r, = sign(sin((2"t)) be the n-th Rademacher function. Let #, = o(r(, ..., r,) and
f be the ¢p-valued martingale, defined by f, = (r1,r2, ..., 1,,0,0,...). For this
martingale, each f, is a sequence f, = (f}) € co, with f ¥ = r, fork <nand f*¥ =0
otherwise. Moreover, sup, [|f.ll, = 1€ L".

Suppose that finite martingales are dense in H C‘O. Then, for any ¢ > 0 there exists
g a finite martingale such that {|f — gIIH‘% < ¢. This means, in particular, that
If ¥ — gkl < e for any n and k. Since g is a finite martingale, there exists N such
that g, = gy for all n > N, and therefore g = g¥ for all k when n > N. With
n=N,k=N+1,wehave ||f)* —gh*' Il = llgnt'l: <eandwithn =N +1,

k=N+1,wehave |f )5 — ghthl = llrve — gntill = lrver — gh il < e
Hence 1 = firyplie < Hrwer — gv i + llgh ™ il < 2eforalle > 0.
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3. Martingale transform operators

Given p, 1 < p < o0, and B a Banach space, analogously to the scalar case (see
[11]) we define the B-valued BMO function spaces, BMO, g and BMO, 3,1 < p < 00
as the spaces of functions f € L%, such that, respectively

If lsmo;, = Su;l) ||(E,,||f — faallB)'P ”oo
and -
If lamo, 5 = sup ATy AT

are finite, see [S]. Also, define BD,, g as the space of martingales such that
S Mooy = 59P ef llz
is finite.

REMARK 3.1. Inthe scalar-valued case, the following facts are well known, see [11]
and [17]. Their proofs go straightforward over the Banach-valued case.

(i) Any f € L* belongs to BMO,, BMO;, 1 < p < 00 and BDy, and ||f || auo0, ,
1 lamoz » I llao,. are smaller or equal than 2|f || .

(i) BMO, = BMO, N BDy, with If llsuo; ~ If llawo, + If lla... for every
l <p < o0

(iii) We have ||f {lsmo, = sup, P(v # 00)~VP||f — f¥|.», where the supremum
is taken over all #,-stopping times v. Also, a function f € LP, 1 < p < oo is in
BMO, if and only if there exists an adapted process {6,}.>0 such that 6, = 0 and
Cy = sup, |E(If — 6,1151.F)"77 || _ is finite. Then, [If |lsmo; ~ infy Co.

(iv) The norm in all the spaces BMO; is equivalent for any 1 < p < 09, although
BMO, spaces are not equivalent in general, even in the regular case.

DEFINITION 3.2. Let B and B, be two Banach spaces, {#,}.>1 a stochastic basis
in a probability space (2, &#, P), and f = {f,} a B;-valued martingale relative to
{#,). Let {v,} be a sequence of Z (B, B,)-valued random variables, each v, being
&, -measurable, n > 2, and v, being .#;-measurable, with sup,.; lvnllee < 1. Such
a sequence v = {v,} will be called a multiplying sequence. The martingale given
by (Tf )n = 3 _;_, Ux dif is called the martingale transform of f by the multiplying

sequence v. T will denote the martingale transform operator.

A martingale transform operator is L?-bounded if for some constant C and every
martingale f, |Tf ||, < CIf ”L'é.' A simple example of L?-bounded martingale
transform operator, | < p < oo, for any Banach space B is defined by (7f), =
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F " = Yt Zivsiydef with v a stopping time. Observe that {Z],»y} is a nice
multiplying sequence and it verifies

n-1
M wmm=2[
k=1 v

LEMMA33. Let p, 1 < p < oo, T be an L?-bounded martingale transform
operator and a function f € L’,’,l. Then the martingale Tf is of the form (Tf), =
E.(Tf ) for some function Tf € L.

IEGIIGaP+ [ ILIEdP <11

=k} {vzn}

PROOF. Givenf € L} ,1 <p <0, f, = E,(f),thenf =lim, o fnin L} (see
[9]). Given such a martingale and a pair of indexes n > m, we consider the martingale
g ={gi}i>1definedas g; = f, — f,, fori > m+1and g; = 0 otherwise. Its martingale
differences are (0,...,0,dn1f, dnsaf,...) and then (Tg);, = (Tf); — (Tf ) if
i >m+ 1anditis O otherwise. Since T is L?-bounded, 1 < p < o0,

T )n = (Tf Imlleg, = 1(T&nlley, < Cligley, = Csuplifa — flley
that is, {(Tf ).} is a Cauchy sequence in L}, and converges to a function in L§ , Tf,
verifying (Tf ), = E.(Tf ). O

Consider, for each k > 0, the sequence of o-algebras ﬁ',f = Fam,n > 1, and
the martingale transform operator 7, with respect to them, defined by the multiplying
sequence {U¥}% |, ¥ = viy,. In particular, Ty = T. These operators verify the next
result.

THEOREM 3.4. Given B, B, two Banach spaces and T a martingale transform
operator as in Definition 3.2 and T, as above, the following statements are equivalent
when they hold for any k > 0 with constants independent of k:

(i) Foreveryp,1<p <o, Ty : BMO, g, > BMO, 3,.
(ii) Thereexistsp, 1 <p < 00, Tk : BMO;_B‘ — BMO;,BZ.

(iii) Thereexists p, 1 < p < 00, ﬁ : L;’,‘j — BMO;‘BZ, where Li’,‘: is the space of
all almost surely uniformly bounded B,-valued functions.

@) N(Tf )*llamo; < Col\f llamoy,, for some p, 1 < p < oo.
VM WTf ) lsmo; < Gollf lleg for some p, 1 < p < oo
(vi) Ty are L?-bounded foranyp, 1 < p < .

(vii) T is L?-bounded for any p, 1 < p < oo.

(viii) T is bounded from Hg into Hy .

PROOF. In [14] we proved that statements (vii) and (viii) are equivalent. The rest
of the proof will be developed as follows: first we will prove (vii) = (vi) = (i) = (ii).
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From (ii) we get (iii) and (iv) and from any of them we obtain (v). Last step will be
proving (v) = (viii).

Suppose T is L?-bounded. Given an ;,f-martingale f = (f1,f2 ...), by defining
f = (Ex(fD), ... Ex(f). f1, f2,...) we obtain a Z,-martingale associated to f
with [If i < [If l5 - Then

Il =

n
Bfi+ ) (G — fi-)
j=2 L,

= [kt Be(f) + (TF ) = (TF el y < Cllf N, -

This shows (vii) = (vi) and in particular that every T is LP-bounded with respect
to the corresponding stochastic basis, with the same constant than 7, independent
of k. By using this, it is enough to prove all the implications (except (v) = (viii))
just for a martingale transform operator 7 and check that the constants in statements
(i)~(v) depend only on p and the L?-boundedness constant of 7. Next step consists
in proving that a L?-bounded martingale transform operator T maps BMO, g, into
BMO, g, boundedly. Consider f € BMO, g, forsome p, 1 < p < 00. By Lemma 3.3
the martingale {(7f ),} is of the form (Tf ), = E,(Tf ) where Tf is a function in L‘,’,z.
In order to see that Tf is in BMO, p,, we will use the characterization in Remark 3.1.
Let v be a stopping time. We have

n—1
|75 — @yl = SUIIJZ/{ NP = Tl P,
nzl gy Y=

v

and for each pair n > k,

P _ 14
fw:k, [T n = (T ull3, 4P = [ (Tha] 7,

where the sequence with zeros in the first k coordinates (0, ..., 0, diiif Zv=i),
divof Ziv=i), --.) is h’s martingale differences. Since T is L?-bounded, the con-
ditional expectation properties give

Tk, < Csuplimlty = Csup [ 1E) - fulf, aP
n> ! {v=k}

n>k

< CIIf Imo, s, PV = kD).
and therefore

|7 — ()"

15, < CIf lzmo, , PV # 00]).

These calculations show that if a martingale transform operator is L?-bounded relative
to some stochastic basis, then it maps BMO, g, into BMO, g, with a constant that
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depends only on p and the constant of its L?-boundedness. Observe that martingale
transform operators are always bounded in BD,,, since ||vidif lls, < l|dif |lp, almost
surely. This, together with Remark 3.1 and (i), gives us (ii). The implications
(iii) = (ii) and (iv) = (v) are consequences of Remark 3.1, and (iv) = (ii) and

(iii) = (v) are due to the following lemma, whose proof will be given later. O

LEMMA 3.5. If f € BMO, g, 1 < p < 00, then f* = sup, | E,(f)lls € BMO,
and ||f *|lsmo; < C|If llamo;,-

Finally, we shall see that if T verify (v) for any k > 0 with a constant independent
of k, then T is bounded in H'. Observe that it is enough to prove H!'-boundedness
for finite martingales, since

T ) e = sup ITE "N e < sup CIGE ™ e = CIf "l

where f" = (f\, f2,..., fu, fnr --.). Givenafinite f = (f1,...,fn,fn,...)inHy,
by Remark 2.1 there exist martingales ¢ € &3 and h € o suchthat f = g + h.
Since |lA,, — h,,ll%l < Z;":nH lldkhllL;;l — 0, there exists a function & € L{,l such
that h, = E,(h) foralln > 1. Theng, = f, — h, = E,(fx — h) forall n > 1.
Moreover, |igllpy + llhllagy < CIf llny - Now, since clearly [[(Th)*[l; < ||kl ,

it is enough to prove ||(Tg)*|li < Clgl 2, By the proof of Lemma 2.3, the 1-
atoms of the decomposition of g are defined as a,’f = ;L,:l((g”**‘),. — (g")n) where
V41 and v, were certain stopping times. Due to the L?-boundedness of stopped
martingales (1), that g, = E,(g) for certain g € L,l,, and Lemma 3.3, we conclude that
1t = E,(a*) for certain a* € L, for each k. Since the series converge almost surely,
and each v, is a bounded lineal operator, we have (Tg), = }:,fi_oo wi(Ta*), and
WTgY o < ZZ‘;_OO mill(Ta*)*||». Tt will be enough to prove then that || (Ta)*|| .1 are
miformly bounded when a is a 1-atom given by a function. For a a 1-atom, (Ta)* =
(Ta)* Z|,+) for some stopping time v, and f{v=kl(Ta)*dP = f(v=k)(7}(a)‘ dP. The
iast step is using (v) (recall that the boundedness constant of 7}(* 1s uniform in k) and
hat {v = k} € £, C F¥, to get the desired inequality

IWWM=Z/
k=1 Y1

v=k}

(Ta)*dP = Z/ E((Ta)*|FF dP
k=1 V1

v=k}

<) W(Ta) lamo; Py =k} < €
k=1

A related version of this extreme point argument can be found in [18, Theorem 12].
et us now proceed with the proof of the boundedness of Doob’s maximal function
setween BMO spaces.
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PROOF OF LEMMA 3.5. Consider the martingale transform operator M given by the
multiplying sequence {wy}i>1, Where wy(x) = (0,...,0,x,x,x,...) is an element
of £g> with zeros in the first k — 1 coordinates, for any x € B. Then for a B-valued
martingale f = {f,},>; Doob’s inequality gives, forp > 1,

N dnlleze = N1 s fos f e g = 17 < Cllfallig,

that is, M is L”-bounded with a constant only depending on p. Observe that, by
using the fist part of the proof of Theorem 3.4, this implies that M maps functions
in BMO, g into functions in BMO,, .. The proof is finished by observing that, since
f*—=fr1 < sup, Ifx — fn-1lls, and by Remark 3.1 with 8, = f.*, we have

n—-1 —

1/p
||]”||19Mo,;B =< i‘iﬁ: " E.((f" _f,,*_l)p)"oo < IMf ”BMO;J%O' O
The converse to this lemma is not true in general, as it is shown by the following.

EXAMPLE 3.6. Consider the probability space ([—1, 1], &, dP) where & is the
Borel o-field and dP = dx/2, dx the Lebesgue measure, on [—1, 1]. Take %,
to be the o-field generated by the set A, = [—27",27"] and the Borel o-field in
A¢ = [—1, 1]\A,. They clearly define a stochastic basis. The function

0 if x| > 1;
f&x)y={llogx] ifO0O<x<l;
log|lx] if —1<x<0

does not belong to BMO7, while f* = |f | does indeed, as an easy calculation shows.
4. Applications

4.1. Banach spaces of martingale cotype ¢4 A Banach space B is said to be of
martingale cotype ¢, 2 < g < 0o (in short, M-cotype q) if there exist a constant C
such that

oo}

Do lduf 1y < CIF I,

n=1
Every Banach space is of M-cotype ¢ = 00. The definition is due to Pisier [15].
Non-trivial M-cotype ¢ < 00 is a geometrical property of the space, since it happens

if and only if the space admits an equivalent uniformly convex norm (and therefore,
in particular they are reflexive spaces), see [15, 16]. If we consider

o 1/q
Sf = (Z def u%) :
k=1
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then it is clear that a Banach B is of M-cotype q if and only if S, maps L into LY,
for any filtration. Pisier showed that this property is equivalent to have boundedness
of S, either from L} into L? for some or for every p, 1 < p < 0o. We will see
what happens in the extreme points p = 1 and p = oo by applying Theorem 3.4 to a
particular martingale transform operator whose maximal is S,.

Define the £3-valued martingale transform Qf = {(Qf ),} with multiplying se-
Juence viX = X ¢, € the k-th element of the canonical basis of £ for any x € B, in
such a way that

(O n =D _uidif =@f. dof ..., df,0,...) €8}
k=1

for any B-valued martingale f. Then (Qf )* = S,f and this gives us the key for
‘he proof of the following characterization of the M-cotype property (where BMO~
stands for any of the equivalent spaces BMO,, 1 < p < 00).

THEOREM 4.1. For a Banach space B the following statements are equivalent:
(i) B has M-cotype q,2 < g < 0.
(i) There exists a constant C such that || S,f |lsmo- < CIlf lliy for any function
f € LY and any stochastic basis.
(iii) There exists a constant C such that || S,f |lamo- < CI\f llsmo; for any function
f € BMOg and any stochastic basis.
(iv) There exists a constant C such that ||S,f ll.v < C||f | uy for any martingale
f € Hy and any stochastic basis.

PROOF. As we observed above, if B has M-cotype g, then Q satisfies (vii) in
[heorem 3.4 and therefore it satisfies (iv), (v) and (viii) in that theorem, which means

1Sef lsmo- < Cllf g, 11Sof llsmo- < CIlf lamo; and  [1Sof lr < CllSf lays

vith a constant that depends only on the boundedness constant of Q, which is inde-
sendent of the stochastic basis. Conversely, suppose either

1Sof llsmo- < CUf g, ISef llamo- < Clf llamo; o 11Sef Il < ClIf llag

or any stochastic basis. Since (Q,J’ )*is again S, f , then we have that statements (iv),
v) or (viii) in Theorem 3.4 hold with the same constant. Therefore, we have

I1S.f 17 < CIFIIZ,

vith certain universal constant C. O

https://doi.org/10.1017/51446788700008909 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008909

220 Teresa Martinez and José L. Torrea [14]

4.2. UMD Banach spaces Observe that the definition given above for UMD
spaces, is equivalent to require L?-boundedness of all martingale transform operators
(T*f )n = X4, €xdif whose multiplying sequences are defined by signs sequences
(vi = &;). In this context Te , k = 0, is again a martingale transform operator of the
same type. We have the following theorem, whose proof follows the lines of the proof
of Theorem 4.1.

THEOREM 4.2. For a Banach space B the following statements are equivalent:

(i) Bis UMD.

(1) There exists a constant C such that | T*f |lgmo; < CI|f iy for any function
f € L§ and any sign martingale transform T¢.

(i) There exists a constant C such that | T*f ||gmo; < CI|f ||smo, for any functior
f € BMOg and any sign martingale transform T¢.-

(iv) There exists a constant C such that ||(T¢f }*||syo- < C\f iz for any functior
f € Ly and any sign martingale transform T*.

(v) There exists a constant C such that ||(T*f )*|lsmo- < CIf lamo; for am
function f € BMOg and any sign martingale transform T¢.

(vi) There exists a constant C such that | T*f |53 < C|f | u} for any martingale
f € Hg and any sign martingale transform T¢.
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