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PERMANENTS OF RANDOM DOUBLY STOCHASTIC
MATRICES

R. C. GRIFFITHS

1. Introduction. The permanent of an #n X n matrix A = (ay;) is defined as

per(A) = E H Q ja (i),

a€lSn =1

where S, is the symmetric group of order #. For a survey article on permanents
the reader is referred to [2]. An unresolved conjecture due to van der Waerden
states that if 4 is an # X u doubly stochastic matrix; then per (4) = n!/#",
with equality if and only if 4 = J, = (1/n). For an n X n matrix 4 define

9

Po(4) =1and P,(4),r =1, 2, ..., n, as the average of the (f)~ perma-

nents of sub-matrices obtained by deleting # — 7 rows and #» — r columns of
A. A generalization of the van der Waerden conjecture is thatif 4 isan# X n

doubly stochastic matrix; then P,(4) = r!/n",r = 2,3, ..., n, with equality
if and only if 4 = J,.
Suppose Q1, Qz, . . ., Q, is the set of # X n permutation matrices; then any

n X n doubly stochastic matrix 4 has a decomposition
A =cQy+ Qs+ ... +cQu,

wheret =n?—n+1,¢,>0,1=1,2, ..., tand > .c; =1 (seee.g. [3]). This
note studies permanents of random doubly stochastic matrices of the form

1) Q@) =ali+cale+ ... 4 ¢, Ty,

where I'y, T's, ..., T, is a set of mutually independent, identically distributed
random matrices such that
(2) Prob. (T;=0Q,) = @), j=1,2,...,n,

¢; = 0and X ¢; = 1. Throughout T and € will refer to random matrices given
by (1) and (2). E will denote the expected value operator.

2. Expected values of random permanents.

LeEMMA. If B is an n X n matrix and ¢ a constant; then

T 2
EP,(B + ¢T) = ;) (; ) &P (NP, (B), r=0,1,...,n.
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Proof. Denote by Q,, the set of all (f) subsets of r distinct elements from

(1, 2, ..., n). For any #n X n matrix B, Bla|8], a, 8 € Q,,, will denote the
submatrix obtained by deleting all rows other than those numbered in « and
all columns other than those numbered in 8. B («|8) will denote the sub-matrix
obtained by deleting those rows numbered in « and those columns numbered
in 8. By definition

pitery= (") % perslels) + erlels).

@,B€Qrn
A result needed is the expansion

r

(3) per(C+D)= ) ;k per (C(v(8)) per (D[v8]),

k=0 v,5€Q
for any » X r matrices C and D (see e.g. [2]). Placing C = B[«|8] and D =
cT[a|B] in (3);
(4) E per (Blx|8] + cT'[«[8])

T

= ;} 7,%," ck per(B[al,B] (7]6))E per(r‘[alﬁ][.y,a])

r

= > Fper(Bla — v|8 — §])E per (T[ys]).

k=0 7v,0€Qkr

Summation in (4) is taken over vy C «, § C 8.

E per(Tlrlo]) = ()™ 3 per(@ihrla)
(1) > per(Ulyla)
- (7)7 = percanrion,

0€Qkn

because there are k!(n — k)! permutations of the rows (columns) of I which
leave per (I[y|6]) unaltered.

E per (T[v[8]) = Pi(1),
since it does not depend on v, § € Q.. For a fixed 6 € Q¢_yy, there are
(n - <l: - k)) pairs (a, v), @ € Qmy ¥ € Qiny v C a for which & — v = 6.
Averaging over «, 8 € Q,, in (4),

EPr(B + Cr)

L N G s LN PO

2' ( ; )2c"P,_k (B)P,(I).

k=0
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THEOREM 1.

() EP,(Q) =r! > (P DB G ™ ™,

1 rat b Tm=T
where ngy =nn —1)...(n —k 4+ 1).
Proof.
©) E@.@)ITy...,Tn)
= > /rd e )P Pr(Ded™ et
ri1+rot.. . Ari=r
‘Pl 4 ...+ cal),
t=1,2,...,m, will be proved by induction; then it follows that
(7) EP,(Q) = EE(P,(2)|T)
= > /e )P (D) o P (Ded™ ™,

T1+724 ot TI=T
If ¢t = 1, (6) is trivially true, assume it true for¢t =1,2,...,q.
(8) E(P,(Q)lrﬁ_], DR Pm)
=EE®E Ty ., )| Tes1, .-, Tw)
= > Vel ) PA D) o Py (D)er™ e

T14+72+4 .. A Tq=T
cEP, (el + oo F ) Torty - oy T
Using Lemma 1 with B = ¢;41T'g41 + ... + culpand T = T,

©9) E@rle+ ...+ cnlw)|Torryeees Tw)

Tq 2
= Z (2) qupk(I)Prq_k(Cq+1Pq+1 + e + le-‘m).

k=0

Substituting (9) in (8) completes the induction proof.
—1
P.(I) = (7) can be calculated by a combinatorial argument or by com-

paring the expansion obtained from (3);

n

per(zgl + J) = > (:‘)22'P,(I)(n — )

=0

with the known expansion [2]

per(zI + J) = nl 3, 2/,
7=0
where J = (1).
—1
Placing P,(I) = (f) in (7) completes the proof.
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COROLLARY 1.

(r/n YA+ (20 ¢)dr(r — 1)/n) < EP,(Q) < (r!/n")
X (14 (X et P (r — 1)),
Proof.

1—1

ny t=mn"t H1 (1—g/n)"
s

—1
> n_’(l + 21 g/n)
n (14 3@ — 1)/n), so
(10) ney e ne > HT A+ Y i — 1) /n).

Il

—1

wo™ <otexp( S (= gy a)

q=1
—1
< n"exp( > (1= (n— 1)/”)_19/”)
g=1
=n"'exp(3t(t — 1)), so
(A1) mey e <uTTexp(3 2 ri(ri — 1))
<n A4 32 rilri— D exp(rr — 1))).
Using the inequalities (10) and (11) in (5) and noting that

@/l o) e — D™ o™ = (e — 1) > ¢

71472+ o F =1

completes the proof.
Corollary 1 compares EP,(Q) with P,(J,); > c:?is a measure of the variation
of @ from J,. If ||4]| = (Xa:2)'"? for any matrix 4; then

var. ||@ — J,||* = X var. wy
7]
=2 2 ¢ var.vy
17 q
=K Z qu’
q

where K is a positive constant.

COROLLARY 2. If @, Qo, . . . is a sequence of random doubly stochastic matrices
such that var. ||Q; — J,||2 > 0as i — 0, then EP,(Q,) = r!/n" as i — o0,

Actually Corollary 2 is a very weak result, if var. ||, — J,||2 > 0as¢ — o0 ;
then the sequence Qi, @, ... converges in probability to J, and P,(Q;) con-
verges in probability to 7!/n".
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CoRrROLLARY 3. If Wy, W, ..., W, are mutually independent, identically
distributed random variables with a common probability density function

(n) e, w > 0,

and U 1s a random variable, independent of Wy, Ws, . .., W, with a probability
density function

e, u >0,
and
V=>cWi,
then
EP,(Q) = E(UV)", r=0,1,...,n.
Proof.
EWWUV)’
=EU > @rd o™ G EWT L LEW,TT

T1+7re+. . rm=1r

T1 T -1 —1
=7l > b Dad™ o Gy e B
T1+724. . FTm=r

= EP,(@).

CorOLLARY 4. {(n"/rDEP.(Q)}'" is a strictly increasing function of
r=1,...,n

Proof. Using Holder’s inequality,
(n/rHEP,.(Q) = EV'l
< {EVTU—H)/T}7/(r+1){E1}1/(r+l)
= {(™/(r + 1DHEP 1 (@)} /0D,

where V is defined in Corollary 2.

COROLLARY 5. EP,(Q(€)) isa strictly convex function of ¢, that is, if 0 < X\ < 1
and ¢y # Co, then

EP, Q1 + (1 — N)é2)) < NEP,(Q(61)) + (1 — MEP,(2(22)),
r=2,3,...,n.

Proof. E(3_c:W=1)"is a strictly convex function of ¢, where Wy, Wa, ..., W,
are defined in Corollary 3.
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COROLLARY 6. If @y and Qs are independent and 0 < \ < 1, then
EP,(\2 + (1 — N)Q2) < AEP,. (@) + (1 — NEP,(Q),
r=23,...,n.
Proof. Represent
Q =aiTy 4 ... 44Ty Q=0T + ... + b, Tprys

where T'y, Ty, ..., I')y, are mutually independent. Corollary 6 is a particular
case of Corollary 5 where m = p + g,

¢1 = (@, a2, . ..,05,0,...,0)and ¢y = (0,...,0,01,02,...,b,).
COROLLARY 7. If @ = m~1 Y7 T';, then
EP,@) < EP,(Q), r=2,3,....,n,
with equality if and only if @ = Q.

Proof. Denote by ¢y, . . . , ¢,! vectors formed from the different permutations
of elements from ¢, and e = (m™, ..., m™1).
é = (m!)—lz Ei)

so from Corollary 5,

EP,(@) < (m!)' X EP,(Q(c:))

= EP,(Q).
The inequality is strict unless ¢; = e for « =1, 2, ..., m!, in which case
Q= Q.
CoROLLARY 8. EP,(Q) is a strictly decreasing function of m, r =2, 3,..., n.

Proof. Denote by f; the vector with kth element (1 — 8,,)/(m — 1), whered ; is
the Kronecker delta. Since ¢ = m~! ) f;, Corollary 8 follows from Corollary 5.

3. A limit theorem. The multivariate central limit theorem gives that as
m — o0, m/2(Q — J,) converges in probability law to a matrix of normal ran-
dom variables; this is used to prove a limit theorem for {m(P,(Q) — r!/n");
r=23,...,n}. Dgi will denote convergence in probability law.

THEOREM 2.

(m(P, Q) —rl/n") ;r=2,3,...,n)
’Z» {%(n — 1) — 2)) (;)2(3)_2X;r =23,... ,n} ,

where X has a chi-squared distribution with (n — 1)? degrees of freedom.
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Proof. Using the expansion (3),
P,@)

rl/n" + (;)2(7' — D2 Py @ — T,)

+ 3 (1) P@ - 2pe,

k=3

By the multivariate central limit theorem

where A is a matrix of normal random variables. Since

mP(Q — J,,)"?io, E> 2,
it suffices to show

—2

mPy@ — TS 1w — 1) (’;) X.
Py(Q@ — T, = %(Z) —2||§2 — J,||? (the calculation is omitted), so
_ —2
@ — 1y (1) 1l

2

To calculate the distribution of ||A||? the covariance matrix of A needs to be
found. The product of two different elements from Q; is zero if they are in the
same row or column, or 1 for (n — 2)! values of ¢ otherwise; which gives

E’Y“’st = (1 _— 51,) (1 — Bjs) (n - 2)!/”! + 6175]‘3/”.
covariance (A, Ars) = covariance (yij, Vrs)

= —1)10@s — 1/n) (65 — 1/n).
A representation of A is given by
(12) Ars = (n - 1)_i Z:z 22 hrﬁhsq¢@—1)(q—l)1
=t =
where ® is an (# — 1) X (# — 1) matrix of normal random variables with
zero means and an identity covariance matrix, and H is an #» X » orthogonal

matrix with k; = n~1/2. To prove (12) only the covariance matrix needs to be
checked. ||A||z2 = (» — 1)71|®||?, which is distributed as (» — 1)71X.
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