ON THE DIVISIBILITY OF $r_{2}(n)$

by E. J. SCOURFIELD

(Received 13 October, 1975; revised 21 November, 1975)
During the past few years, some papers of P. Deligne and J.-P. Serre (see [2], [9], [10] and other references cited there) have included an investigation of certain properties of coefficients of modular forms, and in particular Serre [10] (see also [11]) obtained the divisibility property (1) below. Let

$$
f(z)=\sum_{n=0}^{\infty} c_{n} e^{2 \pi i n z / M} \quad(M \geqq 1)
$$

be a modular form of integral weight $k \geqq 1$ on a congruence subgroup of $S L_{2}(Z)$, and suppose that each c_{n} belongs to the ring R_{K} of integers of an algebraic number field K finite over Q. For $c \in R_{R}$ and $m \geqq 1$ an integer, write $c \equiv 0(\bmod m)$ if $c \in m R_{K}$ and $c \not \equiv 0(\bmod m)$ otherwise. Then Serre showed that there exists $\alpha>0$ such that

$$
\begin{equation*}
N\left(n \leqq x: c_{n} \not \equiv 0(\bmod m)\right)=O\left(x(\log x)^{-a}\right) \tag{1}
\end{equation*}
$$

as $x \rightarrow \infty$, where throughout this note $N(n \leqq x: P)$ denotes the number of positive integers $n \leqq x$ with the property P.

We shall refer below to three special cases of (1):
(i) $c_{n}=\tau(n) \quad$ (Ramanujan's function),
the coefficient in the expansion of

$$
\Delta=e^{2 \pi i z} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)^{24}
$$

(ii) $c_{n}=\sigma_{2 k-1}(n)=\sum_{d \mid n} d^{2 k-1}$,
the coefficient in the Eisenstein series of weight $2 k \geqq 4$;
(iii) $c_{n}=r_{2 k}(n) \quad$ (=the number of representations of n as a sum of $2 k$ integer squares) the coefficient obtained from the $2 k$-th power of the well-known theta function and thus from a modular form of weight k.

For (ii) above, a more precise conclusion than (1) is a corollary of a general result in our earlier paper [8]. The proofs in [8] and related papers [3], [4] by W. Narkiewicz depend largely on elementary and classical analytic number theoretic arguments (including an application of a tauberian theorem of Delange [1]), in contrast to the deep algebraical arguments employed by Deligne and Serre in their far-ranging papers. The overlap in some instances of the results in [10] and [8] provides one of the motives for writing this note, the main purpose of which is to describe the result obtained by the method of [8] in the case $k=1$ of (iii) above. The problem of characterizing in some way the divisibility properties of such a well-known function as $r_{2}(n)$ is of intrinsic interest, and in the theorem below we give asymptotic formulae for the properties $d \| r_{2}(n)$ and $d \nmid r_{2}(n)$ (where $d \| m$ means that $d \mid m$ but $(d, m / d)=1)$.

Glasgow Math. J. 18 (1977) 109-111.

First we recall the origins of the problem. In [12], G. N. Watson proved that for each positive integer d and odd v,

$$
\begin{equation*}
N\left(n \leqq x: d \nmid \sigma_{v}(n)\right)=O\left(x(\log x)^{-1 / \phi(d)}\right) \tag{2}
\end{equation*}
$$

as $x \rightarrow \infty$ (thus establishing (1) in case (ii)). Hence, using the congruence

$$
\tau(n) \equiv \sigma_{11}(n) \quad(\bmod 691)
$$

he deduced that $\tau(n)$ is almost always divisible by 691 , as had been conjectured by Ramanujan. Improvements in (2), leading to an asymptotic formula for both odd and even ν, were obtained by R. A. Rankin in [5] for d prime and certain other d, and by this author in [6] and [8] for all the remaining d. From these asymptotic formulae, one could deduce results about the divisibility of $\tau(n)$ or $r_{2 k}(n)$ in the few cases when these are related to some divisor function $\sigma_{v}(n)$ by a congruence or a simple expression.

The main results in [3], [4], [8] concern elements of a general class \mathscr{C} of integer-valued multiplicative functions that consists of those functions f for which there exists a polynomial W with integer coefficients such that

$$
\begin{equation*}
f(p)=W(p) \quad \text { for all primes } p \tag{3}
\end{equation*}
$$

f is then said to be polynomial-like. Euler's function ϕ and the divisor functions

$$
\sigma_{v} \quad(v=0,1,2, \ldots)
$$

belong to \mathscr{C}. W. Narkiewicz [3], [4] and this author [6], [7], [8] obtained asymptotic formulae for the divisibility properties $d \| f(n)$ and $d \chi f(n)$ for $f \in \mathscr{C}$. Also in [8; Theorem 4], we showed that $d \mid f(n)$ for almost all n for any $f \in \mathscr{C}$ for which, to each prime $p \mid d$, there exists x with $p \nmid x, p \mid W(x)$. When this latter condition fails to hold, the density of the set $\{n: d \mid f(n)\}$ (when it is non-empty) lies strictly between 0 and 1.

In [7] and [8; §8], the coefficients of W in (3) were allowed to depend on the value of $p(\bmod Q)$ for some fixed integer $Q>1$; thus W was really replaced by Q polynomials, one for each residue class $(\bmod Q)$. In particular we considered the divisibility of

$$
\begin{equation*}
\sigma_{v}(n, \chi)=\sum_{k \nmid n} \chi(k) k^{v}, \tag{4}
\end{equation*}
$$

where χ is a real non-principal character $(\bmod Q)$ and v is a positive integer, and from [8; Theorem 5] it follows that for most $\chi, d \mid \sigma_{\nu}(n, \chi)$ for almost all n.

The case $v=0$ in (4) gives rise to an important application, namely $k=1$ in (iii) above, which was not discussed in [7] or [8]; for if χ denotes the real non-principal character (mod 4$)$,

$$
r_{2}(n)=4 \sum_{k \nmid n} \chi(k)=4 \sigma_{0}(n, \chi)
$$

The following results hold:
Theorem. (i) As $x \rightarrow \infty$,

$$
N\left(n \leqq x: d \| r_{2}(n)\right) \sim\left\{\begin{array}{l}
B x(\log x)^{-\frac{1}{2}} \quad \text { if } d \text { is odd } \\
B x(\log \log x)^{a-3}(\log x)^{-1} \quad \text { if } \quad 2^{a} \| d, a \geqq 3,
\end{array}\right.
$$

where B denotes a positive constant depending on d.
(ii) If d has an odd prime divisor, then as $x \rightarrow \infty$,

$$
N\left(n \leqq x: d \nmid r_{2}(n)\right) \sim C x(\log x)^{-\frac{1}{2}},
$$

and

$$
0<\lim _{x \rightarrow \infty}\left\{N\left(n \leqq x: d \nmid r_{2}(n)\right) / N\left(n \leqq x: r_{2}(n) \neq 0\right)\right\}<1 .
$$

If $a \geqq 4$, then as $x \rightarrow \infty$,

$$
N\left(n \leqq x: 2^{a} \nmid r_{2}(n)\right) \sim C x(\log \log x)^{a-4}(\log x)^{-1}
$$

and

$$
N\left(n \leqq x: 8 \nmid r_{2}(n)\right)=O\left(x^{\frac{1}{2}}\right) .
$$

C denotes a positive constant depending on d or 2^{a}.
Part (ii) gives a result that is more precise than is (1) in the case $c_{n}=r_{2}(n)$. Part (i) of this Theorem comes from the generalization of Narkiewicz's result [4; Theorem 1], or see [8; Theorem 2], described in [8; §8], and part (ii) is deduced from this by applying the method of [8], in particular that of $\S 5$ and $\S 8$; the detailed argument is routine, and so we shall not give it here.

Finally we remark that the corresponding results for the function $\sigma_{0}(n, \chi)$ for any real non-principal character $\chi(\bmod Q)$ and any $Q>1$ are simply those obtained by replacing $r_{2}(n)$ by $4 \sigma_{0}(n, \chi)$ in the statement of the Theorem, but the constants B, C will then depend on χ also.

REFERENCES

1. H. Delange, Généralisation du théorème de Ikehara, Ann. Sci. École Norm. Sup. (3) 71 (1954), 213-242.
2. P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507-530.
3. W. Narkiewicz, Divisibility properties of a class of multiplicative functions, Colloq. Math. 18 (1967), 219-232.
4. W. Narkiewicz, Divisibility properties of some multiplicative functions, Number Theory (Colloq. Math. Soc. János Bolyai 2, Debrecen, 1968) (North-Holland, 1970), 147-159.
5. R. A. Rankin, The divisibility of divisor functions, Proc. Glasgow Math. Assoc. 5(1961), 35-40.
6. E. J. Scourfield, On the divisibility of $\sigma_{v}(n)$, Acta Arith. 10 (1964), 245-285.
7. E. J. Scourfield, On the divisibility of a modified divisor function, Proc. London Math. Soc. (3) 21 (1970), 145-159.
8. E. J. Scourfield, Non-divisibility of some multiplicative functions, Acta Arith. 22 (1973), 287-314.
9. J.-P. Serre, Congruences et formes modulaires, Séminaire Bourbaki (1971/72) exposé 416, Lecture Notes in Mathematics 317 (Springer-Verlag, 1973), 319-338.
10. J.-P. Serre, Divisibilité des coefficients des formes modulaires de poids entier, C.R. Acad. Sc. Paris Sér. A 279 (1974), 679-682.
11. J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Séminaire Delange-Pisot-Poitou (Théorie des nombres), 16e année (1974/75) exposé $20,28 \mathrm{p}$.
12. G. N. Watson, Uber Ramanujansche Kongruenzeigenschaften der Zerfällungsanzahlen (I), Math. Z. 39 (1935), 712-731.
Department of Mathematics
Westrield College
London NW3 7ST
