
J. Austral. Math. Soc. (Series A) 26 (1978), 220-226

ON KY FAN'S MINIMAX PRINCIPLE

E. TARAFDAR and H. B. THOMPSON

(Received 23 January; revised 9 April 1977)

Communicated by N. Smythe

Abstract

A generalized version of the Knaster-Kuratowski-Mazurkiewicz theorem is obtained and
used to generalize Ky Fan's minimax principle. This result is applied to a variational inequality.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 47H05, secondary 47H10.

1. Introduction

In Ky Fan (1972) Ky Fan has proved a minimax principle by using his
own generalized version (Ky Fan (1961)) of Knaster - Kuratowski - Mazur-
kiewicz's theorem. In a joint paper Brezis, Nirenberg, and Stampacchia (1972)
have given a further extension of Knaster-Kuratowski-Mazurkiewicz's
theorem and applied this extended theorem to a number of problems
including a generalized Ky Fan's minimax principle. In this note we have
obtained a result which is analogous to the extended Knaster-Kuratowski-
Mazurkiewicz theorem of Brezis-Nirenberg-Stampacchia. Using our result
we have proved a Ky Fan's minimax principle which includes the correspond-
ing theorem of Brezis-Nirenberg-Stampacchia. We have also shown that our
result is also applicable to the types of problems considered in Brezis,
Nirenberg, and Stampacchia (1972). Our approach is via a simple fixed point
theorem of Browder (1968) and is different from that in Brezis, Nirenberg,
and Stampacchia (1972) and Ky Fan (1972).

The authors wish to thank Professor R. Vyborny for suggesting the topic.

In the sequel, E will denote a Hausdorff topological vector space. For
any finite subset {xi, x2, • • •, xn} of E, (xu x2, • • •, xn) will denote the convex
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hull of {*,, x2, •••, *„}• We first consider the following lemma (see Brezis,
Nirenberg, and Stampacchia (1972), p. 2).

LEMMA 2.1. Let X be a nonempty subset of E. To each x E X, let a
nonempty subset F(x) of E be given such that

(i) F(x0) = L is compact for some x0 E X;
(ii) the convex hull of every finite subset {xu x2, • • •, xn} of X is contained

in the corresponding union U T - I F(*<);
(iii) for each x £ X, the intersection of F(x) with any finite dimensional

subspace is closed;
(iv) for every convex subset D of E the following equality holds

F(x))nD = ( n F(x))nD.

Then n,exF(x)/4>.
The above lemma is a slight generalization of Ky Fan's generalization (see Ky
Fan (1961) Lemma 1, p. 305) of the well known classical finite dimensional
result of Knaster-Kuratowski-Mazurkiewicz (1929).

To obtain our lemma we shall use the following fixed point theorem of
Browder (1968), Theorem 1, p. 285.

THEOREM 2.1. (Browder). Let Kbe a compact convex subset ofE. Let Tbe
a multi-valued mapping of K into 2K such that

(i) for each x £ K, T(x) is a nonempty convex subset of K;
(ii) for each x £ K, T~\x) = {y E K : x E T(y)} is open in K.

Then there is a point x0E.K such that x0£ T(x0).
We now prove the following preliminary lemma.

LEMMA 2.2. Let X be a nonempty subset of E. To each x £ X, let a
nonempty set F(x) of E be given such that

(a) x £ F(x) for each x £ F(x);
(b) F(x0) is compact for some x0 E X;
(c) for each finite subset {xu x2, • • •, xn} of X and each x £ Sn =

(xi, x2, • • •, xn> = the convex hull of {xi, x2, •••, xn}, the set A(x) =
{y £ Sn n X : i ^ F ( y ) } has the property that whenever A(x) is nonempty, it
contains a nonempty convex subset H(x) such that the set P(x) =
{y£Sn:x£H(y)} is closed;

(d) F(x0) n F(x) is closed for each x E C.
Then DiexF(x)/ct>.

PROOF. In view of (b) and (d) it suffices to prove that f)?-i F(x{)^ <f> for
each finite subset {xi, x2, • • •, xn} of X. On the contrary we suppose that for
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some finite subset {x,, x2, • • •, xk} of X we have C\Ui F(xf) = <l>. Then for each
x G Sk = (x,,x2, •• •,**) the set A(x) = {y G Sk D X :x0. F(y)} is nonempty.
Indeed, at least one of the points xt, i = 1,2,•••,k must be in A(x), for
otherwise n,fc

=,F(Xj) would be nonempty. We now define a multi-valued
mapping T:Sk^>2s" by T(x) = H(x),x ESk; T is well defined by virtue of
(c). Now for each x E Sk, T'\x) = {y G Sk: x E T(y)} = {y G St : x £ H(y)} =
complement of P(x) in SK which is an open set in Sk by condition (c) (P(x)
being closed in Sk). Hence by the fixed point theorem of Bruwder there is a
point x0 G St such that x0 G T(x0). But then by definition of T(x0) we have
x o £ F ( x o ) which contradicts (a). Thus D ^ , F(xt)/ <j>.

We are now in a position to prove our main lemma.

LEMMA 2.3. Let X be a nonempty subset of E. To each x G X, let a
nonempty subset F(x) of E be given such that

(a) x e F(x) for each x&X;

(|8) F(JCO) = L is compact for some x0G X;
(y) for each finite subset {xi, x2, • • •, xn} of X and each x G Sn =

(xu x2, • • •, xn) the set A(x) = {y G Sn D X :x^ F(y)} has the same property as
laid down in (c) of Lemma 2.2.

(S) for each x E. X, the intersection of F(x) with any finite dimensional
subspace is closed;

(<u) the Brezis-Nirenberg-Stampacchia condition holds, that is, for every
convex subset D of E we have (nxSXnDF(x)) D D = ( D ^ X . - . D F(X)) n D.

Then nxexF(x)/ct>

PROOF. We may assume xo = 0. Let (E;)jlE/ be the class of all finite
dimensional subspaces of E ordered by inclusion i.e. i^j means E, CEt.
Restricting to Et the conditions of Lemma 2.2 apply to Xt = X C\ Et and
Fj(x) = F(x) D E,. Clearly (a) and (c) are satisfied and (b) and (d) follow from
()3) and (8). By Lemma 2.2 there is u, EL L f) Et satisfying

Ui E Fi(x)CF(x) forevery x G X , .

We now repeat the argument of Brezis, Nirenberg, and Stampacchia (1972).
Let & = U;B,{wy} and so u E F(z) for u E fa and z Ext and hence <f>, C

ru.F(z).
Suppose x E Pi j e j <f>,—which is non-empty since faCL is compact and let

i0 be such that x E £»,. For any x G X we can find i g i0 such that x G fi.
We have

i ' 6 * n E , C f Pi F(z)) r\E,= Pi F{z)

by (&>). Therefore x G Fi(x)CF(x) and consequently x E C\xexF(x).
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3. Comparison between Lemma 2.1 and Lemma 2.3

(A). / / condition (y) of Lemma 2.3 is strengthened to the condition:
(y)' for each x G Sn = (xi,x2, • • -,xn) the set A(x) =

{y E. Sn C\ X : x £ F(y)} is convex, then Lemma 2.3 follows from Lemma 2.1.
To show this, it is enough to show that (y)' implies condition (ii) of

Lemma 2.1. Let (a) hold and {xi, x2, • • •, xn} be any finite subset of X. Suppose
(ii) fails and Sn = (xu x2, • • •, xn)£ Ur=i F(xt). Then there is x E Sn with
x^Ur=iF(xf), x =Xr=iA,x,, A, SO, and 2?=, Af = 1. Since x£F(x,), x, £
A(x) for all i = 1,2, • • •, n, and hence x = S,"=i AjX; E A(x) by (y)'. This means
that x£F(x) contradicting (a). Thus (ii) of Lemma 2.1 and Lemma 23
follows from Lemma 2.1.

REMARK. It is interesting to note that in this case we can take
H(x) = A(x) for each x G X since P(x) = { y £ S » : j ^ H ( y ) = A(y)} =
{y £ Sn :x£ F(y)} is automatically closed by (6).

(B). Lemma 2.1 applies to the following example although Lemma 2.3
does nor app/y.

Let E be the plane R\ S = {(u,v)E R2: - 1 g u,t> g 1}, and X =
{(M, I ; )ES : |M | = | I ; | = 1}. For x=(i,j)eX set F( i ) = {(u,i))EK2;0g
iu,yu S 1}. Clearly Lemma 2.1 applies and by inspection C\x<£XF(x) = {0,0)}.
That Lemma 2.3 does not apply can be seen as follows. For x in S let
A ( x ) = { y £ S n X : x 0 ( y ) } so that for x/(O,O),A(x) is a non-empty
subset of X. Let H(x) be a non-empty convex subset of A{x) for x^ (0,0).
Suppose H'\x) = {y GS:x G H(yj} is open in S for all x in S. Now H"'(x)is
empty for x not in X and since H(x) is a single element for x^(0,0)
non-empty H\x) are disjoint. Now U«exW"1(^)= S -{(0,0)} is connected
which is a contradiction.

(C). Lemma 2.3 applies to the following example although Lemma 2.1
does not apply.

Let E be the reals, F ( - 3) = {x G R : - 3 g x g - 2 or | x | g l } and
F(3) = {x E R : 2 g x S 3 or | x | g 1}. Clearly Lemma 2.1 does not apply since
[-3,3] is not a subset of F(3)U F( -3 ) . Now Lemma 2.3 applies since for x in
[-3,3],A(x) = {y G[-3,3] n {-3,3}:x^ F(y)} and we may choose

3 ' for x>\
3, for x < - 1.

Then H(x) is a convex subset of A(x) and H~x(x) is open in [-3,3]. The
other conditions of Lemma 2.3 are clearly satisfied.
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4. Applications

THEOREM 4.1. (Minimax priciple). Let K be a non-empty convex subset of
E and f(x, y) be a real valued function defined on K x K such that

(i) f(x,x)^0 for each xGK;
(ii) for each finite subset {xt, x2, • • •, xn} of K and i £ S , = (xu x2, • • •, xn)

the set A (x) = {y E Sn: f(x, y) > 0} if non-empty contains a non-empty convex
subset H(x) such that the set

is closed;
(iii) for each y E K,f(x,y) is a lower semicontinuous function of x on the

intersection of K with any finite dimensional subspace of E;
(iv) there is a compact subset L of E and y0 E L (1 K such that f(x, y0) > 0

for x &K,xgL;
(v) whenever x, y £ K and xa is a net on K converging to x, then

f(xa, (1 - t)x + ty) g 0 for every t £ [0,1] implies f(x, y) ^ 0.
Then there is a point x0 £ L D K such that

f(xo,y)S0 for all y<EK.

In particular, InfieK supyeK/(x,y) = 0.

PROOF. For each z £ K we set

For each finite subset {*i, x2, • • •, xn] of K and x £ Sn = (xu x2, • • •, xn) the set
A(jc) = {y GSn:x£F(y)} = {y E Sn :/(x,y)>0} has the property (y) of
Lemma 2.3 by (ii). While (a), (5) and (o>) of Lemma 2.3 follow from (i), (iii)
and (v) respectively (to see that (v) implies (w) we refer to proof of application
2, Brezis, Nirenberg, and Stampacchia (1972), p. 4. Finally by (iv), F(y0) is
compact and hence we have (/3) of Lemma 2.3. Thus by Lemma 2.3 there is a
point Xo £ L n K such that

*„£ H F(x), that is, f(xo,y)S0 for all y £ K.

We note that x0 £ L by virtue of (iv).

COROLLARY 4.1. (Brezis Nirenberg and Stampacchia (1972)). Let K be a
non-empty convex subset of E and f(x, y) be a real valued function defined on
K X K SUCh that

(i)' f(x,x)SO for each xGK;
(ii)' for every x E K, the set {y£K :f(x,y)>0} is convex;
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(iii)' the condition (iii) of Theorem 3.1 holds;
(iv)' the condition (iv) of Theorem 3.1 holds;
(v)' the condition (v) of Theorem 3.1 holds.

Then there exists a point x0 G L C\ K such that

f(xo,y)£0 for all y G K

PROOF. AS before we set

F(z) = {x 6 K : / ( J C , Z ) S 0 } for each z £ K

The set A'(x) = {y G K :f(x,y)>0} is convex by (ii)'. Hence for any finite
subset {xi, x2, •••, xn} of K and x G Sn = (xi, x2, •• •, xn) the set A(x) =
{y G Sn :/(x, y )>0} is convex. Now we choose H(x) = A(x) for each x £ K
The set P(x) ~ {y G Sn :x G H(y)} is closed by (iii)' because of the reason
given in the remark following (A). Thus the conclusion of the corollary follows
from the Theorem 4.1.

COROLLARY 4.2. (Ky Fan (1972)). Let K be a non-empty compact convex
subset of E andf(x,y) be a real valued function defined on K x K such that

(0) f(x,x) g 0 for each xGK;
(00) for each x G K, the set {y : f(x, y) > 0} is convex;
(000) for each y £ K, f(x, y) is a lower semicontinuous function of x on K.

Then there is a point x0G K such that f(xo,y)^0 for all y G K.

PROOF. This follows from Corollary 4.1.
Let E be Hausdorff topological vectors space over the reals and K be a

subset of E. Then a mapping A of K into E* is called pseudomonotone if,
whenever xa is a net in K converging to x with lim sup(Axa, xa - x) § 0 then
Iiminf(v4xo, xa - y ) g (Ax,x - y). Here (.,.) denotes the pairing between E*
and £.

COROLLARY 4.3. (Brezis (1968), Corollary 29). Let K be convex subset of
E {over reals) and let f(x,y)= (Ax,x - y)+ <f>(x)~ <f>(y) where A is a
pseudo-monotone mapping from K into E* and <t> is a lower semicontinuous
convex function. In addition we assume that A is continuous from any finite
dimensional subspace of E to the weak topology of E* and condition (iv)' of
Corollary 4.1 holds. Then there exists i o 6 L D K such that (Ax0,xo-y) +

= 0 for all y G K

PROOF. The conditions (i)', (ii)', and (iii)' of Corollary 4.1 follow im-
mediately. To verify that (v)' holds, see the proof of application 3, Brezis,
Nirenberg, and Stampacchia (1972), p. 5.
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