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INTRODUCTION 

Upcoming missions to the outer planets have made evident the need 
for better theories of their satellites. We have been involved in an 
effort to provide better satellite theories through new observations 
(Abbot, Mulholland and Shelus 1975; Mulholland, Shelus and Abbot 1976; 
Mulholland and Shelus 1977; and Benedict, Shelus and Mulholland 1978), 
and new analytical theories (Jefferys and Ries 1975; Jefferys 1976, 
Hereinafter these are denoted Paper I and Paper II, respectively). In 
this paper we report on our incorporation of new and old observations 
into our theories, and on our progress on the theoretical front. 

REVIEW OF EARLIER WORK 

Our goals for the theoretical work have been to calculate new 
analytical theories for the three resonant pairs in Saturn's system: 
Enceladus-Dione, Titan-Hyperion and Mimas-Tethys, using the same soft­
ware for all theories. We are attempting to calculate all terms down 
to the level of a few kilometers—potentially observable from space, 
and a great improvement in the accuracy of currently used theories 
(Struve 1930, 1933; Woltjer 1928). For example, observations of the 
satellites of Saturn with the Space Telescope can be expected to have 
errors of under 10 km. 

We have employed the algebraic manipulation language TRIGMAN 
(Jefferys 1970, 1972) to calculate our theories, using the canonically 
invariant Hori-Lie theory (Hori 1966) in noncanonical variables. Be­
cause of the advantages of the Hori-Lie theory, it is possible to 
calculate the perturbations in any desired quantity (e.g., longitude, 
latitude, radius vector) directly, and it is not necessary to employ 
canonical variables, as long as routines for calculating Poisson 
brackets are available. 

Because the theories are being developed automatically, they will 
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be made available in the form of Fortran subroutines for direct calcu­
lation of the perturbations (and their partial derivatives) by 
machine. Since the constants of integration appear in literal form, it 
can be expected that the theories will be useful for a substantial 
period of time. 

As explained in Paper I, we have developed the Hamiltonian in the 
variables 

a = a + f AA A 
e = e + f£E (1) 
i = i + f I 

where a, e, i are nominal values of the semimajor axis, eccentricity 
and inclination, respectively; f^, fg, f-j- are numerical factors for 
controlling truncation; and A, E and I are the variables carried in 
the series expansions. Similar expressions involving truncation 
factors are used to express other quantities, e.g., the satellite mass­
es and the dynamical form factors of Saturn. 

By making use of the relations between the Delaunay variables and 
the usual elliptic variables, one can easily write down expressions for 
the partials of the variables A, E, and I with respect to the Delaunay 
variables, and hence of the Poisson bracket of any two functions 
expressed in terms of A, E, I and the Delaunay angles. 

NEW THEORETICAL WORK 

In Paper I a two-step method of eliminating first short-period 
and then long-period (i.e., resonant) arguments was described. 
Paper II showed how the elimination of the resonant arguments could 
be simplified by the introduction of a novel set of arguments, at the 
cost of an increase in the number of degrees of freedom of the system. 
This new set of arguments makes possible the treatment of the resonance 
completely independently of all other variables, and does not require 
the introduction of unnatural and awkward combinations of variables. 

Our most recent work has simplified this procedure even more. The 
substitution of variables given in Paper II, in fact, can be made at 
any time, even prior to the elimination of the short-period terms. 
(Indeed, if there are two resonances, the same transformation can be 
applied to each, increasing the number of degrees of freedom by two. 
Under certain circumstances, such as small oscillations, the resulting 
equations can be solved. This approach may well provide a method for 
handling two simultaneous critical arguments under some circumstances). 
As a result, we have elected to make this transformation at the outset, 
and to eliminate both short and long with a single canonical transfor­
mation. 
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It has also become evident, since the publications of Papers I 
and II, that there are important terms at the 1-100 km level in the 
theories of these satellites when second order terms are computed. 
For example, the combination of the critical argument with short-
periodic terms in the oblateness will, in the second-order theory of 
Enceladus and Dione produce terms in (£ ± q), where q is the libration 
of the critical argument, having amplitudes of nearly 100 kilometers 
(about 0V01 when observed from Earth). In addition, there are signifi­
cant terms in the mean motions, such as those found by Kozai (1957), 
although whether they appear in first or second order depends upon how 
the calculation is done. 

The theory of Mimas-Tethys, which we have computed in nearly final 
form (except for a few terms arising from the resonance) provides yet 
another reason to go to higher than the first order. In this resonant 
pair, the libration argument is quite large (amounting to over 43° in 
the case of Mimas1 longitude). This in turn means that the small-
oscillation approximation which could be applied for Enceladus and 
Dione is no longer valid. Other workers (e.g. Kozai 1957) have used 
the exact solution in elliptic functions, but this has two drawbacks 
in the present theory; first, TRIGMAN being a Poisson series processor, 
there is no easy way to incorporate elliptic functions; moreover, the 
possibility of second-order contributions from other terms in combina­
tion with the libration needs to be taken into account'. 

Our approach has been to develop the solution of the large-ampli­
tude oscillation as a power series in the amplitude parameter, using 
the Hori-Lie method to obtain as many terms as are needed. According 
to the prescription of Paper II for handling the critical argument, the 
relevant part of the Hamiltonian is 

F = F + n 0 + ~ 0 2 - B cos 9, (2) 
o o z 

where nQ = 0 is the constraint imposed at the resonance by the 
procedure of Paper II, although the partials of n0 do not vanish; A 
and B are constants depending on the initial conditions; and (0,0) are 
canonically conjugate variables (0 being the libration argument). 

Expanding the cosine in powers of 0 yields in the lowest order a 
harmonic oscillator: 

F = F + n 0 - B + ~(A02 + B02) - ̂ 7 04 + ... .(3) o o z zq 

By the substitution of the canonical pair 

0 = (2py)1/2cos q, 6 = (2p/y)1/2sin q, (4) 
1/2 with y = (B/A) ' and 

» = (AB) 1 / 2 

q 
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this can be brought into the form 
1/2 1 2 F = F + n (2py) cos q - B + n (p - ̂ ZUP + • • • ) o o q -LOy 

2 1 1 
+Ap [~yy cos 2q - -rg co s 4q] + . . . 
1 2 By considering nq(p - -T-T~~ P + . ..) to be the zero-order Hamiltonian 

insofar as (p,q) are concerned, the Hori-Lie procedure allows the 
elimination of the variable q through the use of a determining 
function S(p,q,...)» where the ellipsis represents other variables. 

If we consider now the effect of the libration on the longitude, 
the leading term in S is found to be 

- ^ (2py)1/2sin q, 
q 

which contributes to the longitude (in first order) the term 

{£,S> = -(2py)1/2/n U , n } sin q q o 

= (2pY)±/Z/nq 3 ^ sin q 

Note that since n = 0 because of the constraint condition, other 
partials do not contribute. 

2 In second order, the elimination of terms involving p yields 
terms in S arising from the Poisson brackets of (2py)^'^cos q and 
(2py)l/2sin q with terms in 2q and 4q, which are of the form 

3/2 3/2 n p sin q and n p sin 3q. o ^ o 
These in turn give rise to terms in the longitude in q and in 3q, 
factored by p-*' . Similarly, the third order theory provides terms 
in q, 3q and 5q, factored by p ' , and so on. 

The theory of Mimas-Tethys is being extended to the level of 
accuracy which is the goal of this work. Judging by the ease with 
which the Enceladus-Dione programs were modified for the Mimas-Tethys 
case, we anticipate no great difficulties in this, nor in the extension 
to the Titan-Hyperion case. 

COMPARISON OF THEORY AND OBSERVATION 

We have applied our theory of Enceladus and Dione to the observa­
tions, including new observations made at McDonald Observatory over 
the past few years. Rather than to fit observations in each coordinate 
or quantity separately, we have attempted to make a single least-
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squares solution for all parameters. This has involved some difficul­
ties and delays, partly because of the treatment of the critical 
argument that is described in Paper II. In that method, the number of 
degrees of freedom in the problem is increased by one through the 
introduction of the variables (0,0), or equivalently, (p,q). This in 
turn means that two conditions of constraint must be imposed and con­
sistently applied throughout the solution. There are methods of 
applying such constraints which are particularly elegant from a mathe­
matical point of view (e.g., Brown, 1955). However, since these 
procedures were not available to us as programs, and other Least-Squares 
programs were available, it was decided to adapt the equations to the 
available programs rather than vice versa. In retrospect, this may 
not have been the best choice, although we have finally obtained 
satisfactory results. 

The values of the parameters obtained from the theory do not 
differ greatly from those of Kozai (1957), although we have chosen 
to work in the equatorial system of 1950.0 rather than Struve's 
ecliptic system of 1889.25. The advantages of the present theory, 
therefore, lie not so much in the improvements that can be obtained 
from groundbased observations, but rather on their potential for 
improvement from space observations. Nevertheless, we do find that the 
recent observations made at McDonald Observatory are quite good, yield­
ing mean residuals on the order of about 1 arcsecond or less in both 
right ascension and declination. The older observations are of vari­
able quality, some yielding residuals as much as 5-10 times as large. 
Others among the older observations are of excellent quality. 

We find for the forced librations of Enceladus and Dione the 
coefficients 12!18 and 0!66, respectively, and for the free librations 
15!54 and 0!84. The value of J2 that we obtain is +0.01666 ± 0.00001; 
however, we have not been able to solve for J4 separately, and have 
therefore adopted the value -0.001 in our solutions. 
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DISCUSSION 

Garfinkel: Does not your F , expanded in powers of the momentum 9, 
correspond to the Ideal Resonance Problem, rather than the 
Simple Pendulum? 

Jefferys: Yes, if we take into account the powers of 0 beyond the 
second. We have not done that in our first approximation. 
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