PROJECTIONS IN SPACES OF BIMEASURES

BY
COLIN C. GRAHAM ${ }^{1}$ AND BERTRAM M. SCHREIBER ${ }^{2}$

Abstract

Let X and Y be metrizable compact spaces and μ and ν be nonzero continuous measures on X and Y, respectively. Then there is no bounded operator from the space of bimeasures $B M(X, Y)$ onto the closed subspace of $B M(X, Y)$ generated by $L^{1}(\mu \times \nu)$; in particular, if X and Y are nondiscrete locally compact groups, then there is no bounded projection from $B M(X, Y)$ onto the closed subspace of $B M(X, Y)$ generated by $L^{1}(X \times Y)$.

0 . Introduction and Statement of Results. Let X, Y and Z be locally compact Hausdorff spaces. The space of bounded, regular Borel measures on X is denoted by $M(X)$. The tensor algebras $V_{0}(X, Y)$ and $V_{0}(X, Y, Z)$ are the respective closures,

$$
C_{0}(X) \hat{\otimes} C_{0}(Y) \quad \text { and } \quad C_{0}(X) \hat{\otimes} C_{0}(Y) \hat{\otimes} C_{0}(Z)
$$

in the greatest cross-norm (projective norm), of the tensor products of the indicated C_{0}-spaces. The space $B M(X, Y)$ of bimeasures on $X \times Y$ constitutes the dual space of $V_{0}(X, Y)$; the dual space of $V_{0}(X Y, Z)$ will be denoted by $B M(X, Y, Z)$ and its elements will be called trimeasures. Given a measure ω, we consistently identify $L^{1}(\omega)$ with the space of measures that are absolutely continuous with respect to ω. We denote Haar measure on the locally compact group G by m_{G}.

Let $\mathscr{L}^{\infty}(X), \mathscr{L}^{\infty}(Y)$, and $\mathscr{L}^{\infty}(Z)$ denote the Banach spaces of bounded, Borel-measurable functions on X, Y, and Z, respectively. Recall that there is a canonical extension of each bimeasure on $X \times Y$ to an element of $\left(\mathscr{L}^{\infty}(X) \hat{\otimes} \mathscr{L}^{\infty}(Y)\right)^{*}$. The extension is implemented as follows. For $u \in B M(X, Y)$, let $S_{u}: C_{0}(X) \rightarrow C_{0}(Y)^{*}$ be the operator given by

$$
\left\langle g, S_{u}(f)\right\rangle=u(f \otimes g), \quad f \in C_{0}(X), g \in C_{0}(Y)
$$

Thus $S_{u}^{* *}: C_{0}(X)^{* *} \rightarrow C_{0}(Y)^{* * *}$. For $\Phi \in C_{0}(X)^{* *}$ and $\Psi \in C_{0}(Y)^{* *}$, set

[^0]$$
u^{* *}(\Phi \otimes \Psi)=\left\langle\Psi, T_{u}^{* *}(\Phi)\right\rangle
$$

Then $\left\|u^{* *}\right\|=\|u\|$. Since we may consider $\mathscr{L}^{\infty}(X) \subset C_{0}(X)^{* *}$ and $\mathscr{L}^{\infty}(Y) \subset C_{0}(Y)^{* *}$, restricting $u^{* *}$ to the respective \mathscr{L}^{∞}-spaces and extending to the associated projective tensor products provides the desired extension, which we also denote by u. It is easy to check that if u is the bimeasure represented by integration with respect to a measure ω on $X \times Y$, then the extension of u to bounded, Borel-measurable functions is still represented by integration with respect to ω. Now if X and Y are locally compact abelian (LCA) groups with character groups \hat{X} and \hat{Y}, respectively, then for $u \in B M(X, Y)$ the Fourier transform of u is defined via the canonical extension by

$$
\hat{u}(\chi, \eta)=u(\chi \otimes \eta), \quad \chi \in \hat{X}, \eta \in \hat{Y}
$$

For background on tensor algebras, see [3, Chap. 11]. For information about bimeasures and trimeasures on locally compact groups, see [2] and [4].

Theorem 1. Let X and Y be locally compact spaces, and let μ and ν be nonzero continuous measures on X and Y, respectively. Let L be the closure in $B M(X, Y)$ of $L^{1}(\mu \times \nu)$. Then there is no bounded operator from $B M(X, Y)$ onto L.

Corollary 2. Let G and H be nondiscrete locally compact groups. Then the closure of $L^{1}\left(m_{G} \times m_{H}\right)$ in $B M(G, H)$ is not a direct summand of $B M(G, H)$.

Definition 3. We shall now define the canonical extension for elements of $B M(X, Y, Z)$. For $u \in B M(X, Y, Z)$, let $T_{u}: C_{0}(X) \rightarrow B M(Y, Z)$ be defined by

$$
\left\langle g \otimes h, T_{u}(f)\right\rangle=u(f \otimes g \otimes h)
$$

for $f \in C_{0}(X), g \in C_{0}(Y)$, and $h \in C_{0}(Z)$. Then

$$
T_{u}^{* *}: C_{0}(X)^{* *} \rightarrow B M(Y, Z)^{* *}
$$

For $\Phi \in C_{0}(X)^{* *}$ and $\Psi \in V_{0}(Y, Z)^{* *}=B M(Y, Z)^{*}$, set

$$
u^{* *}(\Phi, \Psi)=\left\langle\Psi, T_{u}^{* *}(\Phi)\right\rangle
$$

so that $\left\|u^{* *}\right\|=\|u\|$. Now, each element of $C_{0}(Y)^{* *} \hat{\otimes} C_{0}(Z)^{* *}$ induces an element of $B M(Y, Z)^{*}$, as described earlier. Thus we have defined $u^{* *}$ on $C_{0}(X)^{* *} \hat{\otimes} C_{0}(Y)^{* *} \hat{\otimes} C_{0}(Z)^{* *}$. We now restrict to the appropriate $\mathscr{L}^{\infty}{ }^{-}$-spaces and call our extension the canonical extension of u to $\mathscr{L}^{\infty}(X) \hat{\otimes} \mathscr{L}^{\infty}(Y) \hat{\otimes}$ $\mathscr{L}^{\infty}(Z)$ and continue to refer to this extension as u. As above, if X, Y, and Z are LCA groups and $u \in B M(X, Y, Z)$, we use the canonical extension to define the Fourier transform by

$$
\hat{u}(\chi, \eta, \zeta)=u(\chi \otimes \eta \otimes \zeta), \quad \chi \in \hat{X}, \eta \in \hat{Y}, \zeta \in \hat{Z}
$$

Again it is easy to see that the extension of the trimeasure represented by integration with respect to a measure on $X \times Y \times Z$ is still represented as such.

Corollary 4. Let G and H be infinite, compact, abelian groups. Let K be a noncompact, abelian group. Then there is an element of $\operatorname{BM}(G, H, K)$ whose Fourier transform is not uniformly continuous.

Theorem 5. Let X and Y be locally compact spaces that support continuous measures, and let Z be a locally compact space that is not countably compact. Then the compactly supported elements of $B M(X, Y, Z)$ are not norm dense.

Theorem 6. Let G, H, and K be nondiscrete locally compact abelian groups. There exist elements $u, v \in B M(G, H, K)$ such that $\hat{u} \hat{v}$ is not the Fourier transform of an element of $B M(G, H, K)$. In fact, convolution on $M(G \times H \times K)$ is not continuous in the trimeasure norm.

Theorem 1 is proved in Section 1. Corollary 2 is immediate. The remaining results are proved in Section 2. Comments and credits end this section.
In [4] the authors showed that if G and H are infinite, locally compact, abelian groups, then the closure of $L^{1}\left(m_{G} \times m_{H}\right)$ in $B M(G, H)$ plays a role in $B M(G, H)$ analogous to that played by $L^{1}\left(m_{G}\right)$ in the measure algebra $M(G)$; for example the bimeasures for which translation is a norm-continuous function on $G \times H$ are precisely those in that closure. Analogous results for nonabelian groups were obtained in [2], which also includes a proof that the continuous bimeasures form an ideal under convolution.

A proof of Corollary 2 for the case $G=H$ and G abelian was given in [4]; that proof used the Fourier transform and does not appear to be directly adaptable to the nonabelian case. It also seemed that Haar measure on $G \times G$ played a special role. The harmonic analysis is absent from the present proof; only an l^{2} argument remains.

That the closure of $L^{1}(\mu \times \nu)$ contains c_{0} as a direct summand is due to Bessaga and Pełczynski [1]. Our proof of Theorem 1 contains a version of their argument. We are grateful to Professor Pełczynski for bringing [1] to our attention. Theorem 5 is essentially proved in the proof of [7, Theorem 2]; the assertion of Theorem 1 is that $B M(X, Y)$ does not satisfy the condition \mathscr{P} of [7], the hypothesis of Saeki's result.

1. Proof of Theorem 1. We may assume that μ and ν are probability measures. A standard construction, using the continuity of the probability measure μ, shows that there is a sequence $\left\{f_{n}\right\}$ of Borel functions on X such that for all $n, f_{n}^{2}=1$ everywhere and such that $\left\{f_{n}\right\}$ is an orthonormal sequence in $L^{2}(\mu)$. (That is simply an abstract version of the construction of the Rademacher functions.) There is a similar sequence $\left\{g_{n}\right\}$ of functions on Y. For each $u \in B M(X, Y)$ and each pair m, n of integers, we define $u_{m, n}$ by $u_{m, n}=\left\langle f_{m} \otimes g_{n}, u\right\rangle$. We claim that the mapping

$$
f \otimes g \mapsto\langle f \otimes g, P u\rangle=\sum u_{m, m} \int f_{m} f d \mu \int g_{m} g d \nu
$$

defines an element of $B M(X, Y)$. (The definition is justified via the canonical extension of each bimeasure to a bilinear functional on the bounded Borel functions, as indicated above.) Indeed, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|\sum u_{m, m} \int f_{m} f d \mu \int g_{m} g d v\right| & \leqq \sup \left|u_{m, m}\right|\|f\|_{2}\|g\|_{2} \\
& \leqq \sup \left|u_{m, m}\right|\|f\|_{\infty}\|g\|_{\infty} \\
& \leqq\|u\|_{B M}\|f\|_{\infty}\|g\|_{\infty}
\end{aligned}
$$

It is obvious that $P(P u)=P u$, so $u \mapsto P u$ is a projection from bimeasures to bimeasures. The first two inequalities above show that the sequence $\left\{u_{m, m}\right\}$ may be any bounded sequence: that is, the image of P may be identified isometrically with l^{∞}. Now, if $u \in L^{2}(\mu) \otimes L^{2}(\nu)$, then clearly, $\left\{u_{m, m}\right\} \in c_{0}$. Since $L^{2}(\mu) \otimes L^{2}(\nu)$ is dense in $L^{1}(\mu \times \nu)$, every element of $L^{1}(\mu \times \nu)$ gives rise to a sequence in c_{0}. In the subspace $P(B M(X, Y))$ the norm corresponds to the supremum norm of the coefficients $u_{m, m}$, so the closure of $L^{1}(\mu \times \nu) \cap P(B M(X, Y))$ corresponds to all of c_{0}.

Let us suppose that there were a bounded operator Q from $B M(X, Y)$ onto L. Then $P Q P$ is easily seen to be a bounded operator from the image $P(B M(X, Y))$ onto $P(L)$. Since those last two spaces are isomorphic with l^{∞} and c_{0}, respectively, we would have a bounded operator from l^{∞} onto c_{0}. But l^{∞} does not have c_{0} as a quotient space, since every separable quotient space of l^{∞} is reflexive [6, p. 42]. That ends the proof of Theorem 1.

2. Proofs of results 4-6.

Proof of Corollary 4. We use notation similar to that of the proof of Theorem 1, with G, H, K, m_{G}, and m_{H} in place of X, Y, Z, μ, and ν, respectively. Take $\left\{f_{m}\right\}$ to be a sequence of distinct characters on G and $\left\{g_{m}\right\}$ to be such a sequence on H. Since K is not compact, there exists an infinite sequence $\left\{z_{j}\right\} \subset K$ with no accumulation points. The mapping that assigns to each triple $f \in C(G), g \in C(H)$, and $h \in C_{0}(K)$ the number

$$
\langle f \otimes g \otimes h, v\rangle=\sum h\left(z_{m}\right) \int f_{m} f d m_{G} \int g_{m} g d m_{H}
$$

defines an element of $B M(G, H, K)$, since

$$
\begin{aligned}
|\langle f \otimes g \otimes h, v\rangle| & \leqq \sum\left|h\left(z_{m}\right) \int f_{m} f d m_{G} \int g_{m} g d m_{H}\right| \\
& \leqq \sup _{m}\left|h\left(z_{m}\right)\right|\|f\|_{2}\|g\|_{2} \\
& \leqq\|f\|_{\infty}\|g\|_{\infty}\|h\|_{\infty} .
\end{aligned}
$$

The Fourier transform of v equals $\left\langle z_{m}, h\right\rangle$ on the coset $\left(f_{m}, g_{m}\right) \times K$. Since $\left\{z_{m}\right\}$ is not relatively compact, the functions $h \mapsto\left\langle z_{m}, h\right\rangle$ are not uniformly continuous. That ends the proof of Corollary 4.

Proof of Theorem 5. Let f_{m} and g_{m} be as in the proof of Theorem 1. Since Z is not countably compact, there exists an infinite sequence $\left\{z_{j}\right\} \subset Z$ with no accumulation points. That the mapping v assigning to each triple $f \in C_{0}(X)$, $g \in C_{0}(Y)$, and $h \in C_{0}(Z)$ the number determined by

$$
\langle f \otimes g \otimes h, v\rangle=\sum h\left(z_{m}\right) \int f_{m} f d \mu \int g_{m} g d \nu
$$

defines an element of $B M(X, Y, Z)$ follows exactly as in the proof of Corollary 4. Let w be an element of $B M(X, Y, Z)$ with compact support. There is an m and a neighborhood U of z_{m} such that $(x, y, z) \notin \operatorname{supp} w$ for all $z \in U$, and $z_{n} \notin U$ for all $n \neq m$. Let $h \in C_{0}(Z)$ be such that $h\left(z_{m}\right)=1=\|h\|_{\infty}$ and $h(z)=0$ for all $z \notin U$. Choose $f \in C_{0}(X)$ such that $-1 \leqq f \leqq 1$ and $\int f_{m} f d \mu>1 / 2$, and similarly choose $g \in C_{0}(Y)$. Then since $\langle f \otimes g \otimes h, w\rangle=0$,

$$
\begin{aligned}
\|v-w\| & \geqq\langle f \otimes g \otimes h, v\rangle \\
& =h\left(z_{m}\right) \int f_{m} f d \mu \int g_{m} g d \nu \\
& \geqq 1 / 4
\end{aligned}
$$

Theorem 5 now follows.
Remark 7. The requirement that Z not be countably compact is needed in the assertion of Theorem 5 because of the existence of spaces that are countably compact but not compact. (See, for example, [5], pp. 162-3].) We do not know whether the conclusion of Theorem 5 holds when such spaces are involved.

Proof of Theorem 6. We begin with a special case of the theorem. After establishing the special case, we will show how tensor algebra methods (based on independent sets) give the general result.

Let \mathbf{T} denote the circle group. We shall show that there exist bounded sequences of finitely supported trimeasures

$$
\left\{u_{m}\right\},\left\{v_{m}\right\} \in B M\left(\mathbf{T}^{2}, \mathbf{T}^{2}, \mathbf{T}^{2}\right)
$$

and a constant $c>0$ such that $\left\|u_{m} * v_{m}\right\|>c \log m$. That will prove Theorem 6 in the case $G=H=K=\mathbf{T}^{2}$. Fix $m \geqq 1$. We shall denote the character $\exp (2 \pi i k x)$ by $\chi_{k}(x)$. Let

$$
u_{m}=\sum_{k=1}^{m}\left(\chi_{k} m_{\mathbf{T}} \times \delta_{0}\right) \times\left(\chi_{k} m_{\mathbf{T}} \times \delta_{0}\right) \times\left(\delta_{1 / k} \times \delta_{0}\right)
$$

and

$$
v_{m}=\sum_{k=1}^{m}\left(\delta_{0} \times \chi_{k} m_{\mathbf{T}}\right) \times\left(\delta_{0} \times \delta_{1 / k}\right) \times\left(\delta_{0} \times \chi_{k} m_{\mathbf{T}}\right)
$$

Then u_{m} and v_{m} both have norm one by a simple variant of the l^{2} estimate used in the proof of Corollary 3. For simplicity of notation, we drop the subscripts " m " on u_{m} and v_{m}.

The (j, k)-term of $u * v$ is concentrated on

$$
\mathbf{T}^{2} \times(\mathbf{T} \times\{1 / k\}) \times(\{1 / j\} \times \mathbf{T})
$$

By repeated application of $[3,11.1 .4]$, there exists a function $f \in V(\mathbf{T}, \mathbf{T})$ such that

$$
\begin{array}{ll}
f(1 / j, 1 / j)=1 & \text { for } 1 \leqq j \leqq m \\
f(1 / j, 1 / k)=0 & \text { for } 1 \leqq j \neq k \leqq m
\end{array}
$$

and $\|f\| \leqq 2$. We can extend f to a function g on $\mathbf{T}^{2} \times \mathbf{T}^{2} \times \mathbf{T}^{2}$ by the formula $g\left(x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)=f\left(y_{2}, z_{1}\right)$.

It is obvious that $g \in V\left(\mathbf{T}^{2}, \mathbf{T}^{2}, \mathbf{T}^{2}\right)$ and $\|g\| \leqq 2$. Then $\| g(u * v\|\leqq 2\| u * v \|$, and

$$
g(u * v)=\sum_{k=1}^{m}\left(\chi_{k} m_{\mathbf{T}} \times \chi_{k} m_{\mathbf{T}}\right) \times\left(\chi_{k} m_{\mathbf{T}} \times \delta_{1 / k}\right) \times\left(\delta_{1 / k} \times \chi_{k} m_{\mathbf{T}}\right)
$$

The preceding sum consists of terms whose supports have pairwise disjoint projections on two different coordinates. For each k, let p_{k} and q_{k} be continuous functions on \mathbf{T}^{2} having pairwise disjoint supports, each of norm one and such that

$$
\int p_{k} d\left(\chi_{k} m_{\mathbf{T}} \times \delta_{1 / k}\right)=1 \quad \text { and } \quad \int q_{k} d\left(\delta_{1 / k} \times \chi_{k} m_{\mathbf{T}}\right)=1
$$

Because of the condition on the supports of p_{k} and $q_{k},[3,11.1 .4]$ applies, so the sum $r=\sum_{1}^{m}\left(p_{k} \otimes q_{k}\right)$ has norm one. Define a measure μ on \mathbf{T}^{2} by

$$
\int h d \mu=\langle h \otimes r, g(u * v)\rangle
$$

Then $\int h d \mu=\sum_{1}^{m} \hat{h}(k, k)$, so that $\|\mu\| \geqq c \log m$, for some $c \neq 0$. It follows that

$$
\|u * v\| \geqq(1 / 2)\|g(u * v)\| \geqq(c / 2) \log m .
$$

Theorem 6 now follows for the special case under consideration.
The general case is obtained as follows. Let u_{r} and v_{s} be finitely supported approximants to u and v with $\left\|u_{r}\right\|=\left\|v_{s}\right\|=1$. We may assume that u_{r} is supported on $U_{1} \times U_{2} \times U_{3}$ and v_{s} is supported on $V_{1} \times V_{2} \times V_{3}$, where $U_{j} \cup V_{j}$ is a disjoint union whose result is an independent set, for $j=1,2,3$. Such a choice of u_{r} and v_{s} is possible because the finitely supported trimeasures of (trimeasure) norm one are weak-* dense in the unit ball of $B M(G, H, K)$.

Because of the independence of the sets $U_{j} \cup V_{j}$, the mass distribution of $u_{r} * v_{s}$ is independent of the underlying group structure. We claim further that u_{r} and v_{s} can be found so that the trimeasure norm of $u_{r} * v_{s}$ will be approximately $\|u * v\|$. Indeed, because convolution is weak-* continuous in each variable separately, v_{s} can be chosen so that $\left\|u * v_{s}\right\|$ is large. Now u_{r} is chosen so that $\left\|u_{r} * v_{s}\right\|$ is large. All that occurs, we stress, independently of the underlying groups' structure.

We now map U_{j} and V_{j} one-to-one onto sets in any other LCA groups, $U_{j}^{\prime}, V_{j}^{\prime} \subset G_{j}^{\prime}$, such that $U_{j}^{\prime} \cup V_{j}^{\prime}$ is a disjoint union whose result is independent, for $j=1,2,3$. Then u_{r}, v_{s}, and $u_{r} * v_{s}$ are mapped onto elements $u_{r}^{\prime}, v_{s}^{\prime}$, and $u_{r}^{\prime} * v_{s}^{\prime}$ of $B M\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$, with no change in norms. It follows that the norm of the convolution of two finitely supported trimeasures in $B M\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ is not bounded by a (fixed) constant times the product of the norms of the factors. Therefore, $B M\left(G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}\right)$ is not closed under convolution.

We leave the remaining details to the reader. That ends the proof of Theorem 6.

References

[^1]
[^0]: Received by the editors October 24, 1985, and, in revised form, September 3, 1987.
 ${ }^{1}$ Partially supported by grants from the National Science Foundation (USA) and National Science and Engineering Research Council (Canada).
 ${ }^{2}$ Partially supported by National Science Foundation grants No. MCS 82-00786 and DMS 85-02308.

 AMS Subject Classification (1980): 43A25, 46J10.
 (c) Canadian Mathematical Society 1986.

[^1]: 1. C. Bessaga and A. Pełczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), pp. 151-164.
 2. J. E. Gilbert, T. Ito and B. M. Schreiber, Bimeasure algebras on locally compact groups, J. Functional Anal. 64 (1985), pp. 134-162.
 3. C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Grundl. der Math. Wissen., No. 238, Springer-Verlag, Berlin-New York, 1979.
 4. C. C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984), pp. 91-127.
 5. J. L. Kelley, General Topology, van Nostrand, Princeton, 1955.
 6. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Math., No. 338, Springer-Verlag, Berlin-New York, 1973.
 7. S. Saeki, Tensor products of $C(X)$-spaces and their conjugate spaces, J. Math. Soc. Japan 28 (1976), pp. 33-47.
 8. K. Ylinen, Fourier transforms of noncommutative analogues of vector measures and bimeasures with applications to stochastic processes, Ann. Acad. Sci. Fenn., Ser A. I 1 (1975), pp. 355-385.

 Department of Mathematics
 University of British Columbia
 Vancouver, B.C. V6T 1Y4
 Department of Mathematics
 Northwestern University
 Evanston, IL 60201
 Department of Mathematics
 Wayne State University
 Detroit, MI 48202

