PROJECTIONS IN SPACES OF BIMEASURES

BY

COLIN C. GRAHAM¹ AND BERTRAM M. SCHREIBER²

ABSTRACT. Let X and Y be metrizable compact spaces and μ and ν be nonzero continuous measures on X and Y, respectively. Then there is no bounded operator from the space of bimeasures BM(X, Y) onto the closed subspace of BM(X, Y) generated by $L^{1}(\mu \times \nu)$; in particular, if X and Y are nondiscrete locally compact groups, then there is no bounded projection from BM(X, Y) onto the closed subspace of BM(X, Y) generated by $L^{1}(X \times Y)$.

0. Introduction and Statement of Results. Let X, Y and Z be locally compact Hausdorff spaces. The space of bounded, regular Borel measures on X is denoted by M(X). The tensor algebras $V_0(X, Y)$ and $V_0(X, Y, Z)$ are the respective closures,

 $C_0(X) \otimes C_0(Y)$ and $C_0(X) \otimes C_0(Y) \otimes C_0(Z)$,

in the greatest cross-norm (projective norm), of the tensor products of the indicated C_0 -spaces. The space BM(X, Y) of *bimeasures* on $X \times Y$ constitutes the dual space of $V_0(X, Y)$; the dual space of $V_0(X Y, Z)$ will be denoted by BM(X, Y, Z) and its elements will be called *trimeasures*. Given a measure ω , we consistently identify $L^1(\omega)$ with the space of measures that are absolutely continuous with respect to ω . We denote Haar measure on the locally compact group G by m_G .

Let $\mathscr{L}^{\infty}(X)$, $\mathscr{L}^{\infty}(Y)$, and $\mathscr{L}^{\infty}(Z)$ denote the Banach spaces of bounded, Borel-measurable functions on X, Y, and Z, respectively. Recall that there is a canonical extension of each bimeasure on $X \times Y$ to an element of $(\mathscr{L}^{\infty}(X) \stackrel{\otimes}{\otimes} \mathscr{L}^{\infty}(Y))^*$. The extension is implemented as follows. For $u \in BM(X, Y)$, let $S_u: C_0(X) \to C_0(Y)^*$ be the operator given by

$$\langle g, S_u(f) \rangle = u(f \otimes g), \quad f \in C_0(X), g \in C_0(Y).$$

Thus $S_u^{**}: C_0(X)^{**} \to C_0(Y)^{***}$. For $\Phi \in C_0(X)^{**}$ and $\Psi \in C_0(Y)^{**}$, set

© Canadian Mathematical Society 1986.

Received by the editors October 24, 1985, and, in revised form, September 3, 1987.

¹Partially supported by grants from the National Science Foundation (USA) and National Science and Engineering Research Council (Canada).

²Partially supported by National Science Foundation grants No. MCS 82-00786 and DMS 85-02308.

AMS Subject Classification (1980): 43A25, 46J10.

$$u^{**}(\Phi \otimes \Psi) = \langle \Psi, T_u^{**}(\Phi) \rangle.$$

Then $||u^{**}|| = ||u||$. Since we may consider $\mathscr{L}^{\infty}(X) \subset C_0(X)^{**}$ and $\mathscr{L}^{\infty}(Y) \subset C_0(Y)^{**}$, restricting u^{**} to the respective \mathscr{L}^{∞} -spaces and extending to the associated projective tensor products provides the desired extension, which we also denote by u. It is easy to check that if u is the bimeasure represented by integration with respect to a measure ω on $X \times Y$, then the extension of u to bounded, Borel-measurable functions is still represented by integration with character groups \hat{X} and \hat{Y} , respectively, then for $u \in BM(X, Y)$ the Fourier transform of u is defined via the canonical extension by

$$\hat{u}(\chi, \eta) = u(\chi \otimes \eta), \qquad \chi \in \hat{X}, \eta \in \hat{Y}.$$

For background on tensor algebras, see [3, Chap. 11]. For information about bimeasures and trimeasures on locally compact groups, see [2] and [4].

THEOREM 1. Let X and Y be locally compact spaces, and let μ and ν be nonzero continuous measures on X and Y, respectively. Let L be the closure in BM(X, Y) of $L^{1}(\mu \times \nu)$. Then there is no bounded operator from BM(X, Y) onto L.

COROLLARY 2. Let G and H be nondiscrete locally compact groups. Then the closure of $L^1(m_G \times m_H)$ in BM(G, H) is not a direct summand of BM(G, H).

DEFINITION 3. We shall now define the canonical extension for elements of BM(X, Y, Z). For $u \in BM(X, Y, Z)$, let $T_u: C_0(X) \to BM(Y, Z)$ be defined by

$$\langle g \otimes h, T_u(f) \rangle = u(f \otimes g \otimes h)$$

for $f \in C_0(X)$, $g \in C_0(Y)$, and $h \in C_0(Z)$. Then

$$T^{**}_{\mu}: C_0(X)^{**} \rightarrow BM(Y, Z)^{**}.$$

For $\Phi \in C_0(X)^{**}$ and $\Psi \in V_0(Y, Z)^{**} = BM(Y, Z)^*$, set

$$u^{**}(\Phi, \Psi) = \langle \Psi, T_{\mu}^{**}(\Phi) \rangle,$$

so that $||u^{**}|| = ||u||$. Now, each element of $C_0(Y)^{**} \otimes C_0(Z)^{**}$ induces an element of $BM(Y, Z)^*$, as described earlier. Thus we have defined u^{**} on $C_0(X)^{**} \otimes C_0(Y)^{**} \otimes C_0(Z)^{**}$. We now restrict to the appropriate \mathscr{L}^{∞} -spaces and call our extension the canonical extension of u to $\mathscr{L}^{\infty}(X) \otimes \mathscr{L}^{\infty}(Y) \otimes \mathscr{L}^{\infty}(Z)$ and continue to refer to this extension as u. As above, if X, Y, and Z are LCA groups and $u \in BM(X, Y, Z)$, we use the canonical extension to define the Fourier transform by

$$\hat{u}(\chi, \eta, \zeta) = u(\chi \otimes \eta \otimes \zeta), \quad \chi \in \hat{X}, \eta \in \hat{Y}, \zeta \in \hat{Z}.$$

Again it is easy to see that the extension of the trimeasure represented by integration with respect to a measure on $X \times Y \times Z$ is still represented as such. COROLLARY 4. Let G and H be infinite, compact, abelian groups. Let K be a noncompact, abelian group. Then there is an element of BM(G, H, K) whose Fourier transform is not uniformly continuous.

THEOREM 5. Let X and Y be locally compact spaces that support continuous measures, and let Z be a locally compact space that is not countably compact. Then the compactly supported elements of BM(X, Y, Z) are not norm dense.

THEOREM 6. Let G, H, and K be nondiscrete locally compact abelian groups. There exist elements $u, v \in BM(G, H, K)$ such that $\hat{u}\hat{v}$ is not the Fourier transform of an element of BM(G, H, K). In fact, convolution on $M(G \times H \times K)$ is not continuous in the trimeasure norm.

Theorem 1 is proved in Section 1. Corollary 2 is immediate. The remaining results are proved in Section 2. Comments and credits end this section.

In [4] the authors showed that if G and H are infinite, locally compact, abelian groups, then the closure of $L^1(m_G \times m_H)$ in BM(G, H) plays a role in BM(G, H) analogous to that played by $L^1(m_G)$ in the measure algebra M(G); for example the bimeasures for which translation is a norm-continuous function on $G \times H$ are precisely those in that closure. Analogous results for nonabelian groups were obtained in [2], which also includes a proof that the continuous bimeasures form an ideal under convolution.

A proof of Corollary 2 for the case G = H and G abelian was given in [4]; that proof used the Fourier transform and does not appear to be directly adaptable to the nonabelian case. It also seemed that Haar measure on $G \times G$ played a special role. The harmonic analysis is absent from the present proof; only an l^2 argument remains.

That the closure of $L^1(\mu \times \nu)$ contains c_0 as a direct summand is due to Bessaga and Pełczynski [1]. Our proof of Theorem 1 contains a version of their argument. We are grateful to Professor Pełczynski for bringing [1] to our attention. Theorem 5 is essentially proved in the proof of [7, Theorem 2]; the assertion of Theorem 1 is that BM(X, Y) does not satisfy the condition \mathcal{P} of [7], the hypothesis of Saeki's result.

1. **Proof of Theorem 1.** We may assume that μ and ν are probability measures. A standard construction, using the continuity of the probability measure μ , shows that there is a sequence $\{f_n\}$ of Borel functions on X such that for all $n, f_n^2 = 1$ everywhere and such that $\{f_n\}$ is an orthonormal sequence in $L^2(\mu)$. (That is simply an abstract version of the construction of the Rade-macher functions.) There is a similar sequence $\{g_n\}$ of functions on Y. For each $u \in BM(X, Y)$ and each pair m, n of integers, we define $u_{m,n}$ by $u_{m,n} = \langle f_m \otimes g_n, u \rangle$. We claim that the mapping

$$f \otimes g \mapsto \langle f \otimes g, Pu \rangle = \sum u_{m,m} \int f_m f d\mu \int g_m g d\nu$$

defines an element of BM(X, Y). (The definition is justified via the canonical extension of each bimeasure to a bilinear functional on the bounded Borel functions, as indicated above.) Indeed, by the Cauchy-Schwarz inequality,

$$\begin{aligned} \left| \sum u_{m,m} \int f_m f d\mu \int g_m g d\nu \right| &\leq \sup |u_{m,m}| ||f||_2 ||g||_2 \\ &\leq \sup |u_{m,m}| ||f||_{\infty} ||g||_{\infty} \\ &\leq ||u||_{BM} ||f||_{\infty} ||g||_{\infty}. \end{aligned}$$

It is obvious that P(Pu) = Pu, so $u \mapsto Pu$ is a projection from bimeasures to bimeasures. The first two inequalities above show that the sequence $\{u_{m,m}\}$ may be any bounded sequence: that is, the image of P may be identified isometrically with l^{∞} . Now, if $u \in L^2(\mu) \otimes L^2(\nu)$, then clearly, $\{u_{m,m}\} \in c_0$. Since $L^2(\mu) \otimes L^2(\nu)$ is dense in $L^1(\mu \times \nu)$, every element of $L^1(\mu \times \nu)$ gives rise to a sequence in c_0 . In the subspace P(BM(X, Y)) the norm corresponds to the supremum norm of the coefficients $u_{m,m}$, so the closure of $L^1(\mu \times \nu) \cap P(BM(X, Y))$ corresponds to all of c_0 .

Let us suppose that there were a bounded operator Q from BM(X, Y) onto L. Then PQP is easily seen to be a bounded operator from the image P(BM(X, Y)) onto P(L). Since those last two spaces are isomorphic with l^{∞} and c_0 , respectively, we would have a bounded operator from l^{∞} onto c_0 . But l^{∞} does not have c_0 as a quotient space, since every separable quotient space of l^{∞} is reflexive [6, p. 42]. That ends the proof of Theorem 1.

2. Proofs of results 4-6.

PROOF OF COROLLARY 4. We use notation similar to that of the proof of Theorem 1, with G, H, K, m_G , and m_H in place of X, Y, Z, μ , and ν , respectively. Take $\{f_m\}$ to be a sequence of distinct characters on G and $\{g_m\}$ to be such a sequence on H. Since K is not compact, there exists an infinite sequence $\{z_j\} \subset K$ with no accumulation points. The mapping that assigns to each triple $f \in C(G), g \in C(H)$, and $h \in C_0(K)$ the number

$$\langle f \otimes g \otimes h, v \rangle = \sum h(z_m) \int f_m f dm_G \int g_m g dm_H$$

defines an element of BM(G, H, K), since

$$|\langle f \otimes g \otimes h, v \rangle| \leq \sum \left| h(z_m) \int f_m f dm_G \int g_m g dm_H \right|$$
$$\leq \sup_m |h(z_m)| ||f||_2 ||g||_2$$
$$\leq ||f||_{\infty} ||g||_{\infty} ||h||_{\infty}.$$

The Fourier transform of v equals $\langle z_m, h \rangle$ on the coset $(f_m, g_m) \times K$. Since $\{z_m\}$ is not relatively compact, the functions $h \mapsto \langle z_m, h \rangle$ are not uniformly continuous. That ends the proof of Corollary 4.

PROOF OF THEOREM 5. Let f_m and g_m be as in the proof of Theorem 1. Since Z is not countably compact, there exists an infinite sequence $\{z_j\} \subset Z$ with no accumulation points. That the mapping v assigning to each triple $f \in C_0(X)$, $g \in C_0(Y)$, and $h \in C_0(Z)$ the number determined by

$$\langle f \otimes g \otimes h, \nu \rangle = \sum h(z_m) \int f_m f d\mu \int g_m g d\nu$$

defines an element of BM(X, Y, Z) follows exactly as in the proof of Corollary 4. Let w be an element of BM(X, Y, Z) with compact support. There is an m and a neighborhood U of z_m such that $(x, y, z) \notin$ supp w for all $z \in U$, and $z_n \notin U$ for all $n \neq m$. Let $h \in C_0(Z)$ be such that $h(z_m) = 1 = ||h||_{\infty}$ and h(z) = 0 for all $z \notin U$. Choose $f \in C_0(X)$ such that $-1 \leq f \leq 1$ and $\int f_m f d\mu > 1/2$, and similarly choose $g \in C_0(Y)$. Then since $\langle f \otimes g \otimes h, w \rangle = 0$,

$$||v - w|| \ge \langle f \otimes g \otimes h, v \rangle$$
$$= h(z_m) \int f_m f d\mu \int g_m g d\nu$$
$$\ge 1/4.$$

Theorem 5 now follows.

REMARK 7. The requirement that Z not be countably compact is needed in the assertion of Theorem 5 because of the existence of spaces that are countably compact but not compact. (See, for example, [5], pp. 162-3].) We do not know whether the conclusion of Theorem 5 holds when such spaces are involved.

PROOF OF THEOREM 6. We begin with a special case of the theorem. After establishing the special case, we will show how tensor algebra methods (based on independent sets) give the general result.

Let \mathbf{T} denote the circle group. We shall show that there exist bounded sequences of finitely supported trimeasures

$$\{u_m\}, \{v_m\} \in BM(\mathbf{T}^2, \mathbf{T}^2, \mathbf{T}^2)$$

and a constant c > 0 such that $||u_m * v_m|| > c \log m$. That will prove Theorem 6 in the case $G = H = K = T^2$. Fix $m \ge 1$. We shall denote the character $\exp(2\pi i kx)$ by $\chi_k(x)$. Let

$$u_m = \sum_{k=1}^m (\chi_k m_{\mathbf{T}} \times \delta_0) \times (\chi_k m_{\mathbf{T}} \times \delta_0) \times (\delta_{1/k} \times \delta_0)$$

and

$$v_m = \sum_{k=1}^m (\delta_0 \times \chi_k m_{\mathrm{T}}) \times (\delta_0 \times \delta_{1/k}) \times (\delta_0 \times \chi_k m_{\mathrm{T}}).$$

1988]

Then u_m and v_m both have norm one by a simple variant of the l^2 estimate used in the proof of Corollary 3. For simplicity of notation, we drop the subscripts "*m*" on u_m and v_m .

The (j, k)-term of u * v is concentrated on

$$\mathbf{T}^2 \times (\mathbf{T} \times \{1/k\}) \times (\{1/j\} \times \mathbf{T}).$$

By repeated application of [3, 11.1.4], there exists a function $f \in V(\mathbf{T}, \mathbf{T})$ such that

$$f(1/j, 1/j) = 1 \quad \text{for } 1 \leq j \leq m,$$

$$f(1/j, 1/k) = 0 \quad \text{for } 1 \leq j \neq k \leq m,$$

and $||f|| \leq 2$. We can extend f to a function g on $\mathbf{T}^2 \times \mathbf{T}^2 \times \mathbf{T}^2$ by the formula $g(x_1, x_2, y_1, y_2, z_1, z_2) = f(y_2, z_1)$.

It is obvious that $g \in V(\mathbf{T}^2, \mathbf{T}^2, \mathbf{T}^2)$ and $||g|| \leq 2$. Then $||g(u * v)| \leq 2||u * v||$, and

$$g(u * v) = \sum_{k=1}^{m} (\chi_k m_{\mathbf{T}} \times \chi_k m_{\mathbf{T}}) \times (\chi_k m_{\mathbf{T}} \times \delta_{1/k}) \times (\delta_{1/k} \times \chi_k m_{\mathbf{T}}).$$

The preceding sum consists of terms whose supports have pairwise disjoint projections on two different coordinates. For each k, let p_k and q_k be continuous functions on \mathbf{T}^2 having pairwise disjoint supports, each of norm one and such that

$$\int p_k d(\chi_k m_{\rm T} \times \delta_{1/k}) = 1 \quad \text{and} \quad \int q_k d(\delta_{1/k} \times \chi_k m_{\rm T}) = 1.$$

Because of the condition on the supports of p_k and q_k , [3, 11.1.4] applies, so the sum $r = \sum_{k=1}^{m} (p_k \otimes q_k)$ has norm one. Define a measure μ on \mathbf{T}^2 by

$$\int hd\mu = \langle h \otimes r, g(u * v) \rangle.$$

Then $\int hd\mu = \sum_{1}^{m} \hat{h}(k, k)$, so that $||\mu|| \ge c \log m$, for some $c \ne 0$. It follows that

$$||u * v|| \ge (1/2) ||g(u * v)|| \ge (c/2)\log m.$$

Theorem 6 now follows for the special case under consideration.

The general case is obtained as follows. Let u_r and v_s be finitely supported approximants to u and v with $||u_r|| = ||v_s|| = 1$. We may assume that u_r is supported on $U_1 \times U_2 \times U_3$ and v_s is supported on $V_1 \times V_2 \times V_3$, where $U_j \cup V_j$ is a disjoint union whose result is an independent set, for j = 1, 2, 3. Such a choice of u_r and v_s is possible because the finitely supported trimeasures of (trimeasure) norm one are weak-* dense in the unit ball of BM(G, H, K). SPACES OF BIMEASURES

25

Because of the independence of the sets $U_j \cup V_j$, the mass distribution of $u_r * v_s$ is independent of the underlying group structure. We claim further that u_r and v_s can be found so that the trimeasure norm of $u_r * v_s$ will be approximately ||u * v||. Indeed, because convolution is weak-* continuous in each variable separately, v_s can be chosen so that $||u * v_s||$ is large. Now u_r is chosen so that $||u_r * v_s||$ is large. All that occurs, we stress, independently of the underlying groups' structure.

We now map U_j and V_j one-to-one onto sets in any other LCA groups, $U'_j, V'_j \subset G'_j$, such that $U'_j \cup V'_j$ is a disjoint union whose result is independent, for j = 1, 2, 3. Then u_r, v_s , and $u_r * v_s$ are mapped onto elements u'_r, v'_s , and $u'_r * v'_s$ of $BM(G'_1, G'_2, G'_3)$, with no change in norms. It follows that the norm of the convolution of two finitely supported trimeasures in $BM(G'_1, G'_2, G'_3)$ is not bounded by a (fixed) constant times the product of the norms of the factors. Therefore, $BM(G'_1, G'_2, G'_3)$ is not closed under convolution.

We leave the remaining details to the reader. That ends the proof of Theorem 6.

References

1. C. Bessaga and A. Pełczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), pp. 151-164.

2. J. E. Gilbert, T. Ito and B. M. Schreiber, *Bimeasure algebras on locally compact groups*, J. Functional Anal. **64** (1985), pp. 134-162.

3. C. C. Graham and O. C. McGehee, *Essays in commutative harmonic analysis*, Grundl. der Math. Wissen., No. 238, Springer-Verlag, Berlin-New York, 1979.

4. C. C. Graham and B. M. Schreiber, *Bimeasure algebras on* LCA groups, Pacific J. Math. 115 (1984), pp. 91-127.

5. J. L. Kelley, General Topology, van Nostrand, Princeton, 1955.

6. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, Lecture Notes in Math., No. 338, Springer-Verlag, Berlin-New York, 1973.

7. S. Saeki, Tensor products of C(X)-spaces and their conjugate spaces, J. Math. Soc. Japan 28 (1976), pp. 33-47.

8. K. Ylinen, Fourier transforms of noncommutative analogues of vector measures and bimeasures with applications to stochastic processes, Ann. Acad. Sci. Fenn., Ser A. I 1 (1975), pp. 355-385.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, B.C. V6T 1Y4

DEPARTMENT OF MATHEMATICS Northwestern University Evanston, IL 60201

Department of Mathematics Wayne State University Detroit, MI 48202