THE HIGHER HOMOTOPY GROUPS
 OF THE p-SPUN TREFOIL KNOT

by W. A. McCALLUM

(Received 11 November, 1974; revised 25 February, 1975)

1. Introduction. In this paper we show that the $(p+1)$ st homotopy group of the p-spun trefoil knot is nontrivial. This result was obtained for $p=1$ in [1] using duality arguments. Here we take a totally different approach via the algorithm given in [3] and a module representation giving a simpler and more natural argument.

The first homotopy group of the complement of the trefoil knot k contained in the standard 3-Ball is given by

$$
\pi_{1}\left(B^{3}-k\right)=(x, t: t x t=x t x)
$$

Definition 1.I. One obtains the $(p+1)$-dimensional knot K^{p+1} by p-spinning a knot k as follows:

$$
S^{p+3}=\left(S^{p} \times B^{3}\right) \cup\left(D^{p+1} \times \partial B^{3}\right)
$$

identified along:

$$
S^{p} \times \partial B^{3}=\partial D^{p+1} \times \partial B^{3}
$$

and:

$$
K^{p+1}=\left(S^{p} \times k\right) \cup\left(D^{p+1} \times \partial k\right)
$$

identified along:

$$
S^{p} \times \partial k=\partial D^{p+1} \times \partial k
$$

Lemma 1.2. $\pi_{1}\left(S^{p+3}-K^{p+1}\right)=\pi_{1}\left(B^{3}-k\right)$.
Proof. See [4].
Lemma 1.3. $\pi_{p+1}\left(S^{p+3}-K^{p+1}\right)=(X:(1-t+x t) X)$.
Proof. Via [3] we have

$$
\pi_{p+1}\left(S^{p+3}-K^{p+1}\right)=\left(X, \frac{\partial r}{\partial x} X\right)
$$

where $r=x t x t^{-1} x^{-1} t^{-1}$, which will yield the lemma.

2. Module representations.

Definition 2.1. If M and M^{\prime} are left modules over rings R and R^{\prime} respectively, then a pair of homomorphisms (ϕ, σ) is a module representation of M in M^{\prime} if and only if
(1) $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism.
(2) $\sigma: M \rightarrow M^{\prime}$ is a group homomorphism, and
(3) $\sigma(r m)=\phi(r) \sigma(m)$ for all $m \in M$ and $r \in R$.

Given a representation (ϕ, σ), we say that σ is induced by ϕ, as condition (3) ensures that σ is a left-module map, where the action of R on M^{\prime} is via ϕ.

Theorem 2.2. The $(p+1)$ st homotopy group of the p-spun trefoil knot is nontrivial.
Proof. Consider the group of the trefoil $H=(t, x: t x t=x t x)$ and form the group ring over the integers $Z H=R$. If we p-spin the trefoil, we obtain the $(p+1)$ st homotopy module

$$
M=(X:(1-t+x t) X)
$$

Consider the group S_{4} and form the group ring $Z S_{4}=R^{\prime}$. The group $M^{\prime}=Z_{8}+Z_{8}+Z_{8}+Z_{8}$ ($Z_{8}=$ Integers $\bmod 8$) can be considered as a left R^{\prime}-module by letting S_{4} act on M^{\prime} by permuting the natural basis for M^{\prime}. A single nontrivial representation will prove the theorem. However, we find all module representations of M in M^{\prime} such that the homomorphism ϕ : $R \rightarrow R^{\prime}$ is induced by a group homomorphism of H into S_{4} and such that $\phi(t)=(1234)$. If $\phi(t)=(1234)$, then $\phi(x)$ must be a four-cycle because of the relation $x t x=t x t$. Five of the six choices give rise to module representations of M in M^{\prime}. These choices are

$\phi(x)$	$\sigma(X)$
(1) (1234)	0
(2) (1342)	$(-4,-2,-3,1) X$
(3) (1423)	$(-2,-3,1,-4) X$
(4) (1243)	$(-3,1,-4,-2) X$
(5) (1324)	$(1,-4,-2,-3) X$

Here X is an arbitrary element of Z_{8}. For similar calculations of $\sigma(X)$ see [2]. For each $\phi(X)$ we may calculate $\sigma(X)$ by observing that $\sigma((1-t+x t) X)=0$.

In case (1) we have

$$
(1-(1234)+(13)(24)) \sigma(X)=0
$$

which leads to the following system of equations

$$
\begin{aligned}
& y_{1}-y_{4}+y_{3}=0 \\
& y_{2}-y_{1}+y_{4}=0 \\
& y_{3}-y_{2}+y_{1}=0 \\
& y_{4}-y_{3}+y_{2}=0,
\end{aligned}
$$

where $\sigma(X)=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$.
In case (2) we have

$$
(1-(1234)+(143)) \sigma(X)=0
$$

which leads to the following system of equations

$$
\begin{aligned}
& y_{1}-y_{4}+y_{3}=0 \\
& y_{2}-y_{1}+y_{2}=0 \\
& y_{3}-y_{2}+y_{4}=0 \\
& y_{4}-y_{3}+y_{1}=0 .
\end{aligned}
$$

Calculating these two maps we obtain (1) and (2) above. The calculations of the remaining maps may be simplified by observing that each of the maps ϕ defined in (3)-(5) is a conjugate by (1234) of the preceding map and then showing that the choice of $Y=\sigma(X)$ is $\phi(t) Y^{\prime}$, where Y^{\prime} is the choice for the preceding map.

Thus we see that the $(p+1)$ st homotopy group of the p-spun trefoil knot has several nontrivial representations in the module M^{\prime}, which provides another more generalized proof and result of the major result of [1], the nontrivialness of higher homotopy groups of higher dimensional knots.

REFERENCES

1. J. J. Andrews and M. L. Curtis, Knotted 2-spheres in the 4 -sphere, Ann. Math. 70 (1959), 565-571.
2. R. H. Fox, On the Complementary Domains of a Pair of Inequivalent Knots, Indag Math. 14 (1952), No. 1, 37-40.
3. W. A. McCallum, The Higher Homotopy Groups of Links, Diff. Geo. (to appear).
4. D. W. Sumners, On an Unlinking Theorem, Proc. Cambridge Philos. Soc. Math. Phy. Sci. 71 (1972), 1-4.

Kansas State University

