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A REMARK ON THE DERIVATIVE OF THE ONE-DIMENSIONAL
HARDY-LITTLEWOOD MAXIMAL FUNCTION
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Dedicated to Professor Kozo Yabuta on the occasion of his 60th birthday

J. Kinnunen proved that if p > 1, d < 1 and / is a function in the Sobolev space
Wl'p(~Rdj, then the first order weak partial derivatives of the Hardy-Littlewood max-
imal function Mf belong to LPfR'M. We shall show that, when d = 1, Kinnunen's
result can be extended to the case where p = 1.

1. RESULT

The derivative of the maximal function has been studied in, for example, Kin-
nunen [3], Kinnunen and Lindqvist [4] and Buckley [1].

For a locally integrable function / on Rd, where d > 1, the Hardy-Littlewood
maximal function Mf is defined by

(1) Mf (x) = sup ±-[\f(v)\dy,

where the supremum is taken over all cubes Q containing i g R f Here, \Q\ denotes the
volume of the cube Q. The well-known theorem of Hardy, Littlewood and Wiener asserts
the following. If / € LP(Rd), where 1 < p ̂  oo, then Mf e L"(Rd) and

(2) \\Mf\\p ^ Ap\\f\\p,

where the constant Ap depends only on p and the dimension d. If / G L1 (Rd), then for
every A > 0

\{xeRd:Mf(x)>\}\^j\\f\\1,

where the constant A depends only on d. Recall that when 1 ̂  p < oo, the Sobolev space
Wl-P(lld) consists of functions / in Z/fR'M whose first order weak partial derivatives
Dif belong to U (Rd), when i = 1,2,..., d.
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In [3], Kinnunen showed that if / G W l l P (R d ) , where 1 < p < oo and d ^ 1, then

Mf G Wl'p(Kd) and

(3) \{DiMf){x)\ ^ (MDif)(x), i = l , 2 , . . . . d ,

for almost every x G Rd. Equations (2) and (3) imply that

(4) \\DiMf\\p < Ap\\Dif\\p t = l , 2 , . . . , d .

Kinnunen's method to prove (3) cannot be applied to the case where p = 1, since it
depends on the ZAboundedness of M.

The purpose of this paper is to extend (4) to the case where p — d — 1. Notice that
if / G W^'^R), then Mf is a bounded function and hence is differentiable in the sense
of distributions.

THEOREM 1. If f e W M (R) , then the derivative ofMf is an integrable function,

and

\\(Mf)'l ^ 2||/'||1.
Kinnunen proved his results for the maximal function which is defined as the supre-

mum taken over all balls centred at x. If one reads [3] carefully, then one sees that the
corresponding results hold for the maximal function which is defined as (1).

2. PROOF

A crucial point in our argument is to consider one-sided maximal functions. For a
locally integrable function / on the line, define the one-sided maximal functions Mif

and Mrf by

t>0

The following relation is obvious,

Mif(x) = sup - / 1/(3/)I dy,
»>0 S Jx-s* i

Mrf(x) = sxxp] fX+t\f(y)\dy.
t>0 t Jx ' '

(5) Mf(x) = max{M/(*), Mrf(x)}.

In the rest of this paper, we assume that / G W1'l{R), and we shall state the
results only for Mi, but the corresponding results hold for MT as well. Notice that
if / € W1'1(R), then (after adjusting on a set of measure zero) / may be taken to be
continuous—and then / vanishes at infinity, for it is uniformly continuous and integrable.
Notice further that then Mif is continuous and vanishes at infinity (see the proof of
Theorem 4.1 in [3]). Therefore, the set

E={xeR:Mlf(x)>\f(x)\}
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is open and hence E can be written as

where (a,, Pj) are disjoint open intervals.

LEMMA 2 . With the definitions above, the following hold.

(a) Mif is a nonincreasing function on each Ij.

(b) Mif is a. locally Lipschitz function on each Ij. In particular, Mif is an
absolutely continuous function on each compact subinterval of Ij.

PROOF: (a) Take K = [a, P] C Ij. It suffices to prove that Mif is nonincreasing
on K. By the continuity of | / | and Mif we have

e = m f M / ( s ) - | / ( s : ) | > 0 .

By the uniform continuity of | / | there exists 8 > 0 such that

(6)

The definition of e and (6) imply that

(7) Mif(x) = sup - f \f(y)\ dy, x € K.
s>6 S Jx-s1 I

We shall see that

(8)

Suppose that s > 6. Then, from (6),

(9) i f \f(y)\dy = a-Z± . * /X"h|/(y)| dy+^-U' \f(y)\ dt
S Jx-s] ' S S — n Jx-s ' ' S n Jx-h' '

<!" mnv) KA f'(T* h\ 1 /̂*>»^ I i I

Taking the supremum on the left-hand side of (9) when s > 8, we have

Mif(x) ^ max{-M,/(a: - h), \f(x)\ + £-\

by (7). By the definition of e we also have MJ(x) > \f{x)\ +e. Thus, we obtain (8).

(b) Let K and 5 be as in the proof of (a). Suppose that x,x + h € K, h > 0, and
s > 5. Then it follows from (a) that
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(10) ]£jf(y)\dy-M,f(x + h) < ± £ J/(y)|«fo - ̂  j^f {y)\dy

Mifjx)

if {a)
n.5- j

0

Taking the supremum on the left-hand side of (10) when s > 6, we obtain

0 ̂  Mif(x) - Mif(x + h)^Ch

by (7) and (a). D

PROPOSITION 3 . If f £ W^CR), then the distributional derivatives of Mtf
and MTf axe integrable functions, and

(11)

PROOF: We shall prove the proposition only for Mif. We note that if / € W1>X(R),
then | / | € W ^ R ) and

(12) 11/11 = ll/'lli
(see [2]).

Recall that

i i

Set F = H\E. From Lemma 2, Mif is diferentiable almost everywhere on each /,-, and
the derivative, i; say, satisfies u < 0. We shall prove that the weak derivative of Mif is
given by

(13) {M,f)' = XBV + XF\f\\

where XE and XF denote the indicator functions of the sets E and F.
For a test function <p G 2?(R) we see that

(14) jf Mtf{yW{y) dy = [ l / ^ ) ^ ^ ) - |/(a,-)|tf(a,-)] - ^ «

by the continuity of Mif and a limiting argument. (Here, and later, if a.j = -co or
if /3j = +oo, then f(otj) = 0 and /(/?,•) = 0; similar remarks apply to MJ{aj) and
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Mif(Pj).) It follows from (14) that

LMlf(y)<f>'(y)dy
JR.

JF\f(y)\<i>'(y)dy

jB \f\\v)*(v) dy - J£ v{y)<t>{y) dy + JF\f(y)\<fi'(y) dy

(y) dy + j£ \f\'(y)Hy) dy - JE v(y)<t>(y) dy

= ~ L(xE(y)v(y)+XF(y)\f\'(y))<P(y)dy.

This relation implies (13).

Now, we shall prove (11). For each interval Ij, since v ^ 0, we have

(15) ^Jw(j,) | dy =

From (15) and (12) we obtain

|(W)1L = /BH + /Jl/l1<|l/l1i = ll^- D
We need one more lemma.

LEMMA 4 . Let / and g be (real valued) integrable functions on the line, and set

F{x) = r f{y)dy, G(x) = [* g{y)dy, and H(x) = maxJF(x), G{x)\. Then the weak

derivative of H is an integrable function, and

This lemma can be proved easily (see [2, Lemma 7.6]).

The theorem now follows from (5), Lemma 4 and Proposition 3.
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