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ANY 2-SPHERE IN £3 WITH UNIFORM INTERIOR 
TANGENT BALLS IS FLAT 

R. J. DAVERMAN AND L. D. LOVELAND 

Introduction. This paper addresses some flatness properties of an 
in — 1)-sphere 2 in Euclidean n-space En resulting from the presence of 
round balls in En tangent to 2. The notion of tangency used here is 
geometric rather than differentiable, for a round n-cell Bv (that is, the 
set of points whose distance, in the standard metric, from some center 
point is less than or equal to a fixed positive number) is said to be tangent 
to the (n — 1)-sphere 2 in En at a point p Ç 2 if p £ Bp and Int Bv C\ 2 
= 0. The ball Bp is called an interior tangent ball at p if Int Bv C Int 2 ; 
otherwise, it is called an exterior tangent ball at p. The sphere 2 is said 
to have double tangent balls over a subset K of 2 if 2 has both an interior 
and an exterior tangent ball at each point of K, and 2 is said to have 
uniform interior (exterior, double) tangent balls over a subset K if there 
exists a collection 38 of round w-cells of some fixed radius 5 such that for 
each p £ K C 2 there is an element of 38 that is an interior (exterior, 
double) tangent ball to 2 at p. 

Questions concerning the implications such geometric structures have 
on the flatness of surfaces can be traced to the late 1950's. Perhaps 
suspecting that the existence of double tangent balls over a 2-sphere 2 
in E3 was somewhat analogous to 2 being smoothly embedded, Bing [4] 
asked if 2 C Es was necessarily flat when it has double tangent balls at 
each of its points. After Griffith [16] did the case where 2 has uniform 
double tangent balls, Loveland [17] and Bothe [5] independently gave an 
affirmative answer to Bing's question. Daverman and Loveland [10] cast 
doubt about higher dimensional analogues by exhibiting a wild (n — 1)-
sphere in En having uniform double tangent balls over its wild set, for it 
seems likely that this example could be smoothed out, away from the 
wild set, to one with (nonuniform) double tangent balls everywhere. 

Studied here is the problem of whether the existence of uniform 
interior or exterior tangent balls implies flatness of the (n — 1)-sphere 2, 
a question first raised by Loveland [17], for the case n = 3, and the only 
one of four he mentioned there that remained open until now. Cannon's 
answer [8] to one of the others is of particular significance for this paper, 
because it follows from Cannon's *-taming set theory [8, Corollary 6] 
that a 2-sphere in Es is flat from its exterior if it has interior tangent balls. 

Received June 11, 1979. The research of the first author was supported in part by 
NSF Grant MCS 76-07274. 

150 

https://doi.org/10.4153/CJM-1981-014-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-014-5


2-SPHERES IN E 3 151 

We show tha t such a 2-sphere 2 in E 3 is flat if it has uniform interior 
tangent balls; in light of Cannon's work, this amounts to showing tha t 2 
is flat from its interior if it has uniform interior tangent balls. The 
argument provided works only for 2 C E3 , al though portions of it shed 
light on certain special higher dimensional cases. We also describe an 
example of a wild (n — 1)-sphere 2 in En (n > 3) having uniform 
exterior tangent balls. I t blocks the extension to higher dimensions of 
Cannon 's result about flatness from the interior, because the wildness is 
found in its interior, not its exterior. As a result, the question asking 
whether an (n — 1)-sphere in En (n > 3) is flat from its interior if it has 
uniform interior tangent balls s tands unsolved. 

I t follows directly from our Theorem 2.7 tha t the e-boundary of a 
subset A of E 3 is locally flatly embedded in E 3 a t each point where it is 
locally a 2-manifold, which answers a question raised by Weill [23, p . 
248]. If e is a positive number, A C E3 , and d denotes the usual metric 
for E 3 , the e-boundary d(e, A) of A is defined as |x Ç En\d(x, A) = ej. 
Weill called this the e-envelope of A and asked about its flatness in E 3 

when it is a 2-sphere [23]. In this situation Weill observed tha t the 
2-sphere d(e, A) would be flat from one side if A were contained entirely 
on the other side. Loveland [18, p. 359] pointed out t ha t d(e, A) is flat 
if it is an in — 1)-sphere in En, n ^ 4, and if A intersects both comple­
menta ry domains of d(e, A). The restriction n ^ 4 is superfluous in view 
of Loveland's work [18] in combination with Corollary 2.3 of [10]. 

Theorems known to apply for all Euclidean spaces are gathered 
together in Section 1 while the main 3-dimensional results are located in 
Section 2. Section 3 contains examples and Section 4 is devoted to 
e-boundaries. 

The authors would like to express their indebtedness to the referee for 
several useful suggestions. 

1. Def in i t ions , n o t a t i o n , and h i g h e r - d i m e n s i o n a l t h e o r e m s . Let 
2 denote an (n — 1)-dimensional sphere in En, S3 a uniform collection 
of interior tangent balls over a subset K of 2 , and <5 the common radius 
of the elements of S§. The sphere of directions Dv a t a point p in 2 is the 
(n — 1)-sphere of radius 8 whose center is p. Precisely stated, a normal 
to S a t p is a vector from p to the center of some element of Se t ha t 
contains p, al though the set Np of normals a t p is most often viewed as 
the set of terminal points of such vectors. In this lat ter sense Np lies in 
Dp; in fact, as Lemma 1.1 verifies, Np must lie in some hemisphere Hp 

in Dp. 

LEMMA 1.1. If an (n — 1 ) -sphere S in En has a collection Se of uniform 
interior tangent balls at a point p of 2 and Nv is the corresponding set of 
normals, then Np lies in a closed hemisphere in the sphere Dp of directions 
at p. 
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Proof. Let [pi] be a sequence of points of Ext 2 converging to p, and 
choose, for each i, the point rt of Dp such that pt lies between p and r x. 
Let Y be a point to which some subsequence of \r ̂  converges, and define 
Hp to be the closed hemisphere of Dp farthest from r. If there exists a 
point n of Np — HP, the ball B centered at n and tangent to 2 at p must 
contain a point pu which contradicts the fact that B C\ Ext 2 = </>. 

The next two geometrical lemmas are stated without proof. 

LEMMA 1.2. 7/x G £w and «^ is any closed collection of round n-cells such 
that each element of S$ contains x and x lies in the interior of some element 
of S§, then the union of the elements of Se is a star-like n-cell (hence, its 
boundary is bicollared). 

LEMMA 1.3. Let D be an (n — 1)-sphere of radius 8 centered at a point p 
in En, let H be a closed hemisphere in D, and let N be a compact subset of 
Int H. Then the intersection of the set of all round n-balls having p in their 
boundaries and centered at points of N is a convex n-cell with p in its 
boundary. 

See the proof of Lemma 2.2 for an argument that will establish Lemma 
1.3. 

Playing on the words ''stable" and "unstable" used in [10], given a 
collection Se of uniform tangent balls to 2 defined over K, we define 

S = {p G K\ there exists a hemisphere Hv in Dv such that Nv C Int Hv), 
U = \p G K\ for every hemisphere Hp of Dp containing NP1 Np P\ Bd HP 

9* 0}. 

THEOREM 1.4. If 2 is an (n — 1)-sphere in En having a collection S§ of 
uniform interior tangent balls over an (n — l)-cell K in 2 and if 
p G S P\ Int K, where S is defined above, then 2 is locally bicollared at p. 
Consequently, 2 is locally flat at p. 

Proof. Since K is closed we may assume Se is closed and Np is compact. 
From the definition of S, there exists a closed hemisphere Hp of Dp whose 
interior contains Np. By Lemma 1.3 the intersection of all elements of Se 
centered in Np is a convex n-ce\\ Z with p in its boundary. Choose 
x G Int Z, and let E be an in — l)-cell in K such that p G Int E and E 
is so small that any ball of Se that intersects E also contains x in its 
interior. The last condition is possible because Se is closed. Let B* denote 
the union of all balls in Se having x in their interiors. From Lemma 1.2, 
Bd B* is a bicollared (n — l)-sphere. Since E C B d $ * , 2 is locally 
bicollared at each point of Int E. The local flatness of 2 at p follows [6]. 

COROLLARY 1.5. If an (n — 1)-sphere 2 in En has uniform interior 
tangent balls at each point, then 2 is locally flat modulo the set U (U is 
defined as above with K = 2) . 
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The set W of points where an (n — 1)-sphere 2 in En fails to be locally 
flat is called the wild set of 2. Although not used in this paper, Theorem 
1.6 gives a dimension restriction on W when 2 has interior tangent balls 
(not necessarily uniform) over W. A stronger restriction on the dimension 
of W is not even possible when the one-sided tangent balls are known to 
be uniform (see Section 3). 

THEOREM 1.6. If an (n — 1)-sphere 2 in En has interior tangent balls 
over its wild set W, then W has codimension two in En. 

This is Corollary 2.4 of [10]. 

2. Flatness of 2-spheres with uniform tangent balls. In this 
section 2 denotes a 2-sphere in Es, K is a subset of 2 usually representing 
either a 2-cell or 2 itself, and 38 is a collection of uniform interior tangent 
balls over K. The objective, to prove that Int K is locally flat, is accom­
plished in two steps. First the wildness is confined to a finite set F (see 
Proposition 2.4), and next the wild set is proven empty (Theorem 2.7). 
Subsets E and F of K are defined as 

F = {p G K\ for every hemisphere Hp of Dp containing Np, 
BdHpCNp}, and 

E = {p G K\ there exists a hemisphere Hp of Dp containing Np such 
that BdHp ÇL Np). 

From Lemma 1.1 it is clear that K = E U F. In terms of the sets S and U 
of Section 1, 5 lies in E and F lies in U. 

LEMMA 2.1. If K is a compact subset of a 2-sphere 2 in Ez such that 2 
has uniform interior tangent balls over K and F is defined as above, then F 
is a finite set. 

Proof. It may be assumed that the common radius 5 of the hypothesized 
set 38 of uniform tangent balls is ever so much smaller than the diameter 
of S and that 38 is closed. Then F is compact. If F were infinite, there 
would be a sequence {p(i)\ in F converging to a point p(0) G F. By the 
definition of F each p(i) carries with it a full great circle in DP(i) of centers 
of elements of 38. For each i, let Vt be the union of the balls from 38 
centered somewhere in this circle. Since { Vt} converges to F0 it is clear 
that, for some i, Vf U Vo would separate Ez with 2 forced to lie in a 
component of diameter less than 5. 

The next lemma is designed to apply to points of E; when coupled 
with Lemmas 2.1 and 2.3, it eventually leads to the conclusion that 
W H Int K C F, where W is the set of wild points of S. 

LEMMA 2.2. Let D be a 2-sphere with radius ô centered at a point p G E3, 
let H be a closed hemisphere of D, let N be a closed subset of H, let h be a 
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point of Bd H — N, and let J be the equator of D that contains h and divides 
H into two congruent quarter-spheres Hi and H2. Then, for i = 1, 2, the 
intersection of all 3-cells of radius 8 containing p whose centers lie inHiC\ N 
is a convex 3-cell Zt with p in its boundary. 

Proof. There is an open ball V centered at h and not intersecting N. 
Let G{ = Hf — V for i = 1,2. For a subset X of Gt, X* denotes the 
intersection of all balls of radius ô containing p with their centers in X. 
The basic fact of geometry from which Lemma 2.2 follows is that X* is 
a (convex) 3-cell as long as X subtends a maximal angle at p of less than 
180°. Since Gt subtends such an angle, the result follows. However, it may 
be instructive to know that if G G {Gi, G2} then G* is the intersection of 
the three balls centered at a, 6, and c where c is the antipode of h on D 
and \a,b} is the endpoint-set of the arc Q defined by (Bd V) C\ G. To 
see this, one should first verify the milder assertion that, for any great 
arc of D containing no pair of antipodal points, A* = {<?i}* P\ {e2}*, 
where ex and e2 denote the endpoints of A. Writing G as the union of 
circular arcs Ax from points x of Q to c, one has expressed Ax* as 
{x}*n {cj*, so that 

G* = r\A* = n ({x}*n {c}*) 
= (n {x}*) n {c}* 

It follows that (N H G)* is a (convex) 3-cell containing the 3-cell G*. 

The next lemma is an immediate consequence of Theorem 4.1 of [20]. 

LEMMA 2.3. / / K is an {n — \)-cell in the boundary 2 of a crumpled 
n-cell C in En and if Bx and B2 are flat n-cells in C such that X C B d ^ i U 
Bd B2, then Int X is 1 — LC at each point of Int K. 

PROPOSITION 2.4. If K is a 2-cell in a 2-sphere 2 in Ez such that S has 
a closed set of uniform interior tangent balls over K, then 2 is locally flat at 
each point of Int K — F, where F is the finite set defined above. 

Proof. If p G (Int K) C\ E, then the definition of E allows the applica­
tion of Lemma 2.2, whose conclusion gives two 3-cells Z\ and Z2 with the 
properties stated there. Let z\ and z2 be points in the respective interiors 
of these cells. Since zt lies in the interior of Zt and the set Se of uniform 
tangent balls is closed, there must be a subdisk M of K such that 
p G Int M and every element of 3§ tangent to 2 at a point of M contains 
either z\ or z2 in its interior. Let Bui = 1, 2, be the union of all elements 
of Se whose interiors contain zt. Then Bt is a flat 3-cell (see Lemma 1.2) 
for each i, and M lies in the boundary oî Bi^J B2 which lies i n 2 U Int 2. 
From Lemma 2.3, Int 2 is 1 — LC at p. Then from [2], 2 is locally flat 
from Int 2 at each point of Int K. Furthermore, by Cannon's *-taming 
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set theory [8], 2 is also locally flat from Ext 2 at each point of Int Ky so 
Proposition 2.4 follows, with Lemma 2.1 giving the finiteness of F. 

Remark. An initial study of the crucial ingredients in the proof of 
Proposition 2.4 might lead one to believe that a proof of the flatness of 2 
at points of F can be constructed along similar lines. If p belongs to F it 
is clear that a closed hemisphere Hv containing Np is the union of three 
sets Gi, G2, and G3, no one of which contains antipodal points of Dp. An 
extension of Lemma 2.2 would yield three convex cells Zi, Z2, and Z3 such 
that each ball of 38 containing p contains one of these convex cells. As 
in the proof of Proposition 2.4 the existence of a 2-cell M in 2 and three 
star-like 3-cells Bu B2, and -S3 in 2 W Int 2 could be established such 
that p G Int M and M C Ut=i Bd Bt. Then a generalization of Lemma 
2.3, to cover three flat cells rather than two, would yield the desired 
flatness at p. However, this proposed approach is doomed to fail; Lemma 
2.3 cannot be generalized from two to three flat cells (see [20]). 

The following geometric proof that 2 is also flat at points of F was 
developed long after we had established Proposition 2.4. The difficulties 
in the proof can be captured by attempting to prove that the Fox-Artin 
[13] sphere does not have uniform tangent balls on its wild side. Before 
continuing to the proof of Theorem 2.7 the reader might find it interesting 
to verify that the next two results, which are simple consequences of 
Theorem 2.7, can also be deduced from Proposition 2.4. 

COROLLARY 2.5. If 2 is a 2-sphere in Ez and 38 is a countable closed set 
of uniform interior tangent balls over 2, then 2 is flat. 

COROLLARY 2.6. / / a crumpled cube C in Ez contains a finite set of round 
3-cells whose union contains Bd C, then C is a 3-cell. 

Notice that Corollary 2.5 is false when "uniform" is removed from its 
hypothesis. Corollary 2.6 is worth mentioning because of its connection 
with previous work by Loveland [19] and Pixley [22] concerning the 
flatness of the boundary of a crumpled cube C when it is the union of 
various sorts of 3-cells. 

THEOREM 2.7. If a 2-sphere 2 in Es has uniform interior tangent balls 
over 2, then 2 is flat. 

Proof. Here 381 will denote the hypothesized set of uniform interior 
tangent balls, having common radius h. Expanding 381 to include all balls 
of radius <5 tangent to S from the interior, we regard 38* as a closed 
collection. 

It is convenient to improve this to a new closed collection 38 of interior 
balls such that B C\ 2 is a single point and the radius of B equals 2, for 
each B Ç 38'. To achieve this, we scale measurements so that 8 > 2 and 
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then name Se as the set of all balls B having radius 2 such that there exist 
^ 2 and c G Dp (the sphere of directions about p, with radius 2), where 
c is the center of B and lies in a segment from p to the center of some 
ball from 3i§ tangent to 2 at p. 

According to Proposition 2.4, 2 is locally flat modulo the finite set F 
defined earlier. Let p G F and let 3è\ denote the set of all balls in Se 
containing p. By the definition of F, in the sphere Dp of directions there 
is a hemisphere Hp whose boundary is covered by the centers of elements 
from Sêv. 

We impose coordinates on Es with origin at p so that Bd Hp lies in the 
horizontal x^-plane and that the part of 2 — \p) near p lies vertically 
above the x^-plane. Letting U denote the union of the elements from 3)p 

whose centers are in Bd HPJ we choose an interval [0, u] on the z-axis 
such that the horizontal plane P u defined by z = t, intersects U for each 
/ G [0, u]. (As the proof progresses, we shall restrict u in other ways as 
well, but we prefer to set forth these restrictions as the needs arise.) Then 
the component of QU{Pt\t G [0, u]} — U) having p in its closure is a 
bugle-shaped open 3-cell G that contains a neighborhood of p (but with p 
deleted) in 2. For t G (0, u] we let Gt denote the open circular 2-cell 
G C\ Pt m P t. Figure 1 may help identify some of this structure. 

When Lt is a straight line in Pt intersecting the s-axis at (0, 0, t), we 
say that Lt is projective if no line in Pt parallel to Lt meets two com­
ponents of Gt C\ Ext 2. Later in this section we prove that either 2 is 

A z-axis 

FIGURE 1. 
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locally flat a t p or, after further restrictions on u, there exists a con­
tinuous collection {Lt\0 < t -^ u\ of projective lines, where continuity 
results from a continuous function / of (0, u] into E2 — (0, 0) and each 
line Lt passes through both (0, 0, i) and (f(t), t). 

For now we presume the existence of such a continuous collection {Lt} 
of projective lines; in Lemma 2.13 later on we establish this existence. I t 
is a simple mat te r to find a homeomorphism h of Ed to itself t ha t takes 
each plane Pt onto itself, t ha t fixes points of the s-axis, and t ha t iso-
metrical ly rotates the various circular sections Gt so tha t the segments 
Gt^Lt are all parallel. We shall suppress h and simply assume tha t each 
Lt in the family of projective lines lies in the vertical xz-plane. 

Let A be an arc in (G P\ Ext 2) W {p} t ha t contains p as an endpoint 
and tha t is locally polyhedral modulo p. This arc will serve as a guide for 
constructing a flat arc T in (G C\ Ext 2) KJ {p) having p as an endpoint, 
and the existence of such a flat arc T will imply tha t 2 is locally flat a t 
p [21], proving the theorem at hand. In what follows, the flatness of the 
arc T to be constructed will be deduced from the flatness of an equiv-
alently embedded arc R (not necessarily contained in {p} \J Ext 2 ) , also 
constructed with A as its guide. 

A small adjus tment of A allows the assumption tha t the projection 
7r: A —> {^ys-plane} is regular in the sense tha t ir-l{ir{a)) contains a t most 
two points for each a G A and the "doub le" points of A lie in a decreasing 
sequence {Pta)} of horizontal planes where no Pta) contains two pairs 
of these double points. After giving A an order with p as last point, we 
will construct arcs R and T by inductively performing countably many 
"arc t ransp lan ts" in A. The inductive procedure should be clear from the 
description of the first step and the brief summary of the second step 
tha t follow. 

Let Xi and ji be the two points of P t{\) P A such tha t w(xi) = 7r(x2). 
Insist t ha t Xi precede yi in A, and let JUI denote the subarc of A with 
endpoints in {xi,yi}. Because the line L through Xi and yx parallels a 
projective line in Pt(i), xi and yi belong to the same component W\ of 
Pt(D P Ext 2 . This fact about L is also used in choosing a geometric 
rectangle J\ in P t{\) with two sides parallel to L such tha t Bd W\ touches 
all four sides of J \ , f i C I n t / i , and if L' is a line parallel to L t ha t 
intersects In t Ju then L' intersects only the component W\ of 
G ta) P Ext 2 . Let y be an arc in W\ with endpoints X\ and y\ such tha t 
7 P [#i, yi] is the finite set {xi = si, s2, . . . , sm = yi), and let yt denote 
the subarc of y from Si-i to s2. The object is to adjust each yt slightly 
to an arc (3i with the same endpoints such tha t [s?;_i, st] VJ f3t bounds a 
disk Di in In t J i where A Pi In t Dt = </>. Then an arc 7Y from Xi to 3/1 
could be defined as U /3^ with the assurance t h a t 7Y and [xi, 34] are 
isotopic in In t Ji via an isotopy with support missing all of A C\ P r ( i ) 
except {xi,yi}j which is fixed. Such an isotopy could then be extended 
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to one of E3 to itself, fixed on A and outside a slight thickening of Ext J\. 
At the end of the first inductive step, define 

Tt = (A - MI) U TV and R1 = (A - Mi) W [*i, y i ] . 

To achieve the required adjustment of yt to 0*, let Vt be the com­
ponent of W\ — L containing yt — {st-i, s^ and choose fit in c\(Vi) so 
that no point of A C\ Vt lies in the interior of the disk Dt bounded by 
Pi U [st-i, Si] in Ji. The definition of Ji insures that Dt C\ A C Wu but 
the possibility of there being a point a oî A C\ Int Di} where a belongs 
to a component V/ oi Wi — L different from Vu still exists. To rule 
this out we assume u is less than the number u\ promised by Lemma 2.8 
(stated after this proof) so that if B £ Se contains a point of 2 H G*u)> 
then the radius of the circular 2-cell B C\ P t{\) is at least 1. Now suppose 
such a point a exists in a component V/ of W\ — L where VI 9^ Vt. 
Since a G IntD*, V( C IntZ?* and there is a point Qi of [st-i, Si] C\ 
Ext S in the boundary of V(. Let C denote the point on the non-Di-side 
of L at a distance 1 from both Qi and su and let a be the smaller open arc 
from Qi to st on the circle centered at C. Since a intersects Vi near Q\ 
and Vi C Int Di} there must be a point Z of S H D j i n a . See Figure 2. 
By Lemma 2.8 there is a ball i3 in Se such that 5 C\ Pt{i) contains a 
2-cell K of radius 1, centered at a point X, such that X H ( 2 U Ext 2) = 
\Z\. Since the diameter of Dt is smaller than the length of ZX and 
/S* C Ext 2, X must lie on the C-side of L and ZX must intersect the 
open segment st-iSi. But K does not intersect {^_i, su Qi) and d(J\T, Ci) 
> 1, so Bd K contains an arc /3 on the Z}rside of L whose endpoints lie in 
the open segment QiSi. Since a and /3 intersect at Z, this contradicts 
Lemma 2.9. Thus Z)7 contains no point of A. 

In the second step of the inductive construction the integer n{2) is 
identified as the least of all integers i larger than n( l ) = 1 for which 
Ptd) contains a double point {x2> y2} of Ri under TT, and M2 is the subarc 
of A from x2 to y2. Now the construction of R2 as (R\ — fx2) W [x2, ^2] 
and r 2 as (Ti — /x2) W T2' proceeds just as in Step 1. Again R2 and T2 

are ambient isotopic fixed on A and fixed outside a small thickening of a 
small rectangle J2 in Gn(2>. 

Assuming the inductive construction completed, define 

R = \A - U M.j'W ( G [xityi]J and 

r = [A - u M.) u (u r/). 

Then .R and 7" are equivalently embedded arcs since they are ambiently 
isotopic. Since T C (Ext 2) KJ \p], the flatness of 2 at >̂ will follow from 
[21] once T is known to be flat, but the flatness of R is more easily 
detected than that of T. Since ir\R\R —» {3/2-plane} takes R to an arc, it 
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FIGURE 2. 

is easy to use T(R) as a guide to see that R is locally peripherally un­
knotted at p and hence flat [15]. 

Next we place further restrictions on the positive number u introduced 
during the proof of Theorem 2.7. 

LEMMA 2.8. There exists ux G (0, u] such that for any B G SS containing 
a point of 2 Pi Gt, t G (0, Wi], the radius of the circular 2-cell B C\ Pt is 
at least 1. 

Proof. The closedness of the collection 3$ of radius 2 interior tangent 
balls implies that, if b denotes the center of B G Se tangent to 2 at 
x G 2 r\ Gu then b approaches Hp as / —> 0. Furthermore, elementary 
geometry reveals that b actually must approach Bd Hv as / —> 0. Con­
sequently, when t is sufficiently small, the radius of B C\ Pt is approx­
imately 2 cos (arc sin(//2)). See Figure 3. 

The next five lemmas are directed toward a proof of the existence of 
the continuous collection of projective lines, as claimed early in the proof 
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z-axis 

FIGURE 3. 

of Theorem 2.7, and the first of these lemmas serves as well to guarantee 
important properties of the isotopy described near the end of that proof. 
In addition to the hypotheses of Theorem 2.7 and to the notation intro­
duced there, we shall use L(A, B) to denote the line determined by two 
points A and B, and SA the circle of radius 1 centered at A. As before, 
the common radius è of the set S8 of uniform interior tangent balls is 
taken as 2, for convenience in writing. A minor arc of a unit circle is an 
arc of a circle of radius 1 whose length is less than ir. 

LEMMA 2.9. Suppose two minor open arcs a and 13 of unit circles in the 
plane lie above the x-axis and have their endpoints on the x-axis, and suppose 
the endpoints of /3 lie between those of a on the x~ax i/S. Then /3 lies in the 
interior of the unit circle containing a. 

Proof. Suppose there is a point of 0 on or above a. Then a must intersect 
/3 at two points X and F, and the centers Ca and C$ of a and 0, respec-
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tively, must lie on the perpendicular bisector L of the chord XY below 
the x-axis. Then C& lies above Ca on L, so a diameter of the circle S$ con­
taining p chosen parallel to X Y has its endpoints outside the other circle 
Sa. As a consequence, Sa and Sp intersect in a t least four points, an 
impossibility. 

If L and V are intersecting lines in En, we use 0(L, L') to denote the 
(radian) measure of the small angle between L and L'. 

LEMMA 2.10. There exists u2 G (0, u\] such that if the points <2i, Q2 and 
Qz of 2 yj Ex t 2 are the vertices of a triangle T in Gt{t G (0, ii2}) with C 
the point where the angle bisectors of T intersect, and if each of the broken 
segments Q1CQ2 and QiCQz intersects 2 in In t Ty then 

6(L(Q1,Q2),L(QlfQ*)) < T T / 1 2 . 

Proof. Choose u2 > 0 such tha t u2 < u\ and if SA is a unit circle in 
Pt (t G (0, u2]) centered a t A and Q and Q' are points of SA C\ Gt, then 
Z-QAQ' < 7r/24. Choose t < u2 and let Qu Q2, Qz, C and T be as hypo­
thesized. Let Z be a point of 2 in QiCQz such tha t Z G {(?i, Q3}. By 
Lemma 2.8 there is a circular 2-cell i£ in Pt with radius 1 such tha t 

Z G B d Z and X H ( 2 VJ Ext 2Î) = \Z\. 

The size of K compared to Gt insures tha t Bd K contains a minor arc fi 
t ha t intersects In t T and whose boundary lies in one of the three open 
segments QiQ2, QiQz, Q2Qz. 

We now consider the case where the point Z lies on Q\C, where two 
subcases result. Case ( l a ) deals with Bd fi C Q1Q2 which is the same 
situation as Bd fi C QiQz- In this case let A be the point of Pt dit a 
distance 1 from both Qi and Q2 and on the non-(Vside of L(Qi, Q2). By 
Lemma 2.9, Z G I n t 5 A . This means a subsegment QiY of QiC, the 
bisector of the angle of T a t Qu lies in In t SA. Let <j> denote the angle 
between L(Qi, Q2) and the line tangent to SA a t Q\. Then 

^Q2QiQz < 20 = 2(ZQ1AM) 

where M is the midpoint of QiQ2. By the choice of u2, 

2{AQlAM) = Z.QiAQ2 < TT/24. 

These facts imply Z.Q2QiQz < 7r/24. Thus in Case ( l a ) , 

0(L(Qlt Q2), L(QU Qz)) = /-Q2QxQz < TT/24 < TT/12, 

as desired. 
In Case ( l b ) , let Z belong to Q\C as in Case ( l a ) , bu t require t ha t 

Bd fi C Q3Ç2. Proceed just as in Case ( l a ) with A now a t distance 1 from 
Qz and Q2. However, in this case subsegments QzY and Q2Y' of QzC and 
Q2C can be found to lie in In t SA. Then, as before, both Z QiQ2Qz and 
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Z QiQzQi of T are less than 7r/24. By the Exterior Angle Theorem it 
follows that 

e(L(QuQ2),L(QuQ,)) = £QiQ2Q* 

+ /-QiQzQ2 < TT/24 + TT/24 - TT/12. 

In Case 2 we assume Q\C does not contain a point of 2 different from 
Qi. The hypothesis then requires that both Q2C and Q3C intersect 2 at 
their interiors. Let Z and Z' be points of 2 in the interiors of Q2C and 
Q3C, respectively, and use Lemma 2.8 to obtain two unit circular 2-cells 
K and K' such that Z G Bd X, Z ^ B d X ' , and (K\J K') C\ 
(2 U Ext 2) - {Z, Z '} . Then Bd X and Bd K' contain minor arcs p 
and £', respectively, each intersecting Int T and each having endpoints 
in the interior of exactly one of the intervals QiQ2, QiQz, QiQz- If 
Bd p C G3Ç2 or Bd 0 C <2i(?2, then Case (la) applies to show ^QiQ2Q, 
< TT/24:. Similarly if Bd ft C Q2Q3 or Bd ft C Q1Q3, then Z.QiQzQ2 < 
7r/24. In these situations the Exterior Angle Theorem applies to show 

KL(Qi,Q2),L(Q1,Qz)) < ir/12. 

Otherwise, either Bd /3 C Ç1Ç3 or Bd ft C Q1Ç2. These cases are alike, 
so assume Bd /3 C Q1Q2. As in Case (lb), the angle at Qx is less than 7r/24. 
The result follows. 

LEMMA 2.11. If 0 < / < u2 and L and L' represent straight lines in Pt 

that each touch two components of Gt C\ Ext 2, then 6(L, Lf) < 7r/4. 

Proof. Choose points Q\ and Q2 on L and lying in distinct components 
of Gt Pi Ext 2. Let Ri and R2 be points of L' in distinct components of 
Gt C\ Ext 2. As a special case, let R\ = Qi, and let C be the intersection 
of the angle bisectors of the triangle T determined by Qi, Q2, R2 in Pt. 
The hypothesis of Lemma 2.10 that both Q\CR2 and QiCQ2 intersect 2 
is clear, so 6(L, V) < ir/\2 in this case. 

In the general case where Qi, Q2, Ri, R2 are distinct, we may assume 
Qi and R2 are in distinct components of Gt C\ Ext 2. Define L" = L(Çi, 
R2). Then 6(L, L") < 7r/12, by the special case, and for the same reason 
0(L", V) < IT/12. Then 

6(L, V) ^ 6(L, L") + 0(L", L') < 2(TT/12) = TT/6 < TT/4. 

LEMMA 2.12. If 0 < / < u2, L is a straight line in P t that touches at leas I 
two components of GtC\ Ext 2, and L* is a line in Pt such that 6(L, L*) < 
7r/4, then the line Lt through (0, 0, /) and perpendicular to L* in Pt is 
projective. 

Proof. If Lt were not projective, there would be a line L/ parallel to Lt 

such that L/ touches at least two components of Gt P\ Ext 2. Then by 
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Lemma 2.11, 0(L, Lt) < 7r/4, SO tha t one would deduce 

TT/2 = 6(L*, Lt) g 0(L*, L) + 0(L, L ( ) < 2(ir/4) = *r/2, 

which is impossible. 

LEMMA 2.13. Either 2 is locally flat at p or there exists a continuous 
family {Lt\t £ (0, u2]\ of projective lines. 

Proof. Let A be an arc in {p} U Ext 2 containing p as an endpoint 
such t ha t A is locally polyhedral modulo p and no two of its vertices lie 
in a common plane Pt. Since 2 is locally flat modulo p (to be accurate, S 
is locally flat modulo F, but the points of F — {p} are ignored), there 
exists a " t a m i n g " homeomorphism h of £ 3 to itself, fixing points of 
A \J (U{BdG*|* G (0, «i]}), such tha t ft(2) is locally polyhedral 
modulo p, no two vertices of ft ( 2 — £) lie in a common plane P*, no 
vertex of ft ( 2 — p) lies in the same plane as a vertex of A} and 
ft(2 — £>) C Int 2 . Turned inside out this last condition states, of 
course, t ha t Ex t ft(2) 3 Ext S and guarantees tha t any two points of 
Ext 2 from distinct components oî Gt C\ Ext ft(2) are found in distinct 
components of Gt Pi Ext 2 . We shift the focus from 2 to ft(2), a small 
ma t t e r since certainly one of these spheres is locally flat a t p if and only 
if the other is. 

To construct the desired family of projective lines it is convenient to 
know tha t A intersects a t least three components of Gt(^ Ext ft ( 2 ) when­
ever t is sufficiently close to 0. We now show tha t unless this is t rue, the 
desired conclusion tha t 2 is locally flat a t p follows. Let t(i) be a decreas­
ing sequence in (0, U\] converging to 0 such tha t A intersects a t most 
two components of Gta) P Ext ft(2), for each i. T h e proof of the flatness 
of 2 a t p follows from the construction of a new arc A' such tha t 
p 6 Bd A'', A' — [p\ C Ext 2 , and A' C\ Pt{i) is a single point for each i. 
Such a locally peripherally unknot ted arc is flat [15] and is sufficient to 
insure t ha t 2 is locally flat a t p [21]. 

The arc A' is constructed inductively using A as a guide. First wre may 
assume tha t A pierces each plane P ta) a t each intersection and t ha t A is 
ordered with p as its last point. Let %\ be the first point of A in Pt(i), let 
Vi be the component of Gt{i) P Ext 2 containing Xi, let yi be the last 
point of A in Vi, let /xi be the subarc of A bounded by {xi, yx}, and let 71 
be an arc in V\ from Xi to y\. Then the arc {A — Mi) P ? i can be adjusted 
near 71 to an arc A\ whose intersection with V\ is a t most one point. If 
A\ C\ Pt{\) is a single point , let A\ = A\. Otherwise, A\ intersects a 
second component of Gt(i) ^ Ext 2 , and the same process can be applied 
again to adjust A\ . After a finite number of steps, we produce an arc A\ 
meeting P t ( 1 ) in a singleton set. This ends the first step of the inductive 
construction of A', which will be realized as \p) U {lim^4zj , and the 
remaining steps of the construction should now be clear. 
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Restrict u2 further to be smaller than the number promised by Lemma 
2.10. 

Next we show that for each t G (0, ih] there exist disjoint straight line 
segments at and (3t in A and a neighborhood Mt of t such that atC\ Ps 

and f3tC\ Ps are points in distinct components of Gs C\ Ext 2 (s £ Mt). 
There are several cases to consider, the most obvious one occurring when 
the level Pt contains no vertex of A \J h(2). In case Pt contains a vertex 
vt of A, we use the fact that Gt C\ Ext ft(2) has three components inter­
secting A to choose points at and b t of A C\ P t from components Wt and 
Vt of G , H Ext ft(S) where Wt ^ F , and ^ $ IF, U F„ and name 
disjoint line segments at and /3t containing these points in their interiors; 
if Mt is a neighborhood of t close enough to t that no point of 
Bd at U Bd /3j and no vertex of ft(2) lies in Ps, s Ç ¥ h one can readily 
show that at C\ Ps and fit C\ Ps lie in distinct components of Gs C\ Ext 
ft(2) and thus the desired property holds. In case Pt contains a vertex of 
ft(2), choose two points x and y from distinct components of Gt C\ Ext 
ft(2) and name disjoint segments at and $t'm A with x and 3/ in their 
respective interiors. Then a neighborhood Mt of / must exist so that 
at r\ Ps and f31 (^ Ps lie in distinct components of Gs C\ Ext 2 for 
each 5 £ Af̂ . To verify the existence of Mu suppose a sequence \t(i)\ of 
numbers exists converging to t such that at r\ Pta) and /3t Pi P^o ^ e in 

the same component of Gta) P Ext 2, for each i. Then, for each i, there 
would be an arc in P id) C\ Ext 2 joining at C\ P t{%) and (3t P P ta)- A 
subsequence of these arcs would converge to a continuum M in 
(2 VJ Ext 2) C\ P t containing x and y. Since 

M C (2 U Ext 2) H P , C (Ext ft (2)) H P „ 

this contradicts the fact that x and y were chosen in different components 
olGtr\ Extft(2). 

Mark off a sequence {J(i)|i = 0, 1, 2, . . .} of numbers from (0, u2], 
starting with /(0) = U2 and decreasing to 0, so that each interval 
[t(i + 1), t(i)} is a subset of some Mt. Consequently, for i = 1, 2, . . . 
the choice of some Mt containing [t(i), t(i — 1)] secures straight line 
segments at and f3i for which atr\Ps and /3tr\Ps are points from 
different components of Gs P\ Ext 2 when 5 £ [t{i),t(i — 1)]. By Lemma 
2.12, the line Ls in Ps through (0,0,5) perpendicular to L{atC\ PSi 

(3f C\ Ps) is projective. It should be obvious that for i = 1 , 2 , . . . these 
perpendiculars {Ls\s G [t(i), t(i — 1)]} form a continuous family. The 
only trouble results from ambiguity at the levels t(i) of overlap. The 
ambiguity is small in scale, for according to Lemma 2.11, 

e(L(ai r\ p t ( i h Pi r\ Pa»), L(ai+1 n p< ( 0 > pt+1 n p t { i ) ) < TT/4. 

Consequently, for 5 G [t(i), t{i + 1)) near /(i) we can twist the lines Lsy 

limiting to 7r/4 the angular modification in any one line, until the twisted 
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bottom line is perpendicular to L(ai+1 C\ Ptd), ^ + I ^ ^ K J ) ) I thereby 
forming a well-defined, continuous family {Ls\s £ (0, Ui]}. Lemma 2.12 
supports the final claim that such lines are projective. 

The flatness of a 2-sphere or a 2-manifold 2 in E3 can be detected 
with less stringent conditions on the uniform tangent balls. In the 
following theorem and its corollary the tangent balls are not required to 
all lie on the same side of 2. 

THEOREM 2.14. If K is a 2-cell in a 2-manifold 2 in Es and 5 is a positive 
number such that, for each p £ K, there is a ball of radius 8 tangent to 2 at 
p, then 2 is locally flat at each point of Int K. 

Proof. Local separation properties imply that there is a connected 
neighborhood N of K such that N — 2 has two components U and V, 
each with limit points in K. Restricting <5, if necessary, we can suppose 
each B G S% tangent to 2 at a point p £ K lies either in CI U or in CI V. 
Define subsets / and E of Int K by placing p in / or E, respectively, 
depending on the existence of a ball B of £§ tangent to 2 at p with 
B C CI U or with B C CI V. Then Int K C / VJ E, and S has uniform 
double tangent balls over I C\ E. From an obvious local version of 
Theorem 2.7, 2 is locally flat at each point of Int K — (I C\ E). By 
Corollary 6 of [8], it is also locally flat at points oi I C\ E. 

COROLLARY 2.15. A 2-manifold 2 in E3 is locally flat if there exists a 
positive number 8 such that every point of 2 lies in a round 3-cell of radius 8 
whose interior misses 2. 

3. Wild spheres in En(n > 3) with uniform exterior tangent balls 
everywhere. These examples are obtained by the technique of inflating 
crumpled (n — 1)-cubes, as first described by Daverman [9, Section 11]. 
The basis for this procedure is a crumpled (n — l)-cube C in En~1 (that 
is, C is the closure of the bounded complementary domain of an (n — 2)-
sphere in En~l) such that the interior of C is not 1-LC at any point of 
Bd C and that C Uw C is homeomorphic to 5W_1. Perhaps the simplest 
example to cite is the (n — 4)-fold suspension C of a crumpled 3-cube C, 
like that of Bing [3], where C Um C is topologically 53 [11, Corollary 2] ; 
then C Uw C is naturally homeomorphic to the (n — 4)-fold suspension 
of C Uw C7, which is Sn~l. For technical reasons we require the diameter 
of C C En~l to be less than 1. 

Now we describe a kind of rolled inflation of C in terms of the inflation 
function 

fix) = 1 - [1 - (d(x, Bd C))2]1/2 

defined on C. Typically with this procedure, the (n — 1)-sphere 2 we 
want is 

2 = {(x, t) e En~l X E'\x e C,t = ±f(x)\. 
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Since 2 decomposes into upper and lower sections corresponding to the 
graphs o f / a n d — / , respectively, intersecting in the set Bd C X {0}, one 
can identify 2 with C U w C to see t ha t it is an (n — 1)-sphere. Fur ther ­
more, it is wildly embedded a t every point of the (n — 2)-sphere 
Bd C X {0}, because In t C X {0} is a s trong deformation re t rac t of 
In t 2 via vertical deformation and, therefore, In t 2 is not 1 — LC a t any 
point of Bd C X {0}. Wi th the part icular inflation func t ion / (x ) named 
here, one can easily show t h a t the set 31 of balls having radius 1 and 
centered a t points of Bd C X { ± 1 } const i tutes a collection of uniform 
exterior tangent balls over 2 . 

4. A p p l i c a t i o n s to e -boundar ies i n E3. Following earlier discoveries 
by Brown [7] and Gariepy and Pepe [14], Ferry [12] proved t h a t 
e-boundaries of sets in £ 3 are 2-manifolds for almost all e. He also proved 
a collaring theorem [12, Theorem 4.1] t h a t implies the flatness of an 
e-boundary d(e, A) of a subset A of En if it is a codimension-one manifold 
and e lies in an interval containing none of his * 'critical va lues" . Theorem 
2.7 of Section 2 applies in case n = 3 to yield the local flatness of d(e, A) 
a t each point where it is a 2-manifold. This answers in the affirmative a 
question by Weill [23, p . 248]. 

T H E O R E M 4.1 . If A is a subset of E*, e > 0,D is an open subset of d(e,A), 
and D is a 2-manifold, then D is locally flat in Ed. 

Proof. Let p £ D. Choose a 2-cell M' in D such t h a t p £ In t M' and 
M' lies in a 2-sphere 2 [2, Theorem 5]. For each x £ M' there is a point ax 

in the closure of A such t ha t dix, ax) = e. T h e ball Bx centered a t ax with 
radius e intersects M' only in its boundary . Let SS be the collection of 
all such balls as x varies over M'. Let M be a 2-cell in In t M' with 
p G In t M, and let Ô = min{e, d(M, 2 - M')}. For each x 6 M choose 
a ball 5 / in some element of Se such t h a t x £ Bd 5 / and 5 / has radius 
<5, and let «â?' be the resulting collection of such balls. Then 38' is a 
uniform collection of tangent balls to S over M, and by Theorem 2.14 S 
is locally flat a t p. T h e result follows. 

COROLLARY 4.2. If A C E* and e is a positive number such that the 
e-boundary d(e, A) of A is a 2-manifold, then d(e, A) is locally flat in Ez. 

T h e s ta tus of the higher dimensional analogue to Corollary 4.2 remains 
an open question; however, a part ial solution is worth noting. 

T H E O R E M 4.3. If A C En, e > 0, and d(e, A) is a connected (n — 1)-

manifold such that A intersects both complementary domains of d(e, A) in 
En, then d(e, A) is flatly embedded in En. 

Proof. T h e hypothesis easily implies t ha t d(e, A) has uniform double 
tangent balls (see [18, Theorem 5.1]), so Theorem 4.3 follows from 
Corollary 2.3 of [10]. 
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