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CENTRES OF RANK-METRIC COMPLETIONS 

DAVID HANDELMAN 

In this paper, we are primarily concerned with the behaviour of the 
centre with respect to the completion process for von Neumann regular 
rings at the pseudo-metric topology induced by a pseudo-rank function. 

Let R be a (von Neumann) regular ring, and N a pseudo-rank function 
(all terms left undefined here may be found in [6] ). Then TV induces 
a pseudo-metric topology on R, and the completion of R at this 
pseudo-metric, R, is a right and left self-injective regular ring. Let Z( ) 
denote the centre of whatever ring is in the brackets. We are interested in 
the map Z(R) -» Z(R). 

If R is simple, Z(R) is a field, so is discrete in the topology; yet 
Goodearl has constructed an example with Z(R) = R and Z(R) = C 
[5, 2.10]. There is thus no hope of a general density result. 

However, we show that in many cases, Z(R) is algebraic (or "almost 
algebraic") over Z(R). This holds, for example if (a) R is algebraic over a 
central field F, or if (b) R is a direct limit as an F-algebra (F a field) of 
finite products of simple self-injective regular rings Rt where each Z(Rt) is 
algebraic over F. Result (b) (Theorem 1.5) requires a deep and surprising 
result of von Neumann [7]. We therefore give an independent proof of the 
following result (also covered by (b) ), answering a question of Israel 
Halperin. Let {Rt} be a directed family of regular rings of finite direct 
sums of finite AW* factors, and let R = lim Rt (as C-algebras); then 
Z(R) is almost algebraic over C; in particular, if TV is extremal 
(equivalently, R is simple), Z(R) = C. 

We also show that if R is an F-algebra direct limit of semisimple rings 
each of whose centres is a finite product of copies of F, and R is simple, 
then Z(R) is canonically equal to F. This improves a result of Goodearl 
[5, 2.7], where the semisimple rings are allowed only to be simple with 
centre F. 

On the other hand, we provide examples of simple algebraic regular 
F-algebras R with Z(R) = F, but where Z(R) can be an arbitrary finite or 
countable dimensional extension field of F; we also construct examples 
where the algebraic closure of F appears as Z(R). In building these, we 
also obtain examples of rings similar to those of Farkas and Snider [4] and 
Menai and Raphael [10], simple algebraic algebras which are not 
regular. 
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RANK-METRIC COMPLETIONS 1135 

We also construct examples (necessarily non-algebraic) of simple reg­
ular rings R where Z(R) is of uncountable dimension over Z(R), provided 
only that the latter is infinite. 

1. Completions and algebraicity. There are two basic results here. 

THEOREM 1.1. [5, 2.4] Let R be a semisimple artinian ring, and let x be an 
element of R. There exists z in the centre of R, as well as y in R, such that the 
right ideal generated by x — z is subisomorphic (as a right module) to that 
generated by xy — yx; i.e., 

(x - z)R < (xy - yx)R. 

LEMMA 1.2. Let a, b be commuting elements of a regular ring S, and let M 
be a pseudo-rank function of S. If p = p(x) is a polynomial in one variable 
having all coefficients in S, then 

M(p(a) - p(b)) ^ M(a - b). 

Remark. The commuting hypothesis is necessary, because one can find 
n X n matrices over any field F, such that the rank of A — B is one, but 
that of An - Bn is n(p(x) = xn). 

Proof Write 

m 

P(X) = 2 S:XJ, 
7=0 

with S: in S. Then 

m 

p(a) - p(b) = 2 Sj(a
J - V). 

Since a and b commute, we may find / in S with aJ — bJ = tj(a — b), 
so 

p(a) - p(b) = ( 2 y/fia - b), 

and thus 

M(p(a) - p(b)) ^ M(a - b). 

LEMMA 1.3. Let R be a regular ring algebraic over F, with pseudo-rank 
function N. Let a in R be the limit of a Cauchy sequence (with respect to N) 
{an} in R, and suppose that each an commutes with a. Then there exists a 
sequence of monic polynomials {pn} in F[x] such that {N(pn(a)) } 
converges to zero. 

Proof Since each an is algebraic over F, there exists a monic polynomial 
pn in F[x] such that pn(an) = 0. By Lemma 1.2, 

https://doi.org/10.4153/CJM-1985-061-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-061-7


1136 DAVID HANDELMAN 

N(pn(a)) = N(pn(a) - pn(an)) fk N(a - an), 

which tends to zero. 

Von Neumann announced ( [Collected Works, "Arithmetic of contin­
uous geometries"] that every simple continuous ring contains elements 
which are "transcendental" over the centre, that is, elements r such that 
p(r) is invertible (N(p(r)) = 1 at the unique rank function N) for all 
monic polynomials p with coefficients from the centre [8]. Hence not 
every element in R can be approximated by elements of R that com­
mute with it. 

If A is a (unital) subring of a commutative ring B, and b is an element of 
B, we say b is almost algebraic over A (with respect to a rank or 
pseudo-rank function N) if there is a sequence of monic polymonials pn 

with coefficients from A such that {N(pn(b) ) } —> 0. If B is a field, then 
this notion obviously degenerates to algebraicity. 

THEOREM 1.4. Let R be an algebraic F-algebra and a regular ring, and 
suppose N is a pseudo-rank function on R. Then every element of Z(R) is 
almost algebraic over F. In particular, if R is a finite product of simple rings, 
then Z(R) is algebraic over F. 

Proof The first result is an immediate consequence of Lemma 1.3. To 
see the other one, observe that if Z(R) is a finite product of fields, and 
if 

k = mm{N(E) \E minimal central idempotent of R), 

then for a in Z(R), N(a) < k implies a = 0. 

In [Collected Works of von Neumann, Continuous geometries and their 
arithmetics], von Neumann announced the following amazing result, 
proved in [7, 1.2.1]: 

If R is a non-artinian simple continuous ring with centre F, then the set 
of F-algebraic elements in R is dense with respect to the metric topology 
obtained from the unique rank function. 

This allows us to prove the following. Without the density of algebraic 
elements being available, the proof below would yield the same conclusion 
provided the hypothesis "each Rl is a finite product of simple self-injective 
regular rings" is strengthened to "each Rl is semisimple artinian" (no 
change to the algebraicity of Z(R!) hypothesis). 

THEOREM 1.5. Let R be a direct limit of F-algebras, R = lim Rl, where 
each Rl is a product of simple right and left self-injective regular rings, and 
where each Z(Rl) (not necessarily afield) is algebraic over F. Let N be a 
pseudo-rank function on R. Then the centre of the rank-metric completion, R, 
is almost algebraic over F. In particular, if R is simple, Z(R) is algebraic 
over F (so if F = C and N is extremal, Z(R) = C). 
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Proof. Select t in the centre of R\ for given c > 0, choose a in R 
such that N(a — t) < e. There exists / with a belonging to Rl. Write 
Rl = S} X S2, where 5, is a finite product of matrix rings over division 
rings, and S2 is a finite product of type II continuous simple rings. Let E 
be the identity element of Sl5 and express a = aE + a(\ — E). 

By 1.1, there exists a in Z(SX), as well as y in Sx such that 

(aE — aE)S] ^ (aEy — yaE)Sl. 

Since y = Ey, 

a(Ey) - (Ey)a = (aE)y - y(aE); 

thus N(aE — aE) < 2c. Let/? be a monic polynomial in F[x] such that 
p(a)E = 0 (p exists, since Z(SX) is contained in Z(Rl), and the latter is 
algebraic over F). By 1.2, 

N(p(a)E) < 2c. 

In S2, there exists an element b algebraic over Z(S2), hence algebraic 
over F, with 

N(b - a(\ - E)) < e 

(apply von Neumann's result to each factor, and express TV as a convex 
linear combination of the individual rank functions). There exists monic q 
in F[x] with q(b)(\ - E) = 0. 

Now N(b + aE - t) < 2c. S e t / = pq (in F[x] ). Then 

/ (6(1 - E) + aE) = q(b)(\ - E)p(b) + q(a)p(a)E 

= q(a)p(a)E. 

Hence JV(/(6 + <z£) ) < 2c, so by 1.2, 

JV(/(0 ) ^ tf (/(* + *£)) + #(6 + a£ - 0 < 4c-

THEOREM 1.6. Let R be an F-algebra which can be written as a direct limit 
of F-algebras (with F-algebra maps), R = lim R\ where each Rl is 
semisimple artinian with centre a product of copies of F. IfN is an extremal 
pseudo-rank function on R, then the completion of R at the N-induced 
topology has (the canonical copy of) F as its centre. 

Proof Select z in Z(R). Given c > 0, there exists a in some Rl such that 
N(z — a) < c (here ' V should really be replaced by the image of a in R, 
but for this argument, this would be unnecessarily pedantic; however, in 
Section 3, more care has to be taken). By 1.1, there exist e in Z(Rl) and j> 
in Rl such that 

(a - e)Rl < (ay - ya)Rl. 

Hence N(a - e) < 2c. Thus N(z - e) < 3c. 
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The centre of Rl is a finite product of copies of F, so e satisfies a 
polynomial of the form 

p(x) = (x -f)(x -f2)...(x -fk) 

for some selection of/,,. . . ,fk in F. From/?(e) = 0 and 1.2, we deduce 
that N(p(z) ) < 3c. Since TV is extremal, Z(R) is a field, so if € is chosen 
less than or equal to 1/3, p(z) = 0. Thus z satisfies one of the irreducible 
factors of p, and therefore belongs to F. 

This improves on [5, 2.8], where the algebra R is an infinite tensor 
product of matrix rings over a field F, tensored (once) with a division ring 
D whose centre is F. 

In particular, 1.6 applies to limits of finite products of matrix rings over 
a field F. An exciting question would be to decide if for R such a limit with 
R a non-artinian simple ring, is R isomorphic to the completion of the 
infinite tensor product M2F of 2 X 2 matrix rings? This would be 
the precise analogy of the situation with hyperfinite type ILr W* factors. 

2. Rank and inner derivations of finite AW* algebras. Professor I. 
Halperin has asked, if R is the regular ring of a finite W* factor of type II, 
and S is the limit of say M2"R —> M2«+i (block diagonal embeddings), is 
the centre of the completion of S in its unique rank metric just C. This 
follows from 1.4, but we give another proof which avoids using von 
Neumann's result. This proof gives a result for inner derivations and rank 
analogous to the usual results with respect to the norm. 

We abbreviate ab — ba by [a, b]. 

LEMMA 2.1 (i). Let A, B be bounded self-adjoint operators in B(H) such 
that every element of spec A is less than or equal to every element of spec B. 
Then A ^ B. 

(ii) Let a, b be self adjoint elements of the regular ring of a finite A W* 
algebra, with the same hypotheses on the spectra. Then a = b (that is, there 
exists d in R such that b — a = dd*). 

Proof Subtract an appropriate real scalar ft from both A and B 
(respectively, a and b) so that 

0 = min{a|a e spec B — ft (resp. spec b — ft) }. 

Then A — ft (a — ft) is negative, B — ft (b — ft) is positive, and the 
difference is thus positive. 

LEMMA 2.2. Let R be a unit regular ring, with unique rank function N, and 
such that K0(R) is unperforated. Let r be an element of R. 

(a) If there exists a in Z(R) such that N(r — a) < - , then there exists 

an invertible element v in R such that N( [r, v] ) = 2N(r — a). 
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(b) If N(r — a) = -for some a in Z(R), then for all c > 0, there exists 

an invertible element v of R such that N( [r, v] ) > 1 — c. 
(c) If R satisfies comparability, then the conclusion of (a) holds if 

N(r — a) = -for some a in the centre of R. 

If R is ^-regular and satisfies LP ~ RP ( [1] ), then "invertible" can be 
replaced by "unitary" in the above. 

Proof A unit regular ring with unique rank function is simple, so Z(R) 
is a field. Let q be an idempotent such that the right annihilator of r — a is 
qR. Then rq = aq, and R(r — a) = R(\ — q). In case (a), 

N(\ - q)<l-< N(q). 

By [3, 1.4], 1 — q ^ q, so we may find an idempotent e with eq = qe = e, 
and an invertible element v such that v(l — q)v~ — e, vev~ = \ — q, 
and v(q — e) = (q — e)v = q — e (write 

R = (q - e)R @ (1 - q)R 0 e/*; 

define an .R-module endomorphism of R as the identity on (q — e)R, and 
so that it interchanges 1 — q and e). Set s = vrv~ . Writing 

r = r(\ — q) + rq — r(\ — q) + a(g — e) + ae 

s = a(l — #) + a(g — e) + se, 

we deduce that r — s = (r — a)(l — #) 4- (a — s)e. Since (1 — q)e = 0, 
we have that 

N(r - s) = N((r - a)(\ - q)) + N(a - s)e)\ 

but r — a = (r — a)(\ — q), so 

N((r - a)(\ - q)) = N(r - a). 

As (a — s)e is conjugate (via v) to (a — r)(\ — q), 

N( (a - s)e) = 7V(r - a). 

Thus 

N(r - vrv -1) = 27V(r - a). 

As v is invertible, 

N(r - vrv~]) = N([r9 v]). 

To prove (c), just observe that when comparability holds, N(\ — q) = 

- implies 1 — q is equivalent to #, and the same process can be applied as 
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in the proof of (a), with e = q. 
In case (b), we may assume R is not artinian (else (c) applies). Hence we 

may decompose 1 — q = (1 — q') + f where 1 — q' a n d / a r e orthogonal 
idempotents, with 0 ^ N(f) < e. Then N(\ - q') < N(q), so 1 - q' < q, 
and the same process as in (a) works. 

If R is *-regular with LP ~ RP, then all the idempotents occurring 
above can be replaced by projections, and the equivalences are now 
implementable by unitaries in place of invertible elements. 

PROPOSITION 2.3. Let M be a type l\f AW* factor, with regular ring R, 
and rank function N. Suppose r = r* is an element of R. Then there exists a 
unitary w in M such that 

N( [r, w] ) = min{l, inf{2N(r - a) \a e R} }. 

In particular, if N(r — a) ^ -for all real scalars a, then there is a unitary 

w in M such that [r, w] is invertible in R. 

Proof If N(r — a) ^ - for some scalar (necessarily real) a, then 2.2 

applies. We may thus assume that N(r — a) > - for all scalars a. 

Set v = (1 -f r 2 ) - 1 7 2 , t = rv. Then v, t belong to M, commute, and 
r = tv~]. Let C be any masa containing v and t; we may identify C with 
L°°(X, u), where u(E) = N(PE) for E a measurable subset of X and PE its 
characteristic function. Defining M(X, u) (as in [2, 1.2] ) as 

{f.X -* C\u - mble, \f(x) \ < oo a .e .} /{ / :* -> C\f = 0 a.e.}, 

we have that M(X, u) is the completion of L°°(X, u) at N, and thus sits 
inside R. With this identification, r may be viewed as a w-measurable 
real-valued function that is finite almost everywhere. 

Define the real number 

a = sup |j8|n(r 1 ( [ - o o , ) S ) ) ) < ^ j . 

Define the three disjoint sets, 

K = r~\ {a} ),J = r~\ [ -oo, a) ), L = r~\ (a, oo] ). 

Set u(J) = a, u(K) = b, and u(L) = c. Since for all scalars ft, 

u(r~\{f$}) = 1 - N(r- / ? ) < ^ , 

it follows that a ^ - , while a + b ^ - . 
2 2 
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Thus i + c ^ - and a + c ^ - (the latter since N(r— a) > - ) . De-
2 2 2 

fine the non-negative real numbers, d, e, f, via 

2d = a + b — c, 2e = a + c — b, 2f=b + c — a. 

Then J + e + / = - and a = d+e,b = d+f, c = e + f. 

Let Py, P^, PL denote the characteristic functions of the corresponding 
sets. Decompose orthogonally, all projections lying in C, 

PJ = PJ,d + PJ,e> PK = PK4 + PKf PL = ^L,e + PLj> 

where the subscript d, e, or / gives the value of the corresponding 
projection at N, that is, N(PJd) = N(PKd) = d, etc. Then there exists a 
unitary w in R (hence in M) interchanging projections with the same 
N-value. Thus: 

™PJJ»* = PKj> wPK,d™* = PJj\ 

H'V* = PU> *>PUe™* = PJ^ 

wPK,fw* = PL,f> WPLJW* = PK,f 

Set s = wrw*. We have that 

r = rPJ(i + rPJe + aPK(i + aPKf + rPLe + r P L / and 

5 = aPJd + 5Py,e + * P ^ + * P ^ + sPL,, + aPLf 

Because of the orthogonality of the six projections, N(r — s) is the sum 
of the N-values of each of the six terms; moreover since (a — s)PKd is 
conjugate via w to — (r — a)PJd (and similarly with the other two pairs), 
we have that 

N(r - s) = 2N( (r - a)PJd) + 2N( (r - s)PJe) 

+ 2N( (r - a)PLf). 

Now rPj d commutes with Pj d, and r never hits a on the support of PJd 

(which is in that of Pj). Hence (r — a)PJd is invertible in PJdM(X, u). 
Thus 

N((r- a)PJd) = N(Pjj) = d. 

Similarly, 

N( (r - a)PLf) = f. 

Although rPj e = r* and sPJe = s' commute with PJe, they need not 
commute with each other. However, setting T to be the corner AW* 
algebra of M determined by Pj e, 
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spec7r' c [ — 00, a] and spec 7 / c [a, 00] 

(V, s' are in the regular ring of T). By Lemma 2.2, r' ^ s' in Pj eRPj e. 
Suppose (V — r')g = 0 for some projection q ^ PJe. By subtracting 
« from r at the outset, we may assume a = 0. Then r' ^ 0 â 5'. Since 
$' — r' = 0, 5', we have that 

0 = q(s' - r')q ^ qs'q â 0. 

Hence gs'g = 0; as sf is positive, s'q = 0, and thus r'g = 0. 
On the other hand, as r never hits 0 (formerly a) on / , r' is invertible in 

PJeM(X, u)Pje and hence is invertible in PJeRPJe. This contradicts 
rrq = 0, unless q = 0. Hence 5' — r' is a nonzero-divisor in Pj eRPj e, so 
must be invertible. Therefore 

iV(/7k - sPjJ = N(r' - s') = N(PjJ = e. 

Thus 

N(r - s) = 2d+2e + 2f= I. 

As r — s = r — wrw*, N( [r, w] ) = 1. 

The following can possibly be extended to the regular ring of a general 
finite type AW* algebra, but there would be no obvious consequences 
from doing so. 

COROLLARY 2.4. Let T be a possibly infinite cartesian product of copies of 
regular rings of \\r AW* factors, T = I I Rt. For all r = r*, //zere exists a 
central element a of T, as well as a unitary ofwofT, such that as principal 
right T-ideals. 

(r - a)T < [r, w]T. 

Proof The hypotheses of 2.3 apply to each R,. Write r = (r;-) G T. For 
each /, there exists a, in Z(Rt) = CI,, together with a unitary w, such 
that 

AT([rr a,]) = m i ^ l ^ ^ r , . - a , ) } . 

In particular, 

ty(/V - «,) < ty( [r,, «,-] ), 

SO 

The desired result follows from setting a = (a7), w = (w,). 
In the limit, lim R! described below, there is no assumption that the 

maps preserve any involution; it is only required that they be C-algebra 
homomorphisms. 
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THEOREM 2.5. Let {R!} be a directed family of finite products of 
regular rings of finite AW* factors (with C-algebra homomorphisms). Set 
R = lim Rl. Let N be an extremal pseudo-rank function on R. Then the 
natural map from C (in the centre of R) to the centre of the completion of R 
at N, is an (onto) isomorphism. 

Proof Select t in Z(R). Let F(:R
l —» R be the canonical map. There 

exists s in some Rl such that N(t — F^s)) = 5 is arbitrarily small (8 to be 
chosen later). Then if N also denotes the restriction of N to Rl, for all r in 
R! we have that 

N( [s, r] ) < 28. 

Since on the level of Rl
9 all pseudo-rank functions are invariant under 

the involution, we have that if s^ = -(s + s*)9 s2 = -i(s — s*) (so s = 

5j — is2)9 for all r in R\ each of 

N([s]9r])9N([s29r]) 

is less than 48. 
Since s] and s2 are both self-adjoint, 2.4 applies, so there exist: central 

elements a]9 a2 of Rl such that 

(Sj - a^R1 < [sj9 WjW1 (j = 1, 2) 

for some uni taries wl9 w2 in Rl. Thus 

N(Sj - <Xj) ^ N( [sJ9 wj] ) ^ 45 . 

Set a = «j — /a2- Then N(s — a) < 8S. 
Now the centre of each Rl is a finite product of copies of C. There thus 

exists a monic polynomialp in C[x] such that/?(a) = 0. As [s9 a] = 0, 1.2 
applies, so N(p(s)) = 88. Another application of 1.2 yields that 
N(p(t) ) ^ 98. If we had chosen S < 1/9, then N(p(t) ) would be less than 
1. Since the centre of R is a field (as N is extremal), N(p(t) ) < 1 implies 
that /?(/) = 0. Hence Z(R) is algebraic over (the image of) C, so must 
actually be C. 

3. Examples. In this section, we present several classes of examples. 
Given a field F and a finite dimensional extension field, AT, 3.1 provides a 
means of constructing a simple algebraic regular F-algebra RF(K) with 
unique rank function and centre F9 but whose completion has centre K. 
With K algebraic but of countable dimension over F9 essentially the same 
construction works. In 3.2, a variation is discussed, where examples 
similar to those occurring in [4] and [10] (non-regular simple algebraic 
algebras which are epimorphism-final) are obtained for suitable K9 by 
tensoring certain of the examples in 3.1 with K. The completions of these 
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can be regular or not regular, depending on whether an infinite product 
converges or not. Finally, 3.3 concerns a simple regular ring whose 
completion has centre a field of uncountable dimension and not algebraic 
over the centre of the original. 

Example 3.1. Let AT be a finite dimensional extension field of F. We will 
construct R = RF(K), an F-algebra with the following properties: 

RF(K) is simple, regular, and algebraic over F with centre F\ 
RF(K) has comparability of idempotents and thus has a unique rank 

function, N; 
The completion of RF(K) at N has centre K. 
This mimics [5, 2.10]. 
The basic map is an F-algebra (but not a AT-algebra) map 

f)um.MnK^MmnK 

obtained as follows. Let g:K—> MdFbe an embedding, where d = dim FK, 
and assume m > d. Write 

MnK = MnF ®p K, 

and for z in MnF, define 

ffhm(z) = z © z © . . . © z (m times). 

For a in K, set 

f„jaln) = « / „ © . . . 0 aln © (/„ ® g(a) ) 

(m — d copies of aln and one of In ® g(a) ). It is readily checked that/,, m 

is a unital map of F-algebras. 
Let {«(1), n(2), . . . } be a sequence of integers exceeding d, such that 

2 l /«(/) < oo. Define RF(K) to be the limit of 

w Kfn(\),n(1) M Kfn{2)n{\),nQ) M K-^ 
Mn(\)

K • M « ( 2 ) « ( 1 ) A *»Mn(3)n(2)n(\)A ^ • • 

To simplify the notation, let Ak the /c-th matrix algebra appearing in the 
limit (size: I lf= 1 «(/') ), and denote b y / ^ the map Ak —> Ak + X. S o 

RF(K) = \imfk:Ak^Ak+x. 

Obviously, RF(K) is simple and algebraic over F, with comparability of 
idempotents (since each Ak is simple, algebraic, etc.). Now Z(Ak) = K, 
but the image of any a in K\F at the next level is not central. Thus 
Z(R) = F. Set sk\Ak —> RF(K) to be the map into the limit. 

The unique rank function on R = RF(K) is given by 

N(sk(r) ) = — for r in Ak. 

l 
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Let / denote the identity matrix of Ak. We now show that 

{sk(alk))k^ 

converges with respect to N, to a central element of R. A simple 
computation reveals that in Ak + X, 

rank(/V") - <*/*+1) ^ ( i l «(/)) • d\ 

SO 

N(sk(alk) - sk+](aIk+]))^ d/n(k + 1). 

Since 2 ^ \/n(k) < oo, the sequence is indeed Cauchy. Let a in R 
denote the limit. For x in RE(K), say 

x = st(rt) = st+\(rt+\) = • • • 0} G ' W - ' ) ' 

7V(tf.x — xa) = lim rank(r,a/ — a/V r)/II«(/) = 0, 

so a commutes with everything in RF{K), and thus is central in R. 
Since R admits a unique rank function, R is simple and thus Z(R) is a 

field. Clearly, if/? in .F[x] is the irreducible polynomial satisfied by a, then 
p(a) = 0. It is readily checked that the assignment a —» # yields an 
embedding # —» Z(#) . 

When AT is separable over F, we can conclude that this map is onto and 
more, as follows. 

Set L = Z(R); this is algebraic over F, by 1.2, and setting F to be the 
algebraic closure of F, we have the inclusion of fields F c K c L c £. We 
observe that £ (Ŝ r Â  is isomorphic to a direct sum of d copies of E. Then 
RE = RF(K) ®p F is a limit of finite direct sums of matrix rings over £*, so 
is algebraic (over F, and thus over E) and an £-algebra, as well as being 
regular (here is where we use separability). Moreover, since Rp(K) is 
simple with centre i% RE is simple with centre E. Finally, because the 
number of simple direct summands (at each level) in this limit 
representation is bounded by d, it follows that the Z-rank of K0(RE) is at 
most d. 

Since E can be embedded in a (possibly uncountable) tensor product of 
matrix rings over F (of various sizes), it follows easily that TV extends to 
(at least one) rank function on RE, which we shall also call N. Complete 
RE at this metric. Certainly L ® E = Z(R) ® E is contained in the 
centre of RE. If [L:F] < 00, then L® E is just [L:F] copies of E. Hence 
Z(RE) would contain at least [L:F] minimal idempotents, and so TV (on 
RE) can be expressed a convex combination (with strictly positive 
coefficients) of [L:K] distinct extremal pseudo-rank functions on RE. Since 
K0(RE) is a dimension group [3] of rank at most d, it has at most 
d pure states and thus [L:F] ^ d, so equality holds, and thus (as K c L 
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and [K:F] = d) K = L. 
If on the other hand, [L:F] = oo, then L ® E has infinitely many 

idempotents, and we would obtain that TV is an integral of infinitely 
many pseudo-rank functions on RE, contradicting the finiteness of rank 
K0(RE). Thus in the separable case, this argument yields not only 
that Z(R) = K, but also that the Z-rank_of K0(RE) is d. 

Via 1.1, one can show directly that Z(R) = K, separable or not. 
Any countable dimensional algebraic field extension can arise as the 

centre of a suitable R, by allowing the fields to change in the limit. For 
example if K = U Ki9 [Kf.F] < oo, construct R as a suitable limit 

K\ - * Mm(\)K2 ~* Mm(2)K3 "* • • • 

where the maps are basically as before. This works when dim FK is 
countable, and presumably a limit argument can be used to obtain the 
result for first uncountable dim FK. The algebraic closure can always be 
obtained, simply by tensoring together (over F) all the RF(K) (at least 
when F is of characteristic zero or perfect) as K varies over all the finite 
dimensional extension fields within a fixed algebraic closure of F. 

To obtain an example of an arbitrary algebraic extension field (where 
however, R is not algebraic over F), start with K an algebraic extension 
field of F, and let S be the completion of a sufficiently large tensor 
product of copies of lim M2nF, so that there is an embedding g:K —» S. 
Then S ® K is regular (by [9, 2.1 (iii) ], S 0 K is a limit of simple 
self-injective regular rings). Then an appropriate direct limit of matrix 
rings over S ® K as before, using g, will yield a simple algebra R with 
centre F, whose completion at its unique rank function (R has 
compatibility) has centre K. 

Example 3.2. Here we construct simple algebraic algebras which are not 
regular, the "easy" way. Let F be a non-perfect field of characteristic /?, 
and let AT be a non-separable (actually, purely inseparable) extension field 
of the form K = F((l), where (5P G F. Form RF(K) as in the first example, 
and consider S = RF(K) ®F K. 

As K ® K/J(K ® K) ~ K, we see that K0(S) has rank one, and of course 
cancellation of projections holds as well. S is simple, as it is the tensor 
product of a central simple F-algebra with a simple one, and has centre K. 
On the other hand, S is not regular; the proof given by Menai and Raphael 
[10] for their examples works equally well here (sk(I

k ® ft — filk ® 1) has 
no quasi-inverse). The rank of K0 of their examples is two. 

Now recall that g.K—» MpFis the regular representation; thus S embeds 
in R ® MpF ^ MpR, via g, r ® a —> r ® g(a), and this embedding yields a 
rank function on S agreeing with N on R = RF(K); call it N as well. 

Part of the definition of RF(K) entailed that the sequence of integers 
{«(1), «(2),. . . } have their reciprocals summable. Drop this restriction 
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from the definition. 
Now we show that the completion of S at N is not regular (but is 

self-injective) if 2 1/«(/') < oo, and then we outline a proof that S 
is regular if 2 \/n(i) = oo. 

From the inclusion R —> S —> MpR, we obtain the inclusions of 
completed rings, R —» S —» M,/?. There is a natural map R ® K —> S. 
We note that R ® K is the centralizer of 1 ® K in M ^ [11, 5.1]; thus 
R ® K is closed in M^fl. Since R ® K ~ S, the map from fl ® K has 
dense image in S, so must be an isomorphism. Rewriting this, we have 
R ® K = R® K. 

A result of Menai (appearing in the proof of [9, 2.1 (iii) ] ) yields that 
R ® K is self-injective. Another application of [11, 5.1] gives us that 

Z(R) ®K= Z(R ® K) = Z(S). 

When 2 \/n(i) < oo, Z(R) = K, so Z(S) = K ® K\ this admits 
nilpotents, so S is not regular. 

On the other hand, if 2 \/n{i) is infinite, Z(R) = F (use 1.1 and 
examine the behaviour of the elements in the centres of each Ak), so S is 
simple and self-injective, and thus is regular. 

Example 3.3. Here we sketch the construction of non-algebraic 
examples where the centre blows up in an incredible fashion. We shall 
obtain a simple regular ring R with centre an infinite field F such that the 
centre of R (at some extremal rank function on R) contains a non-
principal ultrapower of F, so it is of uncountable dimension over F. 

Let T be the completion of lim M2«F. Set S to be the cartesian product 
of countably many copies of T\ there is an embedding g:S —» T. Let 
d.T —» S denote the diagonal map d(t) = ( . . . , / , / , . . . ) . 

Define the maps (in analogy with those of 3.1) 

MnS -> MnmS, s -> diag(s, s, s , . . . , s, dg(s) ). 

Because T is simple, it is easy to check that the limit of these maps, R, is 
simple and that its centre is F. Moreover, R is unit regular, so admits an 
extremal rank function. If the usual condition on the n(i) holds, it is also 
easy to check that there is a map from the centre of S(= I I F) to the 
centre of the completion of R. Finally, the extremal rank function can be 
chosen so that the kernel of the map IT i7 —> Z(R) is not a principal 
maximal ideal. Thus the image is a non-principal ultrapower of F, hence is 
not algebraic over F, and is of uncountable dimension (recalling that F is 
infinite here). It is probable that the map is onto, but I was not able to 
prove it. 
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